Skip to main content

Home/ Technology Trends/ Group items tagged Program

Rss Feed Group items tagged

thinkahol *

UCSF team develops 'logic gates' to program bacteria as computers | KurzweilAI - 0 views

  •  
    A team of UCSF researchers has engineered E. coli bacteria with the key molecular circuitry that will enable genetic engineers to program cells to communicate and perform computations.
thinkahol *

Safer robots will improve manufacturing | KurzweilAI - 0 views

  •  
    Robots have been considered too unpredictable and dangerous to work alongside humans in factories, but improved technologies for artificial sensing and motion are leading to a new wave of safer robots. Last winter, NASA sent a humanoid robot dubbed Robonaut 2 (R2) to the International Space Station. R2, which has only a torso, sophisticated arms and fingers, and a head full of sensors, jointly developed by NASA and General Motors under a program to create a robot that could operate safely alongside humans. R2 uses a popular robotics technology called series elastic actuators in its joints. The actuators have an elastic spring component between the motor and the object the robot has to pick up. The actuators help the robot detect and control the force of its own movements. R2 is also covered in soft material in case of accidental collisions, and its head contains cameras so it can keep track of its human colleagues. In June, President Obama announced a $500 million federal investment in manufacturing technology (including $70 million for robotics). It represents another step in developing robots that can assist with repetitious or physically stressful assembly-line tasks without posing a safety risk.
carolsmith1610

How can one track an Android phone for free? - 0 views

  •  
    A must read! Learn how Mobile Device Management for Android like Scalefusion helps businesses to easily track, locate and manage company-owned Android devices deployed for work as part of an Enterprise Mobility program.
Duane Sharrock

Medical devices powered by the ear itself - MIT News Office - 0 views

  • Health Sciences and Technology (HST) demonstrate for the first time that this battery could power implantable electronic devices without impairing hearing.
  • The devices could monitor biological activity in the ears of people with hearing or balance impairments, or responses to therapies. Eventually, they might even deliver therapies themselves
  • “In the past, people have thought that the space where the high potential is located is inaccessible for implantable devices, because potentially it’s very dangerous if you encroach on it,” Stankovic says. “We have known for 60 years that this battery exists and that it’s really important for normal hearing, but nobody has attempted to use this battery to power useful electronics.”
  • ...5 more annotations...
  • The ear converts a mechanical force — the vibration of the eardrum — into an electrochemical signal that can be processed by the brain; the biological battery is the source of that signal’s current. Located in the part of the ear called the cochlea, the battery chamber is divided by a membrane, some of whose cells are specialized to pump ions. An imbalance of potassium and sodium ions on opposite sides of the membrane, together with the particular arrangement of the pumps, creates an electrical voltage.
  • Low-power chips, however, are precisely the area of expertise of Anantha Chandrakasan’s group at MTL
  • The frequency of the signal was thus itself an indication of the electrochemical properties of the inner ear.
  • in cochlear implants, diagnostics and implantable hearing aids. “The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant,” Megerian says. “Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output.”
  • “I’m not ready to say that the present iteration of this technology is ready,” Megerian cautions. But he adds that, “If we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future.”
  •  
    "For the first time, researchers power an implantable electronic device using an electrical potential - a natural battery - deep in the inner ear."
  •  
    "All of D-Lab's classes assess the needs of people in less-privileged communities around the world, examining innovations in technology, education or communications that might address those needs. The classes then seek ways to spread word of these solutions - and in some cases, to spur the creation of organizations to help disseminate them. Specific projects have focused on improved wheelchairs and prosthetics; water and sanitation systems; and recycling waste to produce useful products, including charcoal fuel made from agricultural waste."
1 - 4 of 4
Showing 20 items per page