Skip to main content

Home/ Technology Trends/ Group items tagged Research

Rss Feed Group items tagged

thinkahol *

Tactile technology guaranteed to send shivers down your spine | KurzweilAI - 0 views

  •  
    Surround Haptics, a new tactile technology developed at Disney Research, Pittsburgh (DRP) in collaboration with Carnegie Mellon University, makes it possible for video game players and film viewers to feel a wide variety of sensations, from the smoothness of a finger being drawn against skin to the jolt of a collision. The technology is based on rigorous psychophysical experiments and new models of tactile perception. The technology will enhance a high-intensity driving simulator game developed in collaboration with Disney's Black Rock Studio. With players seated in a chair outfitted with inexpensive vibrating actuators, Surround Haptics will enable them to feel road imperfections, objects falling on the car, skidding, braking and acceleration; and experience ripples of sensation when cars collide. They will also experience jumping, flying, falling, shrinking or growing, of bugs creeping on their skin, the researchers said. The DRP researchers have accomplished this feat by designing an algorithm for controlling an array of vibrating actuators in such a way as to create "virtual actuators" anywhere within the grid of actuators. A virtual actuator can be created between any two physical actuators; the user has the illusion of feeling only the virtual actuator, the researchers said. As a result, users don't feel the general buzzing or pulsing typical of most haptic devices today, but can feel discrete, continuous motions such as a finger tracing a pattern on skin. Disney is demonstrating Surround Haptics Aug. 7-11 at the Emerging Technology Exhibition at SIGGRAPH 2011, the International Conference on Computer Graphics and Interactive Techniques in Vancouver, B.C.
thinkahol *

New engine shakes up auto industry - Technology & science - Innovation - msnbc.com - 0 views

  •  
    Despite shifting into higher gear within the consumer's green conscience, hybrid vehicles are still tethered to the gas pump via a fuel-thirsty 100-year-old invention: the internal combustion engine. However, researchers at Michigan State University have built a prototype gasoline engine that requires no transmission, crankshaft, pistons, valves, fuel compression, cooling systems or fluids. Their so-called Wave Disk Generator could greatly improve the efficiency of gas-electric hybrid automobiles and potentially decrease auto emissions up to 90 percent when compared with conventional combustion engines. The engine has a rotor that's equipped with wave-like channels that trap and mix oxygen and fuel as the rotor spins. These central inlets are blocked off, building pressure within the chamber, causing a shock wave that ignites the compressed air and fuel to transmit energy. The Wave Disk Generator uses 60 percent of its fuel for propulsion; standard car engines use just 15 percent. As a result, the generator is 3.5 times more fuel efficient than typical combustion engines. Researchers estimate the new model could shave almost 1,000 pounds off a car's weight currently taken up by conventional engine systems. Last week, the prototype was presented to the energy division of the Advanced Research Projects Agency, which is backing the Michigan State University Engine Research Laboratory with $2.5 million in funding. Michigan State's team of engineers hope to have a car-sized 25-kilowatt version of the prototype ready by the end of the year.
thinkahol *

Citizen Scientist 2.0 - 0 views

  •  
    What does the future of science look like? About a year ago, I was asked this question. My response then was: Transdisciplinary collaboration. Researchers from a variety of domains-biology, philosophy, psychology, neuroscience, economics, law-all coming together, using inputs from each specialized area to generate the best comprehensive solutions to society's more persistent problems. Indeed, it appears as if I was on the right track, as more and more academic research departments, as well as industries, are seeing the value in this type of partnership. Now let's take this a step further. Not only do I think we will be relying on inputs from researchers and experts from multiple domains to solve scientific problems, but I see society itself getting involved on a much more significant level as well. And I don't just mean science awareness. I'm talking about actually participating in the research itself. Essentially, I see a huge boom in the future for Citizen Science.
Duane Sharrock

Tissue engineering: Growing new organs, and more - MIT News Office - 0 views

  • This kind of disease modeling could have a great impact in the near term, says MIT professor Sangeeta Bhatia, who is developing liver tissue to study hepatitis C and malaria infection.
  • liver is difficult to grow outside the human body because cells tend to lose their function when they lose contact with neighboring cells. “
  • In a large-scale project recently funded by the Defense Advanced Research Projects Administration, several MIT faculty members are working on a “human-on-a-chip” system that scientists could use to study up to 10 human tissue types at a time.
  • ...6 more annotations...
  • Biological and Mechanical Engineering
  • developing regenerative therapies that help promote wound healing.
  • Endothelial cells, normally found lining blood vessels, could help repair damage caused by angioplasty or other surgical interventions; smoke inhalation; and cancer or cardiovascular disease.
  • One of the earliest successes of implantable tissues was the development of artificial skin, which is now commonly used to treat burn victims.
  • Langer is now working on more complex tissues, such as cardiac-tissue scaffolds that include electronic sensors and a synthetic polymer that could restore vocal-cord function in people who have lost their voices through overuse or other types of damage
  • In Bhatia’s lab, where tissue-engineering research is evenly divided between modeling diseases and working toward implantable organs, researchers recently developed 3-D liver tissues that include their own network of blood vessels
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
thinkahol *

In a genetic research first, researchers turn zebrafish genes off and on - 0 views

  •  
    ScienceDaily (May 9, 2011) - Mayo Clinic researchers have designed a new tool for identifying protein function from genetic code. A team led by Stephen Ekker, Ph.D., succeeded in switching individual genes off and on in zebrafish, then observing embryonic and juvenile development. The study appears in the journal Nature Methods.
thinkahol *

Stamping out low-cost nanodevices | KurzweilAI - 0 views

  •  
    A simple technique for stamping patterns invisible to the human eye onto a special class of nanomaterials has been developed by researchers at Vanderbilt University. The new method works with porous nanomaterials that are riddled with tiny voids, which give them unique optical, electrical, chemical, and mechanical properties. There are nanoporous forms of gold, silicon, alumina, and titanium oxide, among others. The technique involves the creation of pre-mastered stamps using traditional, but complex, clean room processes and then using the stamps to create patterns using a new process called direct imprinting of porous substrates (DIPS). DIPS can create a device in less than a minute, regardless of its complexity. The smallest pattern the researchers have made to date has features of only a few tens of nanometers (about the size of a single fatty acid molecule). They have also succeeded in imprinting the smallest pattern yet reported in nanoporous gold, one with 70-nanometer features. The first device the group has created is a "diffraction-based" biosensor that can be configured to identify a variety of different organic molecules, including DNA, proteins and viruses. The researchers envision a wide range of applications including drug delivery, chemical and biological sensors, solar cells, and battery electrodes.
thinkahol *

New way to store solar energy for use whenever it's needed | KurzweilAI - 0 views

  •  
    MIT researchers have developed a new application of carbon nanotubes that shows promise as an innovative approach to storing solar energy for use whenever it's needed. Storing the sun's heat in chemical form - rather than first converting it to electricity or storing the heat itself in a heavily insulated container - has significant advantages: in principle, the chemical material can be stored for long periods of time without losing any of its stored energy. The researchers created carbon nanotubes in combination with a compound called azobenzene. The resulting molecules, produced using nanoscale templates to shape and constrain their physical structure, and the concept that can be applied to many new materials. This material is vastly more efficient at storing energy in a given amount of space - about 10,000 times higher in volumetric energy density, making its energy density comparable to lithium-ion batteries, the researchers said. Ref.: Alexie M. Kolpak, Jeffrey C. Grossman, Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels, Nano Letters, 2011; 110705085331088 [DOI: 10.1021/nl201357n]
Duane Sharrock

As Hurricanes Approach, the Robotic Storm Chasers of the Future Are Ready | Popular Sci... - 0 views

  • Authorities like NOAA gather storm data from a few different sources--from aircraft circling the weather system from tens of thousands of feet, from stationary weather buoys scattered throughout the Gulf of Mexico, from Earth-orbiting satellites--giving scientists a great view of the area around the storm.
  • “Currently there are only two or three ways to get this kind of data,” Dr. Alan Leonardi, deputy director of NOAA’s Atlantic Oceanographic and Meteorological Laboratory, says. “First, you can have a storm serendipitously traverse over a buoy that happens to already be in the water, and that doesn’t happen as frequently as some might believe. Another would be to position a ship out there to collect this data, but that creates a dangerous situation for any crew that might be aboard the ship, so we’re not going to do that. The third--and we have done this--is to deploy instruments from aircraft in front of a storm that can collect data as the storm passes. We then go back in a ship and pick up those buoys--if they survive and don’t end up sinking.”
  • NOAA’s two robotic platforms are being developed independently of one another, yet their roles dovetail neatly. The Liquid Robotics Wave Glider platform is designed as a kind of storm monitoring sentry--like a weather buoy, but one that researchers can move at will. Wave Gliders harvest their propulsive energy from ocean waves themselves and power their onboard electronics with solar energy. This means they are not very fast--too slow to actually chase a storm in most cases--but they can remain at sea for months on end, waiting and watching.
  • ...4 more annotations...
  • the agency already has one Wave Glider in the water north of Puerto Rico as a test-bed for the dozens NOAA hopes will follow. Isaac tracked south of Puerto Rico and missed the prototype, but the robot did manage to capture data from some intense weather along the outer bands of the system--the first of what NOAA hopes will be a new wealth of hurricane data produced by its robotic fleet.
  • the eyewall--the ring of powerful thunderheads that encircle the eye of the storm.
  • With an operational life of ten days, EMILY can be dropped into the water ahead of a storm, navigate its way into the very center, and remain there, tracking the storm as it moves while streaming data all along the way.
  • Better hurricane prediction translates directly to lowered economic losses, better mitigation of property damage, and--as it goes without saying on the eve of Katrina’s anniversary--lives saved.
  •  
    As the 2012 hurricane season reaches full tilt, researchers at NOAA are hard at work hacking two different maritime robots that the agency hopes will become critical storm forecasting tools of the future. The first, Liquid Robotics' Wave Glider, is envisioned as a persistent surveillance platform, an army of mobile monitoring stations that will remain at sea for the duration of a hurricane season, waiting to swarm into the path of a developing storm. The second--Hydronalix's Emergency Integrated Life Saving Lanyard, or EMILY (a 2010 PopSci Best of What's New award winner)--will be capable of tracking the storm itself for days at a time, streaming continuous data directly from the center of the storm to researchers ashore.
Duane Sharrock

Scientists investigate using artificial intelligence for next-generation traffic control - 0 views

  • The research carried out by the University of Southampton team has used computer games and simulations to investigate what makes good traffic control. This work has shown that – given the right conditions – humans are excellent at controlling the traffic and can perform significantly better than the existing urban traffic control computers in use today.
  • The Southampton researchers have now developed 'machine learning' traffic control computers that can learn how to control the lights like a human would and even learn their own improved strategies through experience.
  •  
    The Southampton researchers have now developed 'machine learning' traffic control computers that can learn how to control the lights like a human would and even learn their own improved strategies through experience.
Duane Sharrock

Digital Iris Fakes Made with Evolving Algorithm Fool Biometric Scanners | Popular Science - 0 views

  • When iris-scanning biometric security systems create a digital imprint of an iris, they don’t actually store that image of the iris for future comparison to the real thing. Rather, when a person scans his or her iris into a biometric system for the first time, the system turns the iris into a code consisting of about 5,000 bits of data. This code is based on about 240 points that are measured in the actual iris image, and is for all intents and purposes a unique digital analog of the iris.
  • researchers at the Universidad Autonoma de Madrid and West Virginia University have found a way to reverse-engineer an iris image from the digital code itself using genetic algorithms--an iris image so good it can fool a biometric scanner.
  • What this essentially means is that if a database containing iris codes were hacked, the hackers could construct iris images that would dupe scanners, and they would never even have to get near the actual owner of that iris.
  • ...1 more annotation...
  • Someone wishing to access the military base could hack the defense contractor, steal the iris code, reconstruct the iris, print it to a contact lens, and access the military facility. It’s all very Mission Impossible, but according to the research, it’s not so very far-fetched.
  •  
    "Someone wishing to access the military base could hack the defense contractor, steal the iris code, reconstruct the iris, print it to a contact lens, and access the military facility. It's all very Mission Impossible, but according to the research, it's not so very far-fetched."
thinkahol *

Researchers build an antenna for light - 0 views

  •  
    ScienceDaily (July 10, 2011) - University of Toronto researchers have derived inspiration from the photosynthetic apparatus in plants to engineer a new generation of nanomaterials that control and direct the energy absorbed from light.
thinkahol *

Two-layer solar cell to achieve 42 percent efficiency | KurzweilAI - 0 views

  •  
    In a paper published in Nature Photonics, University of Toronto researchers report the first efficient two-layer solar cell based on colloidal quantum dots (CQD) to capture both visible and near-infrared rays. CQDs are nanoscale materials that can be tuned to respond to specific wavelengths of the visible and invisible spectrum. By capturing such a broad range of light waves - wider than normal solar cells - tandem CQD solar cells can in principle reach up to 42 per cent efficiencies. The best single-junction solar cells are constrained to a maximum of 31 per cent efficiency. (In reality, solar cells that are on the roofs of houses and in consumer products have 14 to 18 per cent efficiency.) The researchers expect that in five years, solar cells using the graded recombination layer paper will be integrated into building materials and mobile devices.
anonymous

Smart Wearables Market 2020 Size, Share By Type - TechSci Research - 0 views

  •  
    According to TechSci Research report "Global Smart Wearable Market Forecast & Opportunities, 2020", the global market for smart wearables is projected to generate a revenue worth USD37 billion by 2020. http://bit.ly/2GiI3bS
anonymous

Cyber Security Market to Grow at CAGR 8.3% till 2021 - 0 views

  •  
    According to TechSci Research, global market for cyber security is projected to grow by 2021, due to growing trend of Bring Your Own Device (BYOD), rising adoption of cloud computing. https://techsci-research-about-us.blogspot.com/2019/06/increasing-cyber-attacks-on.html
Duane Sharrock

Medical devices powered by the ear itself - MIT News Office - 0 views

  • Health Sciences and Technology (HST) demonstrate for the first time that this battery could power implantable electronic devices without impairing hearing.
  • The devices could monitor biological activity in the ears of people with hearing or balance impairments, or responses to therapies. Eventually, they might even deliver therapies themselves
  • “In the past, people have thought that the space where the high potential is located is inaccessible for implantable devices, because potentially it’s very dangerous if you encroach on it,” Stankovic says. “We have known for 60 years that this battery exists and that it’s really important for normal hearing, but nobody has attempted to use this battery to power useful electronics.”
  • ...5 more annotations...
  • The ear converts a mechanical force — the vibration of the eardrum — into an electrochemical signal that can be processed by the brain; the biological battery is the source of that signal’s current. Located in the part of the ear called the cochlea, the battery chamber is divided by a membrane, some of whose cells are specialized to pump ions. An imbalance of potassium and sodium ions on opposite sides of the membrane, together with the particular arrangement of the pumps, creates an electrical voltage.
  • Low-power chips, however, are precisely the area of expertise of Anantha Chandrakasan’s group at MTL
  • The frequency of the signal was thus itself an indication of the electrochemical properties of the inner ear.
  • in cochlear implants, diagnostics and implantable hearing aids. “The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant,” Megerian says. “Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output.”
  • “I’m not ready to say that the present iteration of this technology is ready,” Megerian cautions. But he adds that, “If we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future.”
  •  
    "For the first time, researchers power an implantable electronic device using an electrical potential - a natural battery - deep in the inner ear."
  •  
    "All of D-Lab's classes assess the needs of people in less-privileged communities around the world, examining innovations in technology, education or communications that might address those needs. The classes then seek ways to spread word of these solutions - and in some cases, to spur the creation of organizations to help disseminate them. Specific projects have focused on improved wheelchairs and prosthetics; water and sanitation systems; and recycling waste to produce useful products, including charcoal fuel made from agricultural waste."
thinkahol *

Highly efficient solar cells could result from quantum dot research - 0 views

  •  
    ScienceDaily (June 18, 2010) - Conventional solar cell efficiency could be increased from the current limit of 30 percent to more than 60 percent, suggests new research on semiconductor nanocrystals, or quantum dots, led by chemist Xiaoyang Zhu at The University of Texas at Austin.
anonymous

Mobility As A Service To Change Lives | TechSci Research - 0 views

  •  
    Mobility As A Service To Change Lives | TechSci Research
anonymous

Automatic Content Recognition (ACR) Market 2024 | TechSci Research - 0 views

  •  
    Global automatic content recognition (ACR) market is projected to exhibit a CAGR of over 29% by 2024, due to increasing integration of ACR in wearable devices, smartphones & smart TVs.
1 - 20 of 70 Next › Last »
Showing 20 items per page