Skip to main content

Home/ Technology Trends/ Group items tagged Institute

Rss Feed Group items tagged

thinkahol *

‪Quantum Computers and Parallel Universes‬‏ - YouTube - 0 views

  •  
    Complete video at: http://fora.tv/2009/05/23/Marcus_Chown_in_Conversation_with_Fred_Watson Marcus Chown, author of Quantum Theory Cannot Hurt You: A Guide to the Universe, discusses the mechanics behind quantum computers, explaining that they function by having atoms exist in multiple places at once. He predicts that quantum computers will be produced within 20 years. ----- The two towering achievements of modern physics are quantum theory and Einsteins general theory of relativity. Together, they explain virtually everything about the world in which we live. But almost a century after their advent, most people havent the slightest clue what either is about. Radio astronomer, award-winning writer and broadcaster Marcus Chown talks to fellow stargazer Fred Watson about his book Quantum Theory Cannot Hurt You. - Australian Broadcasting Corporation Marcus Chown is an award-winning writer and broadcaster. Formerly a radio astronomer at the California Institute of Technology, he is now cosmology consultant of the weekly science magazine New Scientist. The Magic Furnace, Marcus' second book, was chosen in Japan as one of the Books of the Year by Asahi Shimbun. In the UK, the Daily Mail called it "a dizzy page-turner with all the narrative devices you'd expect to find in Harry Potter". His latest book is called Quantum Theory Cannot Hurt You.
thinkahol *

Dr. Daniel G. Nocera - YouTube - 0 views

  •  
    The supply of secure, clean, sustainable energy is arguably the most important scientific and technical challenge facing humanity in the 21st century. Rising living standards of a growing world population will cause global energy consumption to double by mid-century and triple by the end of the century. Even in light of unprecedented conservation, the additional energy needed is simply not attainable from long discussed sources these include nuclear, biomass, wind, geothermal and hydroelectric. The global appetite for energy is simply too much. Petroleum-based fuel sources (i.e., coal, oil and gas) could be increased. However, deleterious consequences resulting from external drivers of economy, the environment, and global security dictate that this energy need be met by renewable and sustainable sources. The dramatic increase in global energy need is driven by 3 billion low-energy users in the non-legacy world and by 3 billion people yet to inhabit the planet over the next half century. The capture and storage of solar energy at the individual level personalized solar energy drives inextricably towards the heart of this energy challenge by addressing the triumvirate of secure, carbon neutral and plentiful energy. This talk will place the scale of the global energy issue in perspective and then discuss how personalized energy (especially for the non-legacy world) can provide a path to a solution to the global energy challenge. Daniel G. Nocera is the Henry Dreyfus Professor of Energy at the Massachusetts Institute of Technology, Director of the Solar Revolutions Project and Director of the Eni Solar Frontiers Center at MIT. His group pioneered studies of the basic mechanisms of energy conversion in biology and chemistry. He has recently accomplished a solar fuels process that captures many of the elements of photosynthesis outside of the leaf. This discovery sets the stage for a storage mechanism for the large scale, distributed, deployment of solar energy. He has b
thinkahol *

New laser technology could revolutionize communications | KurzweilAI - 0 views

  •  
    Engineers at Stevens Institute of Technology have developed a technique to optically modulate the frequency of a laser beam and create a signal that is disrupted significantly less by environmental factors, says Dr. Rainer Martini. The research provides for enhanced optical communications, allowing mobile units not tied to fiber optic cable to communicate in the range of 100 GHz and beyond, the equivalent of 100 gigabytes of data per second. Eventually, the team hopes to extend the reach into the terahertz spectrum. The frequency or amplitude modulation of middle infrared quantum cascade lasers has been limited by electronics, which are barely capable of accepting frequencies of up to 10 GHz by switching a signal on and off.  Marini and his team have developed a method to optically induce fast amplitude modulation in a quantum cascade laser to control the laser's intensity. Their amplitude modulation system employed a second laser to modulate the amplitude of the middle infrared laser, using light to control light. The current detector is only capable of detecting frequencies up to 10 GHz, but Dr. Martini is confident that a new detector will make the system capable of much higher frequencies. With an optical system that is stable enough, satellites may one day convert to laser technology, resulting in a more mobile military and super-sensitive scanners, as well as faster Internet for the masses, says Martini. Ref.: "Optically induced fast wavelength modulation in a quantum cascade laser," Applied Physics Letters, July 7, 2010.
thinkahol *

Mass-producing stem-cells for stem cells for diagnostic and therapeutic applications | ... - 0 views

  •  
    Todd McDevitt at the Georgia Institute of Technology and colleagues have found that adding biomaterials such as gelatin into clumps of stem cells (called "embryoid bodies") affected stem-cell differentiation without harming the cells. By incorporating magnetic particles into the biomaterials, they could control the locations of the embryoid bodies and how they assemble with one another. Compared to typical delivery methods, providing differentiation factors - retinoic acid, bone morphogenetic protein 4 (BMP4) and vascular endothelial growth factor (VEGF) - via microparticles induced changes in the gene and protein expression patterns of the aggregates. In the future, these new methods could be used to develop manufacturing procedures for producing large quantities of stem cells for diagnostic and therapeutic applications. The findings were presented on June 16 at the annual meeting of the International Society for Stem Cell Research. [full text]
Duane Sharrock

Medical devices powered by the ear itself - MIT News Office - 0 views

  • Health Sciences and Technology (HST) demonstrate for the first time that this battery could power implantable electronic devices without impairing hearing.
  • The devices could monitor biological activity in the ears of people with hearing or balance impairments, or responses to therapies. Eventually, they might even deliver therapies themselves
  • “In the past, people have thought that the space where the high potential is located is inaccessible for implantable devices, because potentially it’s very dangerous if you encroach on it,” Stankovic says. “We have known for 60 years that this battery exists and that it’s really important for normal hearing, but nobody has attempted to use this battery to power useful electronics.”
  • ...5 more annotations...
  • The ear converts a mechanical force — the vibration of the eardrum — into an electrochemical signal that can be processed by the brain; the biological battery is the source of that signal’s current. Located in the part of the ear called the cochlea, the battery chamber is divided by a membrane, some of whose cells are specialized to pump ions. An imbalance of potassium and sodium ions on opposite sides of the membrane, together with the particular arrangement of the pumps, creates an electrical voltage.
  • Low-power chips, however, are precisely the area of expertise of Anantha Chandrakasan’s group at MTL
  • The frequency of the signal was thus itself an indication of the electrochemical properties of the inner ear.
  • in cochlear implants, diagnostics and implantable hearing aids. “The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant,” Megerian says. “Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output.”
  • “I’m not ready to say that the present iteration of this technology is ready,” Megerian cautions. But he adds that, “If we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future.”
  •  
    "For the first time, researchers power an implantable electronic device using an electrical potential - a natural battery - deep in the inner ear."
  •  
    "All of D-Lab's classes assess the needs of people in less-privileged communities around the world, examining innovations in technology, education or communications that might address those needs. The classes then seek ways to spread word of these solutions - and in some cases, to spur the creation of organizations to help disseminate them. Specific projects have focused on improved wheelchairs and prosthetics; water and sanitation systems; and recycling waste to produce useful products, including charcoal fuel made from agricultural waste."
tabnova914

Mdm Solutions For schools UK | classroom management App UK | Tabnova - 1 views

  •  
    Empowering educational institutions, Tabnova's Mobile Device Management (MDM) software facilitates seamless administration and enhanced security for Android, iOS, and Windows devices within the classroom environment. | mdm for schools
1 - 6 of 6
Showing 20 items per page