Skip to main content

Home/ Dr. Goodyear/ Group items tagged v

Rss Feed Group items tagged

Nathan Goodyear

YouTube - How Mercury Destroys the Brain - University of Calgary - 0 views

  •  
    Great video from University of Calgary on how Mercury causes brain damage
Nathan Goodyear

Contemporary ergonomics 1998 ... - Google Books - 0 views

  •  
    salivary cortisol testing in air traffic controllers
Willow O'Donnell

Willow Medical Sell Medical Equipment - adsandclassifieds - 0 views

  •  
    Willow Medical provides Medical/Safety Supplies, IV pumps & Refurbished Medical Equipment to various market segments. Our company strives for customer satisfaction by offering personal service to meet your needs. Willow Medical is your source for all the latest up to date products.
Nathan Goodyear

BMC Cancer | Full text | A lactate shuttle system between tumour and stromal cells is a... - 0 views

  • Under hypoxic conditions, tumour cells primarily use glycolysis for energy, producing lactate, which is expelled to the tumour microenvironment, allowing tumours to continue their glycolytic activity
  • Sonveaux et al. showed that lactate, which is generally considered a waste product, is preferred over glucose by oxidative tumour cells as their primary energy source
  • MCT4 is a low-affinity transporter, which is abundant in highly glycolytic muscle cells and is one of the many target genes of hypoxia-inducible factor 1 alpha (HIF-1α)
  • ...8 more annotations...
  • Other targets of HIF-1α include glucose transporter-1 (GLUT-1), the main transporter involved in glucose uptake [9,10]; lactate dehydrogenase V (LDHV), which is responsible for the conversion of pyruvate into lactate; pyruvate dehydrogenase kinase isozyme 1 (PDK1), which is responsible for the phosphorylation and consequent inactivation of pyruvate dehydrogenase (PDH); and carbonic anhydrase IX (CAIX), a hypoxia-related protein involved in pH regulation [11]. Alpha-methylacyl-CoA racemase (AMACR), pristanoyl-CoA oxidase (ACOX-3) and D-bifunctional protein (DBP), are also important fatty acid oxidation-related proteins in prostate cancer
  • the essential role played by the cross-talk between stroma and epithelium in carcinogenesis and prostate cancer progression has been increasingly recognised
  • strong membranous expression of MCT1 was consistently observed in cancer cells, suggesting a role for MCT1 in the transport of lactate into tumour cells from the acidic extracellular matrix, suggesting that lactate might be used as a fuel by oxidative cancer cells.
  • Our hypothesis is in agreement with those of Fiaschi et al.[17], who describe the metabolic reprogramming of CAFs towards the Warburg phenotype as a result of contact with prostate cancer cells
  • Using in vitro studies, they showed lactate production and efflux by de novo expressed MCT4 in CAFs and also demonstrated that, upon contact with CAFs, prostate cancer cells were reprogrammed towards aerobic metabolism, with an increase in lactate uptake via the lactate transporter MCT1.
  • pharmacological inhibition of MCT1-mediated lactate uptake dramatically affected PCa cell survival and tumour outgrowth
  • In this model, “energy transfer” or “metabolic coupling” between the tumour stroma and epithelial cancer cells fuels tumour growth and metastasis via oxidative mitochondrial metabolism in anabolic cancer cells
  • the concomitant expression of MCT1 in tumour cells and MCT4 in fibroblasts in the same tissue is clinically significant, and associated with poor prognosis.
  •  
    Study confirms the importance of the crosstalk between cancer cells and CAFs via MCTs in prostate cancer.
Nathan Goodyear

Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy - 1 views

  • inhibition of mitochondrial pyruvate dehydrogenase kinase
  • inhibition of aerobic glycolysis (the Warburg effect) and activation of mitochondrial potassium ion channels
  • angiogenesis blockade
  • ...5 more annotations...
  • changes in expression of HIF1-α
  • alteration of pH regulators V-ATPase and MCT1, and other cell survival regulators such as PUMA, GLUT1, Bcl2 and p53
  • DCA as a cancer stabilizing agent
  • A protocol of natural medications was developed to address the dose-limiting neurologic toxicity, in collaboration with a naturopathic physician (Andrews). The oral DCA regimen that was developed included three natural medications acetyl L-carnitine[29-31], R-alpha lipoic acid[32-34] and benfotiamine[35-37], for the primary purpose of neuropathy prevention
  • measurable benefits from DCA therapy in 60%-70% of cases
  •  
    Good review of dichloracetate or DCA in antitumor activity.  DCA has been shown to have numerous anticancer properties.
Nathan Goodyear

Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on g... - 0 views

  • Cisplatin and 5-FU or CAP (cisplatin, doxorubicin, and cyclophosphamide) regimens can be used for combination chemotherapy
  • patients with advanced salivary gland malignancy treated with the CAP regimen achieved partial response (PR) or stable disease (SD) rates of 67% (8 out of 12 patients)
  • Agents commonly given as monotherapy for treating ACC are cisplatin, mitoxantrone, epirubicin, vinorelbine, paclitaxel, and gemcitabine. However, few of these agents have shown efficacy
  • ...23 more annotations...
  • single agent mitoxantrone or vinorelbine were recommended as reasonable choices
  • ACC is subdivided into 3 histological groups based on solid components of the tumor including cribriform, tubular, and solid
  • Cribriform and tubular ACCs usually exhibit a more indolent course, whereas the solid subtype is associated with worse prognosis
  • ACC consists of two different cell types: inner luminal epithelial cells and outer myoepithelial cells
  • epithelial cells express c-kit, cox-2 and Bcl-2
  • myoepithelial cells express EGFR and MYB
  • a balanced translocation of the v-myb avian myeloblastosis viral oncogene homolog-nuclear factor I/B (MYB-NFIB) is considered to be a signature molecular event of ACC oncogenesis
  • As a transcription factor, MYB is known to modulate multiple genetic downstream targets involved in oncogenesis, such as cox-2, c-kit, Bcl-2 and BclX
  • Various signaling cascades are essential for cancer cells to survive and grow. The PI3K/Akt/mTOR pathway is one of them
  • This pathway regulates cell survival and growth and is upregulated in many cancers
  • Mutations in genes associated with DNA repair are frequently found in familial cancer syndromes, such as hereditary breast-ovarian cancer syndrome (HBOC), hereditary non-polyposis colorectal cancer (HNPCC, also called Lynch syndrome) and Li-Fraumeni syndrome [30, 31]. These mutations were also reported in non-hereditary cancers
  • 70% of ACC samples (58 of 84) were found to have genetic alterations in the MYB/MYC pathway, indicating that changes in this pathway are crucial in ACC pathogenesis
  • The second most frequently mutated pathway was involved in chromatin remodeling (epigenetic modification), a pathway that includes multiple histone related proteins, and was altered in 44% of samples
  • C-kit
  • VEGF, iNOS and NF-κB were noted to be highly expressed in ACC cells as compared to normal salivary gland cells
  • members of the SOX family, such as SOX 4 and SOX10, are overexpressed in ACC
  • FABP7 (Fatty acid binding protein 7) and AQP1 (Aquaporin 1) tend to be overexpressed in ACC cell lines
  • considerable variability in HER2 overexpression ranging from 0–58% in patients with ACC
  • the study with cetuximab and concurrent chemoradiation or chemotherapy showed the highest ORR (total 43%, 9.5% CR and 33% PR), but this regimen was only given to the EGFR positive patients
  • Cancer immunotherapy can be classified into 3 major groups. Active immunization using anti-tumor vaccines to induce and recruit T cells, passive immunization based on monoclonal antibodies, and adoptive cell transfer to expand tumor-reactive autologous T cells ex vivo and then reintroduce these cells into the same individual
  • LAK cells showed cytotoxicity against ACC cells
  • cytokine-induced cell apoptosis and the cytotoxic effect of the LAK cells contributed to tumor regression
  • molecular finding of the MYB-NFIB fusion gene has the greatest potential to target what appears to be a fundamental event in disease pathogenesis
  •  
    good review of adenoid cystic carcinoma
Nathan Goodyear

Anticancer mechanisms of cannabinoids - 0 views

  • modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival
  • cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals
  • Cannabis sativa L. (marijuana)
  • ...41 more annotations...
  • of the approximately 108 cannabinoids produced by C. sativa, Δ9-tetrahydrocannabinol (thc) is the most relevant because of its high potency and abundance in plant preparations
  • Tetrahydrocannabinol exerts a wide variety of biologic effects by mimicking endogenous substances—the endocannabinoids anandamide3 and 2-arachidonoylglycerol4,5—that engage specific cell-surface cannabinoid receptors
  • the cb2 receptor was initially described to be present in the immune system6, but was more recently shown to also be expressed in cells from other origins
  • transient receptor potential cation channel subfamily V, member 1
  • orphan G protein–coupled receptor 55
  • Most of the effects produced by cannabinoids in the nervous system and in non-neural tissues rely on cb1 receptor activation
  • two major cannabinoid-specific receptors—cb1 and cb2
  • cardiovascular tone, energy metabolism, immunity, and reproduction
  • cannabinoids are well known to exert palliative effects in cancer patients
  • best-established use is the inhibition of chemotherapy-induced nausea and vomiting
  • thc and other cannabinoids exhibit antitumour effects in a wide array of animal models of cancer
  • cannabinoid receptors and their endogenous ligands are both generally upregulated in tumour tissue compared with non-tumour tissue
  • cb2 promotes her2 (human epidermal growth factor receptor 2) pro-oncogenic signalling in breast cancer
  • pharmacologic activation of cannabinoid receptors decreases tumour growth
  • endocannabinoid signalling can also have a tumour-suppressive role
  • pharmacologic stimulation of cb receptors is, in most cases, antitumourigenic. Nonetheless, a few reports have proposed a tumour-promoting effect of cannabinoids
  • most prevalent effect is the induction of cancer cell death by apoptosis and the inhibition of cancer cell proliferation
  • impair tumour angiogenesis and block invasion and metastasis
  • thc and other cannabinoids induce the apoptotic death of glioma cells by cb1- and cb2-dependent stimulation
  • Autophagy is primarily a cytoprotective mechanism, although its activation can also lead to cell death
  • autophagy is important for cannabinoid antineoplastic activity
  • autophagy is upstream of apoptosis in the mechanism of cannabinoid-induced cell death
  • the effect of cannabinoids in hormone- dependent tumours might rely, at least in part, on the ability to interfere with the activation of growth factor receptors
  • glioma cells), pharmacologic blockade of either cb1 or cb2 prevents cannabinoid-induced cell death with similar efficacy
  • other types of cancer cells (pancreatic48, breast24, or hepatic43 carcinoma cells, for example), antagonists of cb2 but not of cb1 inhibit cannabinoid antitumour actions
  • thc promotes cancer cell death in a cb1- or cb2-dependent manner (or both) at lower concentrations
  • cannabidiol (cbd), a phytocannabinoid with a low affinity for cannabinoid receptors15, and other marijuana-derived cannabinoids57 have also been proposed to promote the apoptotic death of cancer cells acting independently of the cb1 and cb2 receptors
  • In cancer cells, cannabinoids block the activation of the vascular endothelial growth factor (vegf) pathway, an inducer of angiogenesi
  • In vascular endothelial cells, cannabinoid receptor activation inhibits proliferation and migration, and induces apoptosis
  • cb1 or cb2 receptor agonists (or both) reduce the formation of distant tumour masses in animal models of both induced and spontaneous metastasis, and inhibit adhesion, migration, and invasiveness of glioma64, breast65,66, lung67,68, and cervical68 cancer cells in culture
  • the ceramide/p8–regulated pathway plays a general role in the antitumour activity of cannabinoids targeting cb1 and cb2
  • cbd, by acting independently of the cb1 and cb2 receptors, produces a remarkable anti-tumour effect—including reduction of invasiveness and metastasis
  • cannabinoids can also enhance immune system–mediated tumour surveillance in some contexts
  • ability of thc to reduce inflammation75,76, an effect that might prevent certain types of cancer
  • recent observations suggest that the combined administration of cannabinoids with other anticancer drugs acts synergistically to reduce tumour growth
  • combined administration of gemcitabine (the benchmark agent for the treatment of pancreatic cancer) and various cannabinoid agonists synergistically reduced the viability of pancreatic cancer cells
  • Other reports indicated that anandamide and HU-210 might also enhance the anticancer activity of paclitaxel89 and 5-fluorouracil90 respectively
  • Combined administration of thc and cbd enhances the anticancer activity of thc and reduces the dose of thc needed to induce its tumour growth-inhibiting activity
  • Preclinical animal models have yielded data indicating that systemic (oral or intraperitoneal) administration of cannabinoids effectively decreases tumour growth
  • Combinations of cannabinoids with classical chemotherapeutic drugs such as the alkylating agent temozolomide (the benchmark agent for the management of glioblastoma80,84) have been shown to produce a strong anticancer action in animal models
  • pharmacologic inhibition of egfr, erk83, or akt enhances the cell-death-promoting action of thc in glioma cultures (unpublished observations by the authors), which suggests that targeting egfr and the akt and erk pathways could enhance the antitumour effect of cannabinoids
  •  
    Good review of the anticancer effects of cananbinoids.
Nathan Goodyear

The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pa... - 0 views

  • WNT signaling
  • early colon cancers commonly display loss of function of the tumor suppressor Adenomatous polyposis coli (APC), a key component of the β-CATENIN destruction complex
  • Other cancers also show an active canonical WNT pathway; these include carcinomas of the lung, stomach, cervix, endometrium, and lung as well as melanomas and gliomas
  • ...31 more annotations...
  • In normal embryogenesis and homeostasis, the canonical WNT pathway is activated by secreted WNT ligands produced in highly controlled context-dependent manners and in precise amounts. WNT activity is transduced in the cytoplasm, inactivates the APC destruction complex, and results in the translocation of activate β-CATENIN to the nucleus, where it cooperates with DNA-binding TCF/LEF factors to regulate WNT-TCF targets and the ensuing genomic response
  • beyond the loss of activity of the APC destruction complex, for instance throughAPC mutation, phosphorylation of β-CATENIN at C-terminal sites is required for the full activation of WNT-TCF signaling and the ensuing WNT-TCF responses in cancer.
  • The WNT-TCF response blockade that we describe for low doses of Ivermectin suggests an action independent to the deregulation of chloride channels
  • involve the repression of the levels of C-terminally phosphorylated β-CATENIN forms and of CYCLIN D1, a critical target that is an oncogene and positive cell cycle regulator.
  • the Avermectin single-molecule derivative Selamectin, a drug widely used in veterinarian medicine (Nolan & Lok, 2012), is ten times more potent acting in the nanomolar range
  • Ivermectin also diminished the protein levels of CYCLIN D1, a direct TCF target and oncogene, in both HT29 and H358 tumor cells
  • Activated Caspase3 was used as a marker of apoptosis by immunohistochemistry 48 h after drug treatment. Selamectin and Ivermectin induced up to a sevenfold increase in the number of activated Caspase3+ cells in two primary (CC14 and CC36) and two cell line (DLD1 and Ls174T) colon cancer cell types (Fig​(Fig2C).2C). All changes were significative
  • The strong downregulation of the expression of the intestinal stem cell genesASCL2 andLGR5 (van der Flieret al, 2009; Scheperset al, 2012; Zhuet al, 2012b) by Ivermectin and Selamectin (Fig​(Fig2D)2D) raised the possibility that these drugs could affect WNT-TCF-dependent colon cancer stem cell behavior
  • Pre-established H358 tumors responded to Ivermectin showing a ˜ 50% repression of growth
  • Ivermectin hasin vivo efficacy against human colon cancer xenografts sensitive to TCF inhibition with no discernable side effects
  • Ivermectin (Campbellet al, 1983), an off-patent drug approved for human use, and related macrocyclic lactones, have WNT-TCF pathway response blocking and anti-cancer activities
  • these drugs block WNT-TCF pathway responses, likely acting at the level of β-CATENIN/TCF function, affecting β-CATENIN phosphorylation status.
  • anti-WNT-TCF activities of Ivermectin and Selamectin
  • Ivermectin has a well-known anti-parasitic activity mediated via the deregulation of chloride channels, leading to paralysis and death (Hibbs & Gouaux, 2011; Lynagh & Lynch, 2012). The same mode of action has been suggested to underlie the toxicity of Ivermectin for liquid tumor cells and the potentiation or sensitization effect of Avermectin B1 on classical chemotherapeutics
  • the specificity of the blockade of WNT-TCF responses we document, at low micromolar doses for Ivermectin and low nanomolar doses for Selamectin, indicate that the blockade of WNT-TCF responses and chloride channel deregulation are distinct modes of action
  • What is key then is to find a dose and a context where the use of Ivermectin has beneficial effects in patients, paralleling our results with xenografts in mice.
  • Cell toxicity appears at doses greater (> 10 μM for 12 h or longer or > 5 μM for 48 h or longer for Ivermectin) than those required to block TCF responses and induce apoptosis.
  • Our data point to a repression of WNT-β-CATENIN/TCF transcriptional responses by Ivermectin, Selamectin and related macrocylic lactones.
  • (i) The ability of Avermectin B1 to inhibit the activation of WNT-TCF reporter activity by N-terminal mutant (APC-insensitive) β-CATENIN as detected in our screen
  • (ii) The ability of Avermectin B1, Ivermectin, Doramectin, Moxidectin and Selamectin to parallel the modulation of WNT-TCF targets by dnTCF
  • (iii) The finding that the specific WNT-TCF response blockade by low doses of Ivermectin and Selamectin is reversed by constitutively active TCF
  • (iv) The repression of key C-terminal phospho-isoforms of β-CATENIN resulting in the repression of the TCF target and positive cell cycle regulator CYCLIN D1 by Ivermectin and Selamectin
  • (v) The specific inhibition ofin-vivo-TCF-dependent, but notin-vivo-TCF-independent cancer cells by Ivermectin in xenografts.
  • These results together with the reduction of the expression of the colon cancer stem cell markersASCL2 andLGR5 (e.g., Hirschet al, 2013; Ziskinet al, 2013) raise the possibility of an inhibitory effect of Ivermectin, Selamectin and related macrocyclic lactones on TCF-dependent cancer stem cells.
  • the capacity of cancer cells to form 3D spheroids in culture, as well as the growth of these, is also WNT-TCF-dependent (Kanwaret al, 2010) and they were also affected by Ivermectin treatment
  • If Ivermectin is specific, it should only block TCF-dependent tumor growth. Indeed, the sensitivity and insensitivity of DLD1 and CC14 xenografts to Ivermectin treatment, respectively, together with the desensitization to Ivermectin actionin vivo by constitutively active TCF provide evidence of the specificity of this drug to block an activated WNT-TCF pathway in human cancer.
  • Ivermectin has a good safety profile since onlyin-vivo-dnTCF-sensitive cancer xenografts are responsive to Ivermectin treatment, and we have not detected side effects in Ivermectin-treated mice at the doses used
  • previous work has shown that side effects from systemic treatments with clinically relevant doses in humans are rare (Yang, 2012), that birth defects were not observed after exposure of pregnant mothers (Pacquéet al, 1990) and that this drug does not cross the blood–brain barrier (Kokozet al, 1999). Similarly, only dogs with mutantABCB1 (MDR1) alleles leading to a broken blood–brain barrier show Ivermectin neurotoxicity (Mealeyet al, 2001; Orzechowskiet al, 2012)
  • Indications may include treatment for incurable β-CATENIN/TCF-dependent advanced and metastatic human tumors of the lung, colon, endometrium, and other organs.
  • Ivermectin, Selamectin, or related macrocyclic lactones could also serve as topical agents for WNT-TCF-dependent skin lesions and tumors such as basal cell carcinomas
  • they might also be useful as routine prophylactic agents, for instance against nascent TCF-dependent intestinal tumors in patients with familial polyposis and against nascent sporadic colon tumors in the general aging population
  •  
    Ivermectin, a common anti-parasitic, found to inhibit WTF-TCF pathway and decrease c-terminal phosophorylaiton of Beta-CATENIN all resulting in increased aptosis and inhibition of cancer growth in colon cancer cell lines and lung cancer cell lines.
Nathan Goodyear

Vitamin C and cancer revisited - 0 views

  • It is well known that vitamin C, or ascorbic acid, is an effective biologic antioxidant and does not act as a pro-oxidant under normal conditions (5) because it does not readily autoxidize, i.e., react with oxygen (O2) to produce reactive oxygen species, such as superoxide radicals (O2•−) or H2O2
  • However, ascorbate readily donates an electron to redox-active transition metal ions, such as cupric (Cu2+) or ferric (Fe3+) ions, reducing them to cuprous (Cu+) and ferrous (Fe2+) ions, respectively
  • Reduced transition metal ions, in contrast to ascorbic acid, readily react with O2, reducing it to superoxide radicals (Reaction 2), which in turn dismutate to form H2O2 and O2
  • ...6 more annotations...
  • The H2O2 produced this way (Reactions 1–3) seems to be key to ascorbate's antitumor effect because H2O2 causes cancer cells to undergo apoptosis, pyknosis, and necrosis
  • In contrast, normal cells are considerably less vulnerable to H2O2
  • The reason for the increased sensitivity of tumor cells to H2O2 is not clear but may be due to lower antioxidant defenses
  • In fact, a lower capacity to destroy H2O2—e.g., by catalase, peroxiredoxins, and GSH peroxidases—may cause tumor cells to grow and proliferate more rapidly than normal cells in response to low concentrations of H2O2
  • These observations, combined with the inhibitory effect on xenograft growth, provide the proof of concept that millimolar concentrations of extracellular ascorbate, achievable by i.p. injection or i.v. infusion in experimental animals and humans, respectively, exert pro-oxidant, antitumor effects in vivo.
  • They also show that the concentration of the ascorbyl radical correlates with the concentration of H2O2 in interstitial fluid, whereas no H2O2 can be detected in blood or plasma
  •  
    review of the mechanism of how extracellular AA, only obtainable from parenteral dosing, can produce H2O2 extracellularly to then be cytotoxic to cancer cells.
Nathan Goodyear

Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine | PNAS - 0 views

  • Vitamin C alone at concentrations up to 57 μM had little effect on cell growth but was toxic at 228 μM (SI Appendix, Fig. S1B), in line with recent studies of high vitamin C concentrations (125–2,000 μM)
  • In our combination approach, vitamin C increased the effects of low doses of 5-aza-CdR, with 57 μM vitamin C almost doubling the growth inhibition
  • Using the Chou–Talalay method (28), we found that the two compounds indeed acted synergistically, rather than additively, to inhibit cancer cell growth over the physiological ranges of vitamin C in healthy individuals (26–84 μM)
  • ...12 more annotations...
  • These results show that targeting the cancer DNA methylome by combining low-dose 5-aza-CdR and vitamin C stimulates the expression of ERVs, the induction of a cell-autonomous immune activation response, and increased apoptosis of cancer cells
  • The addition of vitamin C to treatment protocols therefore may be a straightforward way to increase the clinical efficacy of such drugs in MDS and leukemia patients
  • Vitamin C deficiency has been seen previously in patients with multiple types of cancer, including hematological malignancies (35⇓–37). We predict that these patients might receive the most benefits from the combination treatment.
  • induction of an innate immune response
  • We therefore measured plasma concentrations of vitamin C in a small number of patients with miscellaneous hematologic malignancies. Strikingly, 58% of patients with hematological neoplasia who were not taking vitamin C supplements had severe vitamin C deficiency (serum concentration <11.4 μM, at which clinical features of scurvy may be manifested) (34), and 33% had vitamin C levels below the normal range
  • it is possible that vitamin C was oxidized to DHA before it was transported into the cells
  • Oral administration of vitamin C should be sufficient for the therapeutic strategy, because the concentrations reported in this study would not require i.v. administration.
    • Nathan Goodyear
       
      This statement lacks a basic understanding of vitamin C pharmacokinetics.
  • Vitamin C is an essential nutrient for humans and has been reported to increase IFN levels in human cells upon virus infection
  • daily treatment with vitamin C alone at physiological concentrations enhanced the expression of viral-defense genes relative to untreated cells
  • When combined with low-dose 5-aza-CdR, physiological concentrations of vitamin C synergistically inhibited cancer-cell growth and induced apoptosis. Such synergy was associated with increased ERV expression and dsRNA in treated cells. The mechanism of action differs from that of vitamin C at higher doses, which involves its pro-oxidant activity, including GSH inhibition, to generate reactive oxygen species
  • This activity has been shown to induce DNA damage and to enhance the sensitivities of myeloid malignancies, multiple myeloma, and cutaneous T-cell lymphoma to arsenic trioxide (41⇓⇓–44). It also can increase chemosensitivity of ovarian cancer cells (27) and selectively kill KRAS or BRAF mutant colorectal cancer cells by inhibiting GAPDH
  • reactive oxygen species
  •  
    91% of patients with hematologic malignancies have vitamin C levels that are either low or severly deficient. This study found that vitamin C plus low dose DNA methyltransferase inhibitors have synergistic inhibition of cancer cell proliferation and increased apoptosis.  Unfortunately, the authors claimed that oral vitamin C would be sufficient which indicates an incredible lack of understanding of vitamin C pharmacokinetics.
srireddy17

Effects of Skipping Breakfast | Telugu Health Tips 2017 - YouTube - 0 views

  •  
    Get the latest 2017 healthy tips of diet, benefits, effects, healthcare, nutrition, fitness, wellness and more from Pranay Healthcare. Subscribe to Pranay Healthcare and get more updates.
Nathan Goodyear

Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde... - 0 views

  • Hydroxyl radicals cause oxidative damage to cells because they unspecifically attack biomolecules [22] located less than a few nanometres from its site of generation and are involved in cellular disorders such as neurodegeneration [23, 24], cardiovascular disease [25], and cancer [26, 27].
  • It is generally assumed that in biological systems is formed through redox cycling by Fenton reaction, where free iron (Fe2+) reacts with hydrogen peroxide (H2O2) and the Haber-Weiss reaction that results in the production of Fe2+ when superoxide reacts with ferric iron (Fe3+)
  • other transition-metal including Cu, Ni, Co, and V can be responsible for formation in living cells
  • ...20 more annotations...
  • The hydroperoxyl radical () plays an important role in the chemistry of lipid peroxidation
  • The is a much stronger oxidant than superoxide anion-radical
  • Lipid peroxidation can be described generally as a process under which oxidants such as free radicals or nonradical species attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs) that involve hydrogen abstraction from a carbon, with oxygen insertion resulting in lipid peroxyl radicals and hydroperoxides as described previously
  • under medium or high lipid peroxidation rates (toxic conditions) the extent of oxidative damage overwhelms repair capacity, and the cells induce apoptosis or necrosis programmed cell death
  • The overall process of lipid peroxidation consists of three steps: initiation, propagation, and termination
  • Once lipid peroxidation is initiated, a propagation of chain reactions will take place until termination products are produced.
  • The main primary products of lipid peroxidation are lipid hydroperoxides (LOOH)
  • Among the many different aldehydes which can be formed as secondary products during lipid peroxidation, malondialdehyde (MDA), propanal, hexanal, and 4-hydroxynonenal (4-HNE) have been extensively studied
  • MDA has been widely used for many years as a convenient biomarker for lipid peroxidation of omega-3 and omega-6 fatty acids because of its facile reaction with thiobarbituric acid (TBA)
  • MDA is one of the most popular and reliable markers that determine oxidative stress in clinical situations [53], and due to MDA’s high reactivity and toxicity underlying the fact that this molecule is very relevant to biomedical research community
  • 4-HNE is considered as “second toxic messengers of free radicals,” and also as “one of the most physiologically active lipid peroxides,” “one of major generators of oxidative stress,” “a chemotactic aldehydic end-product of lipid peroxidation,” and a “major lipid peroxidation product”
  • MDA is an end-product generated by decomposition of arachidonic acid and larger PUFAs
  • Identifying in vivo MDA production and its role in biology is important as indicated by the extensive literature on the compound (over 15 800 articles in the PubMed database using the keyword “malondialdehyde lipid peroxidation” in December 2013)
  • MDA reactivity is pH-dependent
  • When pH decreases MDA exists as beta-hydroxyacrolein and its reactivity increases
  • MAA adducts are shown to be highly immunogenic [177–181]. MDA adducts are biologically important because they can participate in secondary deleterious reactions (e.g., crosslinking) by promoting intramolecular or intermolecular protein/DNA crosslinking that may induce profound alteration in the biochemical properties of biomolecules and accumulate during aging and in chronic diseases
  • MDA is an important contributor to DNA damage and mutation
  • This MDA-induced DNA alteration may contribute significantly to cancer and other genetic diseases.
  • Dietary intake of certain antioxidants such as vitamins was associated with reduced levels of markers of DNA oxidation (M1dG and 8-oxodG) measured in peripheral white blood cells of healthy subjects, which could contribute to the protective role of vitamins on cancer risk
  • 4-HNE is an extraordinarily reactive compound
  •  
    Great review of lipid peroxidation
Nathan Goodyear

Late Disseminated Lyme Disease: Associated Pathology and Spirochete Persistence Post-Tr... - 0 views

  • In this study, we have demonstrated microscopic pathology ranging from minimal to moderate in multiple different tissues previously reported to be involved with LD, including the nervous system (central and peripheral), heart, skeletal muscle, joint-associated tissues, and urinary bladder 12 to 13 months following tick-inoculation of rhesus macaques by Bb strain B31
  • Based on histomorphology, inflammation consisted predominantly of lymphocytes and plasma cells, with rare scattered histiocytes
  • in rare instances, morphologically intact spirochetes were observed in inflamed brain and heart tissue sections from doxycycline-treated animals
  • ...41 more annotations...
  • colocalization of the Bb 23S rRNA probe was not observed in any of the sections of experimental inoculated animals shown to harbor rare persistent spirochetes (Supplemental Figure S1). Previous in vitro work has shown large decreases in Bb rRNA levels when in a stationary phase of growth despite the majority of spirochetes remaining viable
  • The possibility that the spirochetes were intact but dead also exists, though this may be unlikely given the precedence for viable but non-cultivable B. burgdorferi post-treatment
  • The doxycycline dose utilized in this study (5mg/kg) was based on a previous pharmacokinetic analysis of oral doxycycline in rhesus macaques proven to be comparable to levels achieved in humans and was meant to mimic treatment of disseminated LD
  • In addition to the brain of two treated animals, rare morphologically intact spirochetes immunoreactive to OspA were observed in the heart of one treated animal
  • Although we did not measure the doxycycline levels in the cerebrospinal fluid, they have been found to be 12% to 15% of the amount measured in serum
  • We and others have demonstrated the development of a drug-tolerant persister population when B. burgdorferi are treated with antibiotics in vitro
  • The adoption of a dormant or slow-growing phenotype likely allows the spirochetes to survive and re-grow following removal of antibiotic
  • The basic premise that antibiotic tolerance may be an adaptation of the sophisticated stringent response required for the enzootic cycle by the spirochetes is described in a recent review as well
  • Although current IDSA guidelines recommend intravenous ceftriaxone (2g daily for 30 days) over oral doxycycline for treatment of neuroborreliosis, a randomized clinical trial failed to show any enhanced efficacy of I.V. penicillin G to oral doxycycline for treatment of Lyme neuroborreliosis (no treatment failures were reported in this study of 54 patients).
  • we can speculate that the minimal to moderate inflammation that was observed, especially within the CNS and PNS can, in part, explain the breadth of symptoms experienced by late stage Lyme disease patients, such as cognitive impairment and neuralgia.
  • Erythema migrans, the clinical hallmark of early localized Lyme disease, was observed in one of the rhesus macaques from this study.
  • In 2014, a trailblazing study in mice demonstrated a dramatic decline in B. burgdorferi DNA in the tissues for up to eight months after antibiotic treatment followed by the resurgence of B. burgdorferi growth 12 months after treatment
  • This study provides evidence that the slow-growing spirochetes which persist after treatment, but are not cultivable in standard growth media may remain viable.
  • The first well-documented indication of Lyme disease (LD) in the United States occurred in the early 1970s
  • Lyme, Connecticut.
  • Lyme disease is now known to be caused by multiple closely related genospecies classified within the Bb sensu lato complex, representing the most common tick-borne human disease in the Northern Hemisphere
  • approximately 30,000 physician-reported cases occur annually in the United States, the annual incidence has been estimated to be 10-fold higher by the Centers for Disease Control and Prevention.6
  • Current antibiotic therapy guidelines outlined by the Infectious Disease Society of America (IDSA) are successful in the treatment of LD for the majority of LD patients, especially when administered early in disease immediately following identification of erythema migrans (EM)
  • ‘post-treatment Lyme disease syndrome’ (PTLDS)
  • host-adapted spirochetes that persist in the tissues, probably in small numbers, inaccessible or impervious to antibiotic
  • inflammatory responses to residual antigens from dead organisms
  • residual tissue damage following pathogen clearance;
  • autoimmune responses, possibly elicited by antigenic mimicry
  • Experimental studies on immunocompetent mice, dogs, and rhesus macaques have provided evidence for the persistence of Bb spirochetes subsequent to antibiotic treatment in the form of residual spirochetes detected within tissue by IFA and PCR, and recovered by xenodiagnoses
  • Ten male rhesus macaques
  • half (five) of the NHP received antibiotic treatment, consisting of 5 mg/kg oral doxycycline twice per day.
  • Minimal and focal lymphoplasmacytic inflammation
  • inflammation was observed in the leptomeninges overlying a section of temporal cerebral cortex
  • Minimal localized lymphoplasmacytic choroiditis
  • Peripheral nerves contained minimal to moderate lymphoplasmacytic inflammation with a predilection for collagen-rich epineurium and perivascular spaces
  • Inflammation was observed in 56% (5/9) of the NHPs irrespective of treatment group
  • For all animals, inflammation was reserved to perineural tissue
  • The treatment lasted 28 days
  • Minimal to mild lymphoplasmacytic inflammation of either the myocardial interstitium (Figure 2Figure 2A), pericardium (Figure 2Figure 2B), or combination therein was observed in 60% of NHPs
  • A single morphologically intact spirochete, as indicated by positive red immunofluorescence (Figure 2Figure 2C), was observed in the myocardium of one treated animal
  • mild, multifocal lymphoplasmacytic inflammation was observed in one doxycycline-treated animal
  • three animals exhibited minimal to mild lymphoplasmacytic inflammation affecting joint-associated structures
  • 10% to -20% of human patients treated
  • Multiple randomized placebo-controlled studies which evaluated sustained antimicrobial therapy concluded that there is no benefit in alleviating patients’ symptoms and indicated that long-term antibiotic therapy may even be detrimental to patients due to potential associated complications (ie, catheter infection and/or clostridial colitis)
  • and the rapid clearance of dead spirochetes in a murine model
  • higher doses may be needed to combat neuroborreliosis
  •  
    persistent borrelia burgdorferia were found in the brain (2) and the heart (1) up to 13 months post standard antibiotic treatment suggesting borrelia burdorferia, the cause of Lyme, can persist in a chronic, persistant state poste acute treatment.
Nathan Goodyear

High-dose intravenous vitamin C treatment for COVID-19 (a mechanistic approach) Erol Pr... - 0 views

  •  
    Nice review of the evidence behind vitamin C's effects in Covid-19 cytokine storm.
tobiloba022

12 Minutes Glutes Workout Training - YouTube - 0 views

  •  
    12 Minutes Glutes Training - YouTube
golibeetscardio

Goli Nutrition Beets Cardio Gummies- Goli Beets Cardio Gummies, Reviews! - 1 views

https://goli-beets-cardio-gummies.company.site/ Goli Nutrition Beets Cardio Gummies Goli Beets Cardio Gummies Goli Beets Cardio Gummies Reviews ➢Direct purchase ➠Click here ➢ Product name ➠Go...

started by golibeetscardio on 05 Aug 23 no follow-up yet
Nathan Goodyear

High-Dose Vitamin C for Cancer Therapy - PMC - 0 views

  • diabetes [8], atherosclerosis [9], the common cold [10], cataracts [11], glaucoma [12], macular degeneration [13], stroke [14], heart disease [15], COVID-19 [16], and cancer.
  • 1–5% of the Vit-C inside the human cells
  • interaction between Fe(II) and H2O2 produces OH− through the Fenton reaction
  • ...35 more annotations...
  • metabolic activity, oxygen transport, and DNA synthesis
  • Iron is found in the human body in the form of haemoglobin in red blood cells and growing erythroid cells.
  • macrophages contain considerable quantities of iron
  • iron is taken up by the majority of cells in the form of a transferrin (Tf)-Fe(III) complex that binds to the cell surface receptor transferrin receptor 1 (TfR1)
  • excess iron is retained in the liver cells
  • the endosomal six transmembrane epithelial antigen of the prostate 3 (STEAP3) reduces Fe(III) (ferric ion) to Fe(II) (ferrous ion), which is subsequently transferred across the endosomal membrane by divalent metal transporter 1 (DMT1)
  • labile iron pool (LIP)
  • LIP is toxic to the cells owing to the production of massive amounts of ROS.
  • DHA is quickly converted to Vit-C within the cell, by interacting with reduced glutathione (GSH) [45,46,47]. NADPH then recycles the oxidized glutathione (glutathione disulfide (GSSG)) and converts it back into GSH
  • Fe(II) catalyzes the formation of OH• and OH− during the interaction between H2O2 and O2•− (Haber–Weiss reaction)
  • Ascorbate can efficiently reduce free iron, thus recycling the cellular Fe(II)/Fe(III) to produce more OH• from H2O2 than can be generated during the Fenton reaction, which ultimately leads to lipid, protein, and DNA oxidation
  • Vit-C-stimulated iron absorption
  • reduce cellular iron efflux
  • high-dose Vit-C may elevate cellular LIP concentrations
  • ascorbate enhanced cancer cell LIP specifically by generating H2O2
  • Vit-C produces H2O2 extracellularly, which in turn inhibits tumor cells immediately
  • tumor cells have a need for readily available Fe(II) to survive and proliferate.
  • Tf has been recognized to sequester most labile Fe(II) in vivo
  • Asc•− and H2O2 were generated in vivo upon i.v Vit-C administration of around 0.5 g/kg of body weight and that the generation was Vit-C-dose reliant
  • free irons, especially Fe(II), increase Vit-C autoxidation, leading to H2O2 production
  • iron metabolism is altered in malignancies
  • increase in the expression of various iron-intake pathways or the downregulation of iron exporter proteins and storage pathways
  • Fe(II) ion in breast cancer cells is almost double that in normal breast tissues
  • macrophages in the cancer microenvironment have been revealed to increase iron shedding
  • Advanced breast tumor patients had substantially greater Fe(II) levels in their blood than the control groups without the disease
  • increased the amount of LIP inside the cells through transferrin receptor (TfR)
  • Warburg effect, or metabolic reprogramming,
  • Warburg effect is aided by KRAS or BRAF mutations
  • Vit-C is supplied, it oxidizes to DHA, and then is readily transported by GLUT-1 in mutant cells of KRAS or BRAF competing with glucose [46]. DHA is quickly converted into ascorbate inside the cell by NADPH and GSH [46,107]. This decrease reduces the concentration of cytosolic antioxidants and raises the intracellular ROS amounts
  • increased ROS inactivates glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
  • ROS activates poly (ADP-ribose) polymerase (PARP), which depletes NAD+ (a critical co-factor of GAPDH); thus, further reducing the GAPDH associated with a multifaceted metabolic rewiring
  • Hindering GAPDH can result in an “energy crisis”, due to the decrease in ATP production
  • high-dose Vit-C recruited metabolites and increased the enzymatic activity in the pentose phosphate pathway (PPP), blocked the tri-carboxylic acid (TCA) cycle, and increased oxygen uptake, disrupting the intracellular metabolic balance and resulting in irreversible cell death, due to an energy crisis
  • mega-dose Vit-C influences energy metabolism by producing tremendous amounts of H2O2
  • Due to its great volatility at neutral pH [76], bolus therapy with mega-dose DHA has only transitory effects on tumor cells, both in vitro and in vivo.
« First ‹ Previous 41 - 60 of 61 Next ›
Showing 20 items per page