Skip to main content

Home/ Technology Trends/ Group items tagged Organ

Rss Feed Group items tagged

Duane Sharrock

Tissue engineering: Growing new organs, and more - MIT News Office - 0 views

  • This kind of disease modeling could have a great impact in the near term, says MIT professor Sangeeta Bhatia, who is developing liver tissue to study hepatitis C and malaria infection.
  • liver is difficult to grow outside the human body because cells tend to lose their function when they lose contact with neighboring cells. “
  • In a large-scale project recently funded by the Defense Advanced Research Projects Administration, several MIT faculty members are working on a “human-on-a-chip” system that scientists could use to study up to 10 human tissue types at a time.
  • ...6 more annotations...
  • Biological and Mechanical Engineering
  • developing regenerative therapies that help promote wound healing.
  • Endothelial cells, normally found lining blood vessels, could help repair damage caused by angioplasty or other surgical interventions; smoke inhalation; and cancer or cardiovascular disease.
  • One of the earliest successes of implantable tissues was the development of artificial skin, which is now commonly used to treat burn victims.
  • Langer is now working on more complex tissues, such as cardiac-tissue scaffolds that include electronic sensors and a synthetic polymer that could restore vocal-cord function in people who have lost their voices through overuse or other types of damage
  • In Bhatia’s lab, where tissue-engineering research is evenly divided between modeling diseases and working toward implantable organs, researchers recently developed 3-D liver tissues that include their own network of blood vessels
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
thinkahol *

YouTube - Organ Printing - 0 views

  •  
    The "ink" in the bioprinting process employed by Organovo is composed of spheres packed with tens of thousands of human cells. These spheres are assembled or "printed" on sheets of organic biopaper. By precisely placing the cells with the bioprinter, and providing them with the proper natural developmental cues, they do exactly what they do in nature: they self assemble into fully formed, functional tissue.
carolsmith1610

How to Manage and Reduce Device Downtime in Your Organization? - 0 views

  •  
    Learn how a Mobile Device Management Software easily manages, reduces and prevents device downtime in business organizations.
carolsmith1610

What is Content Collaboration and its Role in Modern Organizations - 0 views

  •  
    Know what is "Content Collaboration"? and why it plays a significant role in modern-day business organization and how Mobile Application Management feature of an MDM Solution helps enterprises drive the method.
thinkahol *

Stamping out low-cost nanodevices | KurzweilAI - 0 views

  •  
    A simple technique for stamping patterns invisible to the human eye onto a special class of nanomaterials has been developed by researchers at Vanderbilt University. The new method works with porous nanomaterials that are riddled with tiny voids, which give them unique optical, electrical, chemical, and mechanical properties. There are nanoporous forms of gold, silicon, alumina, and titanium oxide, among others. The technique involves the creation of pre-mastered stamps using traditional, but complex, clean room processes and then using the stamps to create patterns using a new process called direct imprinting of porous substrates (DIPS). DIPS can create a device in less than a minute, regardless of its complexity. The smallest pattern the researchers have made to date has features of only a few tens of nanometers (about the size of a single fatty acid molecule). They have also succeeded in imprinting the smallest pattern yet reported in nanoporous gold, one with 70-nanometer features. The first device the group has created is a "diffraction-based" biosensor that can be configured to identify a variety of different organic molecules, including DNA, proteins and viruses. The researchers envision a wide range of applications including drug delivery, chemical and biological sensors, solar cells, and battery electrodes.
thinkahol *

Dr. Daniel G. Nocera - YouTube - 0 views

  •  
    The supply of secure, clean, sustainable energy is arguably the most important scientific and technical challenge facing humanity in the 21st century. Rising living standards of a growing world population will cause global energy consumption to double by mid-century and triple by the end of the century. Even in light of unprecedented conservation, the additional energy needed is simply not attainable from long discussed sources these include nuclear, biomass, wind, geothermal and hydroelectric. The global appetite for energy is simply too much. Petroleum-based fuel sources (i.e., coal, oil and gas) could be increased. However, deleterious consequences resulting from external drivers of economy, the environment, and global security dictate that this energy need be met by renewable and sustainable sources. The dramatic increase in global energy need is driven by 3 billion low-energy users in the non-legacy world and by 3 billion people yet to inhabit the planet over the next half century. The capture and storage of solar energy at the individual level personalized solar energy drives inextricably towards the heart of this energy challenge by addressing the triumvirate of secure, carbon neutral and plentiful energy. This talk will place the scale of the global energy issue in perspective and then discuss how personalized energy (especially for the non-legacy world) can provide a path to a solution to the global energy challenge. Daniel G. Nocera is the Henry Dreyfus Professor of Energy at the Massachusetts Institute of Technology, Director of the Solar Revolutions Project and Director of the Eni Solar Frontiers Center at MIT. His group pioneered studies of the basic mechanisms of energy conversion in biology and chemistry. He has recently accomplished a solar fuels process that captures many of the elements of photosynthesis outside of the leaf. This discovery sets the stage for a storage mechanism for the large scale, distributed, deployment of solar energy. He has b
Brian Robert Higgins

An Overview of PGi iMeet, Features and Benefits - 0 views

  •  
    Meet, share, collaborate and more with PGi iMeet. It is cloud-based system gives the user the ability to access live audio and video conferencing using desktop and mobile application. The standard iMeet live video meeting allows for up to 15 HD video feeds to run simultaneously, whereas an enterprise XL version will allow for up to 65 users at a time. Organizations can also customize the virtual conference room for branding. Can your online meeting solution offers all this? Try it out now.
anonymous

UAE Cloud Storage Market 2024 | TechSci Research - 0 views

  •  
    UAE Cloud Storage Market is expected to grow at a double digit CAGR during 2014-2024. Due to growing need for improved efficiency, growing inclination towards organizing cloud-based solutions.
anonymous

Technology Innovations That Will Revolutionize Our Future - 0 views

  •  
    We have witnessed great leaps in technology in the last few years. With cryptocurrencies taking the world by storm to Apple launching wireless charging with iPhone X to 3D printed organ and Siri, Alexa, and what not.
carolsmith1610

[Infographic] The Magnified Mobile Ecosystem | Scalefusion Blog - 0 views

  •  
    The infographic gives a magnified insight and understanding into the adoption of enterprise mobility, the growing trend and how mobility is influencing the 21st-century organizations, employees, and customers who are looking for a high level of connectivity, productivity, and performance.
Duane Sharrock

Medical devices powered by the ear itself - MIT News Office - 0 views

  • Health Sciences and Technology (HST) demonstrate for the first time that this battery could power implantable electronic devices without impairing hearing.
  • The devices could monitor biological activity in the ears of people with hearing or balance impairments, or responses to therapies. Eventually, they might even deliver therapies themselves
  • “In the past, people have thought that the space where the high potential is located is inaccessible for implantable devices, because potentially it’s very dangerous if you encroach on it,” Stankovic says. “We have known for 60 years that this battery exists and that it’s really important for normal hearing, but nobody has attempted to use this battery to power useful electronics.”
  • ...5 more annotations...
  • The ear converts a mechanical force — the vibration of the eardrum — into an electrochemical signal that can be processed by the brain; the biological battery is the source of that signal’s current. Located in the part of the ear called the cochlea, the battery chamber is divided by a membrane, some of whose cells are specialized to pump ions. An imbalance of potassium and sodium ions on opposite sides of the membrane, together with the particular arrangement of the pumps, creates an electrical voltage.
  • Low-power chips, however, are precisely the area of expertise of Anantha Chandrakasan’s group at MTL
  • The frequency of the signal was thus itself an indication of the electrochemical properties of the inner ear.
  • in cochlear implants, diagnostics and implantable hearing aids. “The fact that you can generate the power for a low voltage from the cochlea itself raises the possibility of using that as a power source to drive a cochlear implant,” Megerian says. “Imagine if we were able to measure that voltage in various disease states. There would potentially be a diagnostic algorithm for aberrations in that electrical output.”
  • “I’m not ready to say that the present iteration of this technology is ready,” Megerian cautions. But he adds that, “If we could tap into the natural power source of the cochlea, it could potentially be a driver behind the amplification technology of the future.”
  •  
    "For the first time, researchers power an implantable electronic device using an electrical potential - a natural battery - deep in the inner ear."
  •  
    "All of D-Lab's classes assess the needs of people in less-privileged communities around the world, examining innovations in technology, education or communications that might address those needs. The classes then seek ways to spread word of these solutions - and in some cases, to spur the creation of organizations to help disseminate them. Specific projects have focused on improved wheelchairs and prosthetics; water and sanitation systems; and recycling waste to produce useful products, including charcoal fuel made from agricultural waste."
1 - 11 of 11
Showing 20 items per page