Skip to main content

Home/ Technology Trends/ Group items tagged electronics:

Rss Feed Group items tagged

anonymous

Asia-Pacific Electronic Toll Collection Market Size, Share & Forecast 2024 | TechSci Re... - 0 views

  •  
    Electronic Toll Collection provides crucial information like vehicle registration status & helps to reduce pollution. Get the latest trends in APAC Electronic Toll Collection Market for FY2024
Duane Sharrock

Medical devices powered by the ear itself - MIT News Office - 0 views

  • Health Sciences and Technology (HST) demonstrate for the first time that this battery could power implantable electronic devices without impairing hearing.
  • The devices could monitor biological activity in the ears of people with hearing or balance impairments, or responses to therapies. Eventually, they might even deliver therapies themselves
  • “In the past, people have thought that the space where the high potential is located is inaccessible for implantable devices, because potentially it’s very dangerous if you encroach on it,” Stankovic says. “We have known for 60 years that this battery exists and that it’s really important for normal hearing, but nobody has attempted to use this battery to power useful electronics.”
  • ...5 more annotations...
  • The ear converts a mechanical force — the vibration of the eardrum — into an electrochemical signal that can be processed by the brain; the biological battery is the source of that signal’s current. Located in the part of the ear called the cochlea, the battery chamber is divided by a membrane, some of whose cells are specialized to pump ions. An imbalance of potassium and sodium ions on opposite sides of the membrane, together with the particular arrangement of the pumps, creates an electrical voltage.
  • Low-power chips, however, are precisely the area of expertise of Anantha Chandrakasan’s group at MTL
  • The frequency of the signal was thus itself an indication of the electrochemical properties of the inner ear.
  • in cochlear implants, diagnostics and implantable hearing aids. “The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant,” Megerian says. “Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output.”
  • “I’m not ready to say that the present iteration of this technology is ready,” Megerian cautions. But he adds that, “If we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future.”
  •  
    "For the first time, researchers power an implantable electronic device using an electrical potential - a natural battery - deep in the inner ear."
  •  
    "All of D-Lab's classes assess the needs of people in less-privileged communities around the world, examining innovations in technology, education or communications that might address those needs. The classes then seek ways to spread word of these solutions - and in some cases, to spur the creation of organizations to help disseminate them. Specific projects have focused on improved wheelchairs and prosthetics; water and sanitation systems; and recycling waste to produce useful products, including charcoal fuel made from agricultural waste."
thinkahol *

Advance in Quantum Computing Entangles Particles by the Billions - NYTimes.com - 0 views

  •  
    In a step toward a generation of ultrafast computers, physicists have used bursts of radio waves to briefly create 10 billion quantum-entangled pairs of subatomic particles in silicon. The research offers a glimpse of a future computing world in which individual atomic nuclei store and retrieve data and single electrons shuttle it back and forth.
thinkahol *

Toward optical computing in handheld electronics: Graphene optical modulators could lea... - 0 views

  •  
    Graphene-based modulators could soon allow consumers to stream full-length, high-definition, 3-D movies onto a smartphone in a matter of seconds, the researchers said.
thinkahol *

New laser technology could revolutionize communications | KurzweilAI - 0 views

  •  
    Engineers at Stevens Institute of Technology have developed a technique to optically modulate the frequency of a laser beam and create a signal that is disrupted significantly less by environmental factors, says Dr. Rainer Martini. The research provides for enhanced optical communications, allowing mobile units not tied to fiber optic cable to communicate in the range of 100 GHz and beyond, the equivalent of 100 gigabytes of data per second. Eventually, the team hopes to extend the reach into the terahertz spectrum. The frequency or amplitude modulation of middle infrared quantum cascade lasers has been limited by electronics, which are barely capable of accepting frequencies of up to 10 GHz by switching a signal on and off.  Marini and his team have developed a method to optically induce fast amplitude modulation in a quantum cascade laser to control the laser's intensity. Their amplitude modulation system employed a second laser to modulate the amplitude of the middle infrared laser, using light to control light. The current detector is only capable of detecting frequencies up to 10 GHz, but Dr. Martini is confident that a new detector will make the system capable of much higher frequencies. With an optical system that is stable enough, satellites may one day convert to laser technology, resulting in a more mobile military and super-sensitive scanners, as well as faster Internet for the masses, says Martini. Ref.: "Optically induced fast wavelength modulation in a quantum cascade laser," Applied Physics Letters, July 7, 2010.
anonymous

Fraud Detection and Prevention Market Size, Share & Forecast 2024 | TechSci Research - 0 views

  •  
    Fraud detection and prevention market is expected to grow at double digit CAGR during the forecast period owing to upsurge in electronic transactions and increasing instances of cyber-attacks and frauds.
anonymous

Cryptocurrency Market Size, Share & Forecast 2024 |TechSci Research - 0 views

  •  
    Due to faster transaction, presence of big electronics manufacturing units, etc led the global cryptocurrency market is projected to grow at a CAGR of around 32%, in value terms, during 2014-2024.
Duane Sharrock

Tissue engineering: Growing new organs, and more - MIT News Office - 0 views

  • This kind of disease modeling could have a great impact in the near term, says MIT professor Sangeeta Bhatia, who is developing liver tissue to study hepatitis C and malaria infection.
  • liver is difficult to grow outside the human body because cells tend to lose their function when they lose contact with neighboring cells. “
  • In a large-scale project recently funded by the Defense Advanced Research Projects Administration, several MIT faculty members are working on a “human-on-a-chip” system that scientists could use to study up to 10 human tissue types at a time.
  • ...6 more annotations...
  • Biological and Mechanical Engineering
  • developing regenerative therapies that help promote wound healing.
  • Endothelial cells, normally found lining blood vessels, could help repair damage caused by angioplasty or other surgical interventions; smoke inhalation; and cancer or cardiovascular disease.
  • One of the earliest successes of implantable tissues was the development of artificial skin, which is now commonly used to treat burn victims.
  • Langer is now working on more complex tissues, such as cardiac-tissue scaffolds that include electronic sensors and a synthetic polymer that could restore vocal-cord function in people who have lost their voices through overuse or other types of damage
  • In Bhatia’s lab, where tissue-engineering research is evenly divided between modeling diseases and working toward implantable organs, researchers recently developed 3-D liver tissues that include their own network of blood vessels
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
Duane Sharrock

As Hurricanes Approach, the Robotic Storm Chasers of the Future Are Ready | Popular Sci... - 0 views

  • Authorities like NOAA gather storm data from a few different sources--from aircraft circling the weather system from tens of thousands of feet, from stationary weather buoys scattered throughout the Gulf of Mexico, from Earth-orbiting satellites--giving scientists a great view of the area around the storm.
  • “Currently there are only two or three ways to get this kind of data,” Dr. Alan Leonardi, deputy director of NOAA’s Atlantic Oceanographic and Meteorological Laboratory, says. “First, you can have a storm serendipitously traverse over a buoy that happens to already be in the water, and that doesn’t happen as frequently as some might believe. Another would be to position a ship out there to collect this data, but that creates a dangerous situation for any crew that might be aboard the ship, so we’re not going to do that. The third--and we have done this--is to deploy instruments from aircraft in front of a storm that can collect data as the storm passes. We then go back in a ship and pick up those buoys--if they survive and don’t end up sinking.”
  • NOAA’s two robotic platforms are being developed independently of one another, yet their roles dovetail neatly. The Liquid Robotics Wave Glider platform is designed as a kind of storm monitoring sentry--like a weather buoy, but one that researchers can move at will. Wave Gliders harvest their propulsive energy from ocean waves themselves and power their onboard electronics with solar energy. This means they are not very fast--too slow to actually chase a storm in most cases--but they can remain at sea for months on end, waiting and watching.
  • ...4 more annotations...
  • the agency already has one Wave Glider in the water north of Puerto Rico as a test-bed for the dozens NOAA hopes will follow. Isaac tracked south of Puerto Rico and missed the prototype, but the robot did manage to capture data from some intense weather along the outer bands of the system--the first of what NOAA hopes will be a new wealth of hurricane data produced by its robotic fleet.
  • the eyewall--the ring of powerful thunderheads that encircle the eye of the storm.
  • With an operational life of ten days, EMILY can be dropped into the water ahead of a storm, navigate its way into the very center, and remain there, tracking the storm as it moves while streaming data all along the way.
  • Better hurricane prediction translates directly to lowered economic losses, better mitigation of property damage, and--as it goes without saying on the eve of Katrina’s anniversary--lives saved.
  •  
    As the 2012 hurricane season reaches full tilt, researchers at NOAA are hard at work hacking two different maritime robots that the agency hopes will become critical storm forecasting tools of the future. The first, Liquid Robotics' Wave Glider, is envisioned as a persistent surveillance platform, an army of mobile monitoring stations that will remain at sea for the duration of a hurricane season, waiting to swarm into the path of a developing storm. The second--Hydronalix's Emergency Integrated Life Saving Lanyard, or EMILY (a 2010 PopSci Best of What's New award winner)--will be capable of tracking the storm itself for days at a time, streaming continuous data directly from the center of the storm to researchers ashore.
1 - 11 of 11
Showing 20 items per page