Skip to main content

Home/ Aasemoon'z Cluster/ Group items tagged engineering design

Rss Feed Group items tagged

Aasemoon =)

Power-aware FPGA design (Part 1) - 0 views

  •  
    "UBM Electronics "
Aasemoon =)

Electrical noise and mitigation - Part 3: Shielding and grounding (cont.), and filterin... - 0 views

  • A shielded transformer is a two-winding transformer, usually delta"star connected and serves the following purposes: Voltage transformation from the distribution voltage to the equipment's utilization voltage. Converting a 3-wire input power to a 4-wire output thereby deriving a separate stable neutral for the power supply wiring going to sensitive equipment. Keeping third and its multiple harmonics away from sensitive equipment by allowing their free circulation in the delta winding. Softening of high-frequency noise from the input side by the natural inductance
Aasemoon =)

Techfocus Media :: Paradox of Pursuit - 0 views

  • Rube Goldberg couldn’t have designed a more elegant confluence of convoluted causal relationships.  Start analyzing the perplexing paradox of the FPGA synthesis market and each link of the chain reveals a bizarre force vector that eventually doubles back onto itself into an unlikely equilibrium that miraculously has held stable for a full decade despite disruptive forces of epic proportions. For over a decade now, Synplify has navigated these waters and has continued to survive and thrive through the unlikeliest of conditions.  Now in the hands of EDA giant Synopsys, the Synplify family of FPGA synthesis tools continues to evolve - with a major upgrade this fall.  When you put a digital design into an FPGA, there are two technologies that determine whether your design fits or doesn’t fit, whether it meets your timing constraints or does not, whether the power consumption will be within your limits (or those of the FPGA), or whether it fails completely, leaving your project at the mercy of major mulligans.   Those two technologies are synthesis and place-and-route. 
Aasemoon =)

AWR: The advantages of multi-rate harmonic balance technology - 0 views

  • Harmonic balance (hB) analysis is a method used to calculate the nonlinear, steady-state frequency response of electrical circuits. It is extremely well-suited for designs in which transient simulation methods prove acceptable, such as dispersive transmission lines in which circuit time constants are large compared to the period of the simulation frequency, as well as for circuits that have a large number of reactive components. In particular, harmonic balance analysis works extremely well for microwave circuits that are excited with sinusoidal signals, such as mixers and power amplifiers...
Aasemoon =)

TechOnline | Introduction to NI LabVIEW Robotics - 0 views

  • NI LabVIEW Robotics is a software package that provides a complete suite of tools to help you rapidly design sophisticated robotics systems for medical, agricultural, automotive, research, and military applications. The LabVIEW Robotics Software Bundle includes all of the functionality you need, from multicore real-time and FPGA design capabilities to vision, motion, control design, and simulation. Watch an introduction and demonstration of LabVIEW Robotics.
Aasemoon =)

Robotics - 0 views

  • Robots mean many things to many people, and National Instruments offers intuitive and productive design tools for everything from designing autonomous vehicles to teaching robotics design principals. The NI LabVIEW graphical programming language makes it easy to program complex robotics applications by providing a high level of abstraction for sensor communication, obstacle avoidance, path planning, kinematics, steering, and more.
Aasemoon =)

Embedded.com - Timing Closure on FPGAs - 0 views

  • Have you ever written code that behaves correctly under a simulator only to have intermittent failures in the field? Or maybe your code no longer functions properly when you compile with a newer version of your tool chain. You review your test bench and verify 100 percent complete test coverage and that all tests have passed with no errors--yet the problem stubbornly remains. While designers understandably place great emphasis on coding and simulation, they often have only a nodding acquaintance with the internal workings of the silicon within an FPGA. As a result, incorrect logic synthesis and timing problems, rather than logic errors, are the cause of most logic failures. But writing FPGA code that creates predictable, reliable logic is simple if designers take the right steps. In FPGA design, logic synthesis and related timing closure occur during compilation. And many things, including I/O cell structure, asynchronous logic and timing constraints, can have a big impact on the compilation process, varying results with each pass through the tool chain. Let's take a closer look at ways to eliminate these variances to better and more quickly achieve timing closure.
Aasemoon =)

Leveraging FPGA in PCB system designs | Industrial Control Designline - 0 views

  • FPGA devices create compelling business drivers generating a tidal wave of FPGA adoption for the implementation of system PCB designs. Obviously, the time to market advantages and capacity/performance characteristics of FPGA devices have delivered on the promise for a viable alternative to more capital resource intensive custom IC/ASIC solutions as well as a successful consolidation vehicle for standard "off the shelf" components in system design creation.
Aasemoon =)

untitled - 0 views

  • The animal world has been a source of inspiration for many robotic designs as of late, as who better to ask about life-like movements than mother Nature herself? Up until now, though, these designs had been mostly focused on small critters, like cockroaches, and simulating properties such as adaptability and speed. But what happens when we start looking at bigger and stronger animals? Like, say, an elephant? Well, Festo’s Bionic Handling Assistant is what happens. This innovation might seem like just another robotic arm at first glance, but the video demonstrates quite vividly how this design is such a big improvement over previous versions. Modeled after the elephant’s mighty trunk, this arm possesses great dexterity, flexibility and strength; operating with smooth, yet firm motions, and can pick up and move any kind of object from one place to another. It’s FinGripper fingers give it “an unparalleled mass/payload ratio”, and it has no problem twisting, assembling and disassembling things, such as the experimental toy in the video.
Aasemoon =)

ESC - Xilinx Extensible Processing Platform combines best of serial and parallel proces... - 0 views

  • Xilinx Inc. today introduced the architecture for a new Extensible Processing Platform they claim will deliver unrivaled levels of system performance, flexibility and integration to developers of a wide variety of embedded systems. The ARM Cortex-A9 MPCore processor-based platform enables system architects and embedded software developers to apply a combination of serial and parallel processing to address the challenges they face in designing today's embedded systems, which must meet ever-growing demands to perform highly complex functions. The Xilinx Extensible Processing Platform offers embedded systems designers a processor-centric design and development approach for achieving the compute and processing horsepower required to drive tasks involving high-speed access to real-time inputs, high-performance processing and complex digital signal processing - or any combination thereof - needed to meet their application-specific requirements, including lower cost and power.
Aasemoon =)

Doing C-code generation better: from graphical code to embedded target | Industrial Con... - 0 views

  • One challenge designers face is the need to translate their algorithms into code for use in embedded targets. The task has proven to be long and prone to error. This article examines how the use of high-level design tools and C code generation capabilities improves the design flow by exploring different use cases and how to reduce the amount of embedded technology expertise required to program embedded targets.
Aasemoon =)

ASIMO Interaction Study at Ars Electronica 2010 - 0 views

  • Honda and the Ars Electronica Futurelab are collaborating on a human-robot interaction study this week in Linz, Austria (September 2nd ~ 8th).  Although they say their goal is to determine how robots ought to interact with people in the future, I think this may be just an excuse to let the public have some one-on-one fun with ASIMO.  In any case, these sorts of studies should help steer Honda’s engineers in the right direction when designing the next version of the world’s most famous humanoid robot.
Aasemoon =)

IEEE Spectrum: Japanese Snake Robot Goes Where Humans Can't - 0 views

  • Japanese robotics company HiBot has unveiled a nimble snake bot capable of moving inside air ducts and other narrow places where people can't, or don't want to, go. The ACM-R4H robot, designed for remote inspection and surveillance in confined environments, uses small wheels to move but it can slither and undulate and even raise its head like a cobra. The new robot, which is half a meter long and weighs in at 4.5 kilograms, carries a camera and LEDs on its head for image acquisition and can be fitted with other end-effectors such as mechanical grippers or thermo/infrared vision systems. Despite its seemingly complex motion capabilities, "the control of the robot is quite simple and doesn't require too much training," says robotics engineer and HiBot cofounder Michele Guarnieri.
Aasemoon =)

PRODUCT HOW-TO: Increase embedded processor efficiency through the use of distributed C... - 1 views

  • In then the past few years we have seen multiprocessing systems become more mainstream, in fact most modern personal computer CPUs now feature symmetric multiprocessing systems (SMP), where multiple instantiations of the same processor share the processing burden of the applications running on the PC. While SMPs are quite common today, we typically have not seen a shift towards multiprocessing in embedded computing. However, a new type of embedded design technique gives engineers the freedom to intelligently distribute processing functions across a digital subsystem. This article will look at an example of the distributed processing technique using Cypress Semiconductor's PSoC 3 and PSoC 5 architectures, which consist of a main CPU (in this case an 8051 or ARM Cortex M3), a DMA engine, and array of Universal Digital Blocks (UDB).
Aasemoon =)

TI multicore SoC is a bag of nice ideas | DSP DesignLine - 0 views

  • While the new multicore system on chip (SoC) signal-processing architecture announced by Texas Instruments this week at Mobile World Congress hits all the right notes with respect to what's needed in next-generation basestation designs, it rings a bit hollow given how sketchy the architectural details remain when contrasted with more 'real' announcements from the likes of Freescale. For sure, the requirements of next-generation basestations will push all architectures to their limits and beyond. Balancing lower power and lower cost with increasingly parallel, math-intensive processing to meet multiuser demands for high-data-rate data in 3GPP Long Term Evolution (LTE) Release 8 all-IP networks is not going to be easy, especially with the introduction of MIMO, beam forming, OFDMA and many other enhancements engineered to maximize spectral efficiency.
  •  
    This is pretty kool.....
Aasemoon =)

Yet another new idea for FPGAs: relays? - Practical Chip Design - Blog on EDN - 1690000169 - 0 views

  • March has seen two significant announcements from FPGA start-ups with innovative architectures: Tabula, with their time-domain-multiplexed architecture, and TierLogic, implementing their routing switches in a layer of thin-film transistors. Both approaches promise to significantly reduce the die size and cost of high-end FPGAs. But before these announcements broke, a relatively unnoticed paper at February's International Symposium on FPGAs described what may be the most radical technology of them all: FPGAs using electromechanical relays. No, this is not an early April Fool's joke, nor is it one of those "let's see if anyone will publish this one" academic exercises. The paper presented work by professors and students at the Stanford University departments of electrical engineering and computer science, and researchers at Altera Corp. The work was supported in part by DARPA funding.
Aasemoon =)

Bionic Pancreas - IEEE Spectrum - 0 views

  • When Pantelis Georgiou and his fellow biomedical engineers at Imperial College London decided to design an intelligent insulin pump for diabetes patients, they started at the source. "We asked ourselves, what does a pancreas do to control blood glucose?" Georgiou recalls. The answer is pretty well known: The organ relies primarily on two populations of cells—beta cells, to secrete insulin when blood glucose is high, and alpha cells, which release a hormone called glucagon when glucose levels are low. "We simulated them both in microchip form," Georgiou says. This biomimetic approach diverges from today's dominant method of delivering only insulin using a relatively simple control system.
Aasemoon =)

Artificial Intelligence and Robotics: Anybots telepresence robot heading for the boardroom - 1 views

  • California-based company Anybots continues work on a telepresence robot that can take communication to a whole new level by eliminating the need for people to actually be present at board meetings or conferences. Because God knows executives work hard enough. The idea behind QA, the robot, is to interact with people, such as clients or partners, from anywhere in the world, which will save a lot of money on travel costs and different remote-communications equipment. Designed not unlike a sophisticated Skype program, QA relies on a Wi-Fi connection to allow users to interact through video, sound and diagrams projected from and onto the robot’s interface. With a sleek white exterior design, the armless 5-foot robot looks just about how you would expect a robot tailored for the boardroom to look. His rectangular-shaped face with two big eyes reminds a bit of Steven Spielberg’s E.T., so people should warm up to it fairly quickly.
Aasemoon =)

Artificial Intelligence and Robotics: Robot fish leader - 0 views

  • Humans have been coming up with innovative ways with which to plunder the Earth and its resources for as long as we have existed, so perhaps its time we give back a little. Leading aquatic animals, such as fish, away from underwater power plant turbines seems like a good place to begin, and a researcher at the Polytechnic Institute of New York University has designed a robot that will help just with that. Assistant professor Maurizio Porfiri studied the characteristics of small schools of fish to learn what exactly they look for in a leader, and he designed a palm-sized robot that possesses these traits. By taking command, this leader can be programmed to guide the fish away from danger, but the tricky part is getting the animals to accept the robot as one of their own.
Aasemoon =)

Interactive geometric sound propagation - 0 views

  • Realistic sound rendering can directly impact the perceived realism of users of interactive media applications. An accurate acoustic response for a virtual environment is attuned according to the geometric representation of the environment. This response can convey important details about the environment, such as the location and motion of objects. The most common approach to sound rendering is a two-stage process: Sound propagation: the computation of impulse responses (IRs) that represent an acoustic space. Audio rendering: the generation of spatialized audio signal from the impulse responses and dry (anechoically recorded or synthetically generated) source signals.
‹ Previous 21 - 40 of 69 Next › Last »
Showing 20 items per page