Skip to main content

Home/ Dr. Goodyear/ Group items tagged NK-cells

Rss Feed Group items tagged

Nathan Goodyear

Natural Killer Cells in Pregnancy and Recurrent Pregnancy Loss: Endocrine and Immunolog... - 0 views

  • NK cells have been the cells most extensively studied, primarily because they constitute the predominant leukocyte population present in the endometrium at the time of implantation and in early pregnancy
  • parental chromosomal abnormalities, uterine anatomic anomalies, endometrial infections, endocrine etiologies (luteal phase defect, thyroid dysfunction, uncontrolled diabetes mellitus), antiphospholipid syndrome, inherited thrombophilias, and alloimmune causes
  • estrogen
  • ...28 more annotations...
  • progesterone
  • prolactin
  • In summary, in vivo animal experiments have shown an inhibitory role of estrogen on peripheral NK cell lytic activity, which is partly due to suppression of NK cell output by the bone marrow and partly due to suppression of individual NK cell cytotoxicity. However, in vitro studies so far have failed to show conclusively a direct effect of estrogen on NK cells.
  • At the progesterone concentrations believed to be present in the uterus [up to 10−5 m at the maternal-fetal interface (35)], studies consistently show inhibition of lymphocyte proliferation (33) and inhibition of NK cytolytic activity in vitro
  • The exact role of prolactin in NK cell regulation is unknown.
  • The overall effects of estrogen on NK cells are likely multifactorial, therefore, and depend on the type of cell affected as well as the kind of ER expressed by that cell.
  • It is known that progesterone can directly affect T cell differentiation in vitro, suppressing development of the Th1 pathway and enhancing differentiation along the Th2 pathway (44)
  • Th1 cells predominantly produce interferon-γ (IFN-γ), IL-2, and TNF-β and are involved in cell-mediated immunity. Th2 cells produce IL-4, IL-5, IL-6, IL-10, and IL-13 and stimulate humoral immunity
  • Furthermore, in response to progesterone, γδ T cells produce progesterone-induced blocking factor (PIBF) (54
  • A defining characteristic of NK cells is their ability to lyse target cells without prior sensitization and without restriction by HLA antigens.
  • NK cell function is mainly regulated by IL-2 and IFN-γ
  • IL-2 causes both NK cell proliferation and enhanced cytotoxicity. IFN-γ augments NK cytolytic activity, but does not cause NK proliferation. The two cytokines act synergistically to augment NK cytotoxicity (6).
  • The largest leukocyte population in the endometrium consists of NK cells named large granulated lymphocytes
  • there is a significant increase in the number of uNK cells throughout the secretory phase, which peaks in early pregnancy when uNK cells comprise about 75% of uterine leukocytes (62)
  • Second, uNK cell phenotype changes during the normal menstrual cycle and early pregnancy (68)
  • general proinflammatory effect of estrogen, causing an influx of macrophages and neutrophils, which is antagonized by progesterone through its receptor (70, 71).
  • The mechanism of such a progesterone-induced local immunosuppression is unclear.
  • progesterone plays an important role in proliferation and differentiation of uNK cells (32).
  • Through promotion of a uterine Th2 environment, progesterone could indirectly affect uNK cell function
  • The mechanism of this increase in uNK cell numbers has been addressed in both human and mouse models, and is likely the result of: 1) recruitment of peripheral NK cells to the uterus, and 2) proliferation of existing uNK cells
  • prolactin system plays an important role in implantation and the maintenance of pregnancy
  • the exact pathways of hormonal regulation of NK cells remain to be delineated.
  • The exact function of uNK cells has not yet been unequivocally determined
  • uNK cells express a different cytokine profile, compared with resting peripheral NK cells. mRNAs for granulocyte CSF, M-CSF, GM-CSF, TNF-α, IFN-γ, TGF-β, and leukemia inhibitory factor (LIF) have been found in decidual CD56+ cells
  • Their increased numbers in early pregnancy, their hormonal dependence, and their close proximity to the infiltrating trophoblast all suggest that they play an important role in the regulation of the maternal immune response to the fetal allograft and the control of trophoblast growth and invasion during human pregnancy
  • role of uNK cell-derived cytokines on trophoblast growth and differentiation (114, 115, 116, 117).
  • Th1 immunity to trophoblast is associated with RPL, whereas Th2 immunity is associated with a successful pregnancy
  • RPL is associated with Th1 immunity, for which NK cells are partly responsible.
  •  
    dysregulated immune system plays role in recurrent miscarriage.  Specifically, this article discusses natural killer cells (NK).
Nathan Goodyear

Interleukin‐2 enhances the natural killer cell response to Herceptin‐coated H... - 1 views

  • administration of low‐dose IL‐2 results in expansion of a CD3– / CD56+ NK cell population in patients with advanced cancer
  • approximately 20 % will overexpress theHer2 / neu proto‐oncogene
  • In breast cancer, Her2 / neu overexpression is associated with a worse histologicalgrade, decreased relapse‐free and overall survival periods, and altered sensitivity to chemotherapeutic regimens
  • ...17 more annotations...
  • NK cells are large granular lymphocytes that comprise approximately 10 % of circulating lymphocytes
  • all human NK cells express the CD56 antigen
  • treatment with various concentrations of IL‐2 in vivo may induce distinct functions within the NK cell compartment and, therefore, may have profound effects on NK cell‐mediated cytotoxicity
  • CD56bright
  • CD56dim
  • We show here that ADCC conducted by NK cells in vitro is enhanced by IL‐2 activation and is critically dependent on interactions between FcγRIII on NK cells and Herceptin‐coated tumor targets
  • administration of low‐dose IL‐2 to patients results in the marked expansion of a CD56+ population of immune effectors with the ability to lyse antibody‐coated cancer targets
  • NK cells represented only 7 % of lymphocytes prior to therapy but comprised over 50 % of the population after 10 weeks of low‐dose IL‐2
  • These data suggest that the enhanced ADCC seen following the expansion of NK cells with low‐dose IL‐2 is likely due to an increase in the overall number of NK cells
  • co‐administration of IL‐2 with rhu4D5 mAb will enhance activation of NK cell effector functions
  • Stimulation of NK cells with IL‐2 resulted in a significant increase in the lysis of rhu4D5‐coated targets
  • We have shown that costimulation with IL‐2 plus rhu4D5 results in significant production of IFN‐γ by NK cells with concomitant up‐regulation of cell‐surface activation and adhesion molecules
  • It has been previously demonstrated that continuous low‐dose IL‐2 can expand a CD56+ lymphocyte population, and we have now shown that this cell population is a potent mediator of ADCC against rhu4D5 mAb‐coated Her2 / neu+ targets
  • These results suggest that administration of low‐dose IL‐2 can be used to expand NK cell numbers, while higher doses may be used to enhance their cytolytic capacity in the setting of mAb therapy
  • we have demonstrated that NK cell lysis of Her2 / neu+ breast cancer cell lines in the presence of rhu4D5 mAb is markedly enhanced following stimulation with IL‐2
  • we have presented evidence that administration of low‐dose IL‐2 in vivo results in the expansion of a potent NK cell effector population
  • Our experiments suggest that NK cells costimulated with IL‐2 and immobilized IgG can secrete potent immunomodulatory cytokines which may serve to potentiate the anti‐tumor immune response.
  •  
    low dose IL-2 found to expand NK levels in conjuction in with herceptin in HER-2 positive breast cancer cell lines.
Nathan Goodyear

Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2... - 0 views

  • Heat shock proteins (HSPs) are intracellular molecular chaperones that play essential roles in facilitating protein folding
  • their ability to interact with APCs and to chaperone antigenic peptides for cross-presentation to MHC class I and class II molecules on APC
  • vaccination with HSP70 was associated with increased T cell, as well as NK cell, activity in patients with CML
  • ...6 more annotations...
  • HSP70 did not activate NK cells directly. Instead, HSP70 induced the expression of an NKG2D ligand MICA on DCs, which then activated NK cells in an NKG2D-dependent manner.
  • DCs are the most powerful professional antigen presenting cells (APCs) that are instrumental in processing antigens and orchestrating antigen-specific adaptive immunity and tolerance
  • NK cells and DCs can functionally interact with each other both in vitro and in vivo
  • autologous HSP70 could stimulate significant IFN-γ production
  • The magnitude of the IFN-γ response was different from patient to patient and correlated with the number of functional NK cells
  • In addition, 10 out of 14 patients had significantly increased IFN-γ producing cells in the peripheral blood after HSP70 vaccinations, which is again in line with increased NK cell activity as reported in our original study in these patients
  •  
    great review of the relationship between heat shock proteins and NK cells.
Nathan Goodyear

How is the Immune System Suppressed by Cancer - 1 views

  • nitric oxide (NO) released by tumor cells
  • Excellent work by Prof de Groot of Essen, indicated by adding exogenous xanthine oxidase ( XO) in hepatoma cells, hydrogen peroxide was produced to destroy the hepatoma cells
  • NO from eNOS in cancer cells can travel through membranes and over long distances in the body
  • ...43 more annotations...
  • NO also is co linked to VEGF which in turn increases the antiapoptotic gene bcl-2
  • The other important influence of NO is in its inhibition of the proapoptoic caspases cascade. This in turn protects the cells from intracellular preprogrammed death.
  • nitric oxide in immune suppression in relation to oxygen radicals is its inhibitory effect on the binding of leukocytes (PMN) at the endothelial surface
  • Inhibition of inducible Nitric Oxide Synthase (iNOS)
  • NO from the tumor cells actually suppresses the iNOS, and in addition it reduces oxygen radicals to stop the formation of peroxynitrite in these cells. But NO is not the only inhibitor of iNOS in cancer.
  • Spermine and spermidine, from the rate limiting enzyme for DNA synthases, ODC, also inhibit iNOS
  • tolerance in the immune system that decreases the immune response to antigens on the tumors
  • Freund’s adjuvant
  • increase in kinases in these cells which phosphorylate serine, and tyrosine
  • responsible for activation of many growth factors and enzymes
  • phosphorylated amino acids suppress iNOS activity
  • Hexokinase II
  • Prostaglandin E2, released from tumor cells is also an inhibitor of iNOS, as well as suppressing the immune system
  • Th-1 subset of T-cells. These cells are responsible for anti-viral and anti-cancer activities, via their cytokine production including Interleukin-2, (IL-2), and Interleukin-12 which stimulates T-killer cell replication and further activation and release of tumor fighting cytokines.
    • Nathan Goodyear
       
      Th1 cells stimulate NK and other tumor fighting macrophages via IL-2 and IL-12; In contrast, Th2, which is stimulated in allergies and parasitic infections, produce IL-4 and IL-10.  IL-4 and IL-10 inhibit TH-1 activation and the histamine released from mast cell degranulation upregulates T suppressor cells to further immune suppression.
  • Th-2 subset of lymphocytes, on the other hand are activated in allergies and parasitic infections to release Interleukin-4 and Interleukin-10
  • These have respectively inhibitory effects on iNOS and lymphocyte Th-1 activation
  • Mast cells contain histamine which when released increases the T suppressor cells, to lower the immune system and also acts directly on many tumor Histamine receptors to stimulate tumor growth
  • Tumor cells release IL-10, and this is thought to be one of the important areas of Th-1 suppression in cancer patients
  • IL-10 is also increased in cancer causing viral diseases such as HIV, HBV, HCV, and EBV
  • IL-10 is also a central regulator of cyclooxygenase-2 expression and prostaglandin production in tumor cells stimulating their angiogenesis and NO production
  • nitric oxide in tumor cells even prevents the activation of caspases responsible for apoptosis
    • Nathan Goodyear
       
      NO produced by cancer cells inhibits proapoptotic pathways such as the caspases.
  • early stages of carcinogenesis, which we call tumor promotion, one needs a strong immune system, and fewer oxygen radicals to prevent mutations but still enough to destroy the tumor cells should they develop
  • later stages of cancer development, the oxygen radicals are decreased around the tumors and in the tumor cells themselves, and the entire cancer fighting Th-1 cell replication and movement are suppressed. The results are a decrease in direct toxicity and apoptosis, which is prevented by NO, a suppression of the macrophage and leukocyte toxicity and finally, a suppression of the T-cell induced tumor toxicity
  • cGMP is increased by NO
  • NO in cancer is its ability to increase platelet-tumor cell aggregates, which enhances metastases
  • the greater the malignancies and the greater the metastatic potential of these tumors
  • The greater the NO production in many types of tumors,
  • gynecological
  • elevated lactic acid which neutralizes the toxicity and activity of Lymphocyte immune response and mobility
  • The lactic acid is also feeding fungi around tumors and that leads to elevated histamine which increases T-suppressor cells.  Histamine alone stimulates many tumor cells.
    • Nathan Goodyear
       
      The warburg effect in cancer cells results in the increase in local lactic acid production which suppresses lymphocyte activity and toxicity as well as stimulates histamine production with further stimulates tumor cell growth.
  • T-regulatory cells (formerly,T suppressor cells) down regulate the activity of Natural killer cells
  • last but not least, the Lactic acid from tumor cells and acidic diets shifts the lymphocyte activity to reduce its efficacy against cancer cells and pathogens in addition to altering the bacteria of the intestinal tract.
  • intestinal tract bacteria in cancer cells release sterols that suppress the immune system and down regulate anticancer activity from lymphocytes.
  • In addition to the lactic acid, adenosine is also released from tumors. Through IL-10, adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state
  • Adenosine up regulates the PD1 receptor in T-1 Lymphocytes and inhibits their activity
  • Adenosine is a purine nucleoside found within the interstitial fluid of solid tumors at concentrations that are able to inhibit cell-mediated immune responses to tumor cells
  • Adenosine appears to up-regulate the PD1 receptor in T-1 Lymphocytes and inhibits the immune system further
  • Mast cells with their release of histamine lower the immune system and also stimulate tumor growth and activate the metalloproteinases involved in angiogenesis and metastases
  • COX 2 inhibitors or all trans-retinoic acid
  • Cimetidine, an antihistamine has been actually shown to increase in apoptosis in MDSC via a separate mechanism than the antihistamine effect
    • Nathan Goodyear
       
      cimetidine is an H2 blocker
  • interleukin-8 (IL-8), a chemokine related to invasion and angiogenesis
  • In vitro analyses revealed a striking induction of IL-8 expression in CAFs and LFs by tumor necrosis factor-alpha (TNF-alpha)
  • these data raise the possibility that the majority of CAFs in CLM originate from resident LFs. TNF-alpha-induced up-regulation of IL-8 via nuclear factor-kappaB in CAFs is an inflammatory pathway, potentially permissive for cancer invasion that may represent a novel therapeutic target
  •  
    Great review of the immunosuppression in cancer driven by the likes of NO.
Nathan Goodyear

Histamine dihydrochloride and low-dose interleukin-2 as post-consolidation im... - 0 views

  • IL-2 is a central T cell-derived cytokine, which induces NK cell and T cell proliferation, differentiation and activation, and also stim-ulates the production of secondary immunostimulatory cytokines
  • combination of histamine and IL-2 thus triggers efficient NK cell-mediated killing of several types of leukemic cells, including freshly recovered human AML blasts
  • histamine improves the effects of IL-2 on T cell activation
  • ...3 more annotations...
  • principal action of histamine is to protect cytotoxic lymphocytes from myeloid-cell-induced inactivation, thus improving the efficiency of the T and NK cell stimulation achieved by IL-2
  • random-ized Phase II study of patients with renal cell carcinoma further support the suggestion that the combination of HDC and IL-2 improves lymphocyte functions
  • HDC improves the effectiveness of IL-2-induced T and NK cell activation in cancer patients, as predicted in preclinical models
  •  
    histamine dihydrochloride enhances immune effects of NK cells in IL02 therapy; specifically in this analysis in AML, the histamin prevented inactivation of the IL-2 activated NK cells.
Nathan Goodyear

Hyperthermia as an immunotherapy strategy for cancer - 1 views

  • the notion of treating human cancers with heat dates back to the writings of Hippocrates
  • enhance the efficiency of standard cancer therapies, such as chemotherapy and radiation treatment
  • After antigen uptake at tumor sites, APCs have the ability to create a robust response by entering lymphoid compartments and programming lymphocytes
  • ...36 more annotations...
  • Hyperthermia differs fundamentally from fever in that it elevates the core body temperature without changing the physiological set point
  • hyperthermia is induced by increasing the heat load and/or inactivating heat dissipation
  • mor cells [2]. Although significant cell killing could be achieved by heating cells or tissues to temperatures > 42°C for 1 or more hours, the application, measurement and consistency of this temperature range within the setting of cancer clinical trials
  • mild temperature hyperthermia (ie, within the fever-range, 39–41°C)
    • Nathan Goodyear
       
      101.2 to 105.8
  • moderate hyperthermia (41°C)
    • Nathan Goodyear
       
      105.8 F
  • Hsps are a family of stress-induced proteins
  • they are key regulators of cellular protein activity, turnover and trafficking
  • Hsps ensure appropriate post-translational protein folding, and are able to refold denatured proteins, or mark irreversibly damaged proteins for destruction
  • the ability of fever-range hyperthermia to induce reactive immunity against tumor antigens through DCs and NK-cells is likely mediated by Hsps
  • thermotolerance
  • Hsps support the malignant phenotype of cancer cells by not only affecting the cells’ survival, but also participating in angiogenesis, invasion, metastasis and immortalization mechanisms
  • Hsps released from stressed or dying cells activate dendritic cells (DCs), transforming them into mature APCs
  • In theory, fever-range hyperthermia may take advantage of tumor cell Hsps by inducing their release from tumor cells and augmenting DC priming against tumor antigens
  • In several models of hyperthermia, heat-treated tumors exhibited improved DC priming and generation of systemic immunity to tumor cell
  • hyperthermia alone can enhance antigen display by tumor cells, thus rendering them even more susceptible to programmed immune clearance
  • Fever-range hyperthermia may also induce Hsps
  • Hsps may exert an adjuvant effect by bolstering MHC class II and co-stimulatory molecule expression by DCs
  • thermal ablation of liver tumors in particular has demonstrated an ability to potentiate immune responses [57, 58] and elicit robust T-cell infiltrates at ablation sites
  • specific Hsp, Hsp70, directly inhibits apoptosis pathways in cancer cells, as demonstrated in human pancreatic, prostate and gastric cancer cells
  • Cross-priming is the ability of extracellular Hsps complexed to tumor peptides to be internalized and presented in the context of MHC class I molecules on APCs, thus allowing potent priming of CTLs against tumor antigens
  • It has been reported that Hsps are generated from necrotic tumor cell lysates, but not from tumor cells undergoing apoptosis
  • tumor cells exposed to hyperthermia in the heat shock range (42°C for 4h) prior to lysing, DC activation and cross-priming were significantly enhanced with the application of heat
  • Due to the ability of Hsps to activate DCs directly by chaperoning tumor antigens upon their release [28], it is possible that both local and regional immune stimulation can be achieved with hyperthermia.
  • support the use of hyperthermia as an inducer of Hsps to serve as ‘danger signals’, activating antitumor immune responses
  • whole-body hyperthermia not only augments immune responses, but also stimulates the migration of skin-derived DCs to draining lymph nodes
    • Nathan Goodyear
       
      This allows for the activation of lymphocytes by the activated dendritic cells.
  • suggest a valuable role of hyperthermia in DC cancer vaccine strategies
  • In mice treated with fever-range whole-body hyperthermia, tumor growth was significantly inhibited and NK-cell infiltration increased
    • Nathan Goodyear
       
      Hyperthermia increased NK cell activation, proliferation, and infiltration, which equals increased cytotoxicity.
  • exposure to fever-range hyperthermia resulted in improved endogenous NK-cell cytotoxicity to several cancer types
  • improved activation and function of DCs and NK cells following hyperthermia
  • Hyperthermia increases the expression ICAM-1 a key adhesion molecule,
  • The combined effects of hyperthermia on lymphoid tissue endothelium and lymphocytes can promote immune surveillance and increase the probability of naive lymphocytes leaving the circulation and encountering their cognate antigen displayed by DCs in lymphoid organs.
  • In independent clinical studies, whole-body hyperthermia resulted in a transient decrease in circulating lymphocytes in patients with advanced cancer [12, 94, 99, 100], a finding which mirrored observations in animal models in which lymphocyte entry into lymph noeds was increased following hyperthermia treatment [93]. Enhanced recruitment of lymphocytes to lymphoid tissues may be exploited in the treatment of malignancies.
  • The initial tumor antigen presentation and initiation of clonal expansion of CTLs transpires in the lymph nodes and cannot take place outside this specialized compartment
  • the ability of DCs present in the lymph nodes to stimulate an anti-tumor immune response is critical
  • hyperthermia has been shown to improve immune surveillance by T-cell
  • and to increase DC trafficking to lymph nodes
  •  
    Great review of hyperthermia.
Nathan Goodyear

Role of IL-2 in cancer immunotherapy: OncoImmunology: Vol 5, No 6 - 1 views

  • IL-2 is one of the key cytokines with pleiotropic effects on the immune system
  • IL-2 as “T-cell growth factor”
  • approved for the treatment of metastatic renal cell carcinoma (1992) and later for metastatic melanoma (1998) by FDA
  • ...13 more annotations...
  • It is produced predominately by antigen-simulated CD4+ T cells, while it can also be produced by CD8+ cells, natural killer (NK) cells, and activated dendritic cells (DC)
  • IL-2 is an important factor for the maintenance of CD4+ regulatory T cells
  • plays a critical role in the differentiation of CD4+ T cells into a variety of subsets
  • It can promote CD8+ T-cell and NK cell cytotoxicity activity, and modulate T-cell differentiation programs in response to antigen, promoting naive CD4+ T-cell differentiation into T helper-1 (Th1) and T helper-2 (Th2) cells while inhibiting T helper-17 (Th17) differentiation
  • Of note, Tregs, which act to dampen the immune response, constitutively express high levels of α chain
  • IL-2Rα is unique to IL-2 and is expressed by a number of immune cells including T regulatory cells (Treg), activated CD4+ and CD8+T cells, B cells, mature DCs, endothelial cells
  • some investigators evaluated the efficacy of regimens containing low-dose IL-2
  • IL-2 can promote the activation and cell growth of T and NK cells
  • Unfortunately, not all of patients would benefit from targeted therapy and nearly all patients who initially respond to targeted inhibitors inevitably develop acquired resistance to the treatment
  • IL-2 also stimulates T-regulatory cells that constitutively express CTLA-4 and can suppress immune reactions. Hence, IL-2 might enhance antitumor reactivity in the presence of CTLA-4 blockade
  • both HD and low-dose IL-2 therapy preferentially induce the expansion of CD4+CD25+Foxp3+ Treg and the Treg level remains elevated after each cycle of HD IL-2 therapy
  • Due to rapid elimination and metabolism via the kidney, IL-2 has a short serum half-life of several minutes
  • HD IL-2-induced severe toxicities including vascular leak syndrome (VLS), pulmonary edema, hypotension, and heart toxicities
  •  
    Great historical and functional role of IL-2 in the fight against cancer.
Nathan Goodyear

Cutting Edge: IL-12 Induces CD4+CD25− T Cell Activation in the Presence of T ... - 0 views

  • Whereas IL-12 instigates Th1 immune responses, CD4+CD25+ regulatory T cells (Treg)3 actively restrain them
  • Following engagement of their TCR, Treg suppress the proliferation of conventional CD4+CD25− T responder cells in vitro
  • Furthermore, they inhibit the development of CD4+ T cell responses against alloantigens, tumor, microbial, and self-Ags in vivo.
  • ...1 more annotation...
  • Treg act to prevent spontaneous autoimmunity and to limit collateral damage to healthy tissues during adaptive immunity. However, these cells also have the potential to sabotage protective antimicrobial responses
  •  
    Great T cell activiation review: Il-2 stimulates NK cells primarily release from TH1 cells and T cytotoxic lymphocytes are under the control of IL-12 released primarily from dendritic cells.  Inflammatory cytokines in the presence of Treg to stimulate CD4+CD25- T cell activation.
Nathan Goodyear

Molecular Control of Immune/Inflammatory Responses: Interactions Between Nucl... - 0 views

  •  
    Benefits of progesterone, are in part, due to its function on the immune system.  Progesterone shown to decrease T cell activity, macrophage activity and NK cell activity.  Aside, NK cell activity has been found to be increased in those with recurrent first trimester miscarriages and progesterone defects.  So, low progesterone allows for a rise in NK cell activity and inflammation that is detrimental to a developing pregnancy.  If that is the case in pregnancy, what about the rest of the body?
Nathan Goodyear

Effects of Hyperthermia on the Host Immune System : From NK Cell-based Science to Clini... - 0 views

  •  
    Immunotherapy augments internal NK cells and NK cell therapy.
Nathan Goodyear

CD56bright natural killer (NK) cells: an important NK cell subset - 0 views

  •  
    Good review of CD16/56 cell subpopulation of NK cells.
Nathan Goodyear

Improved leukemia-free survival after postconsolidation immunotherapy with histamine di... - 0 views

  • several independent lines of evidence suggest that cytotoxic effector cells such as T cells and natural killer (NK) cells participate in protecting patients with AML against relapse
  • A plethora of mechanisms have been proposed to account for the dysfunctional antileukemic lymphocytes in AML, including the production of T-cell- and NK-cell-inhibitory factors by AML blasts,48 a deficient expression of NK-cell receptors on leukemic cells,49 inhibition of antileukemic lymphocytes by mononuclear phagocytes,4 and an impaired stimulatory interaction between the CD28 antigen expressed by T cells and contact antigens on AML blasts
  • This trial met the primary endpoint and thus showed a significantly improved LFS for patients receiving HDC/IL-2 as compared with the current standard of care
  • ...2 more annotations...
  • T cells and NK cells with antileukemic activity can be recovered from most patients with AML in remission not receiving a transplant,
  • The present study evaluated an approach to immunotherapy in AML in which IL-2 is supplemented with histamine dihydrochloride (HDC) to enhance the function of cytotoxic antileukemic lymphocytes
  •  
    IL-2 plus histamine in patients with AML complete remission improves leukemia free survival.
Nathan Goodyear

Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil... - 0 views

  • tumor surgery must be carefully considered because the risk of metastasis could be increased by the surgical procedure.
  • NETosis, which is the process of forming neutrophil extracellular traps (NETs)
  • surgery-induced metastasis
  • ...61 more annotations...
  • surgery per se can promote cancer metastasis through a series of local and systemic events
  • surgery results in a serious wound that disrupts the structural barrier preventing the outspreading of cancer cells, change the properties of the cancer cells and stromal cells remaining in the tumor microenvironment, or impairs the host defense systems against cancers
    • Nathan Goodyear
       
      Key point; add to presentation on surgery and metastasis
  • After the primary tumor is surgically removed, the metastases can start to grow vigorously via neoangiogenesis because the circulating inhibitors disappear
  • infection and inflammation during the postoperative period have been reported to increase the risk of cancer recurrence in patients
  • Surgeons have long suspected that surgery, even if it is a necessary step in cancer treatment, facilitates cancer metastasis
  • Surgery-induced cancer metastasis has been well established in animal models
  • tumor cell dissemination, tumor-favoring immune responses, and neoangiogenesis
  • the surgical resection of primary tumors is beneficial is controversial
  • CTCs abruptly increase just after surgery
  • Even externally palpitating tumors for diagnosis could increase the numbers of CTCs in skin cancer and breast cancer
  • excessive glucocorticoids negatively modulate immune functions
  • immune surveillance against tumors is considered to be impaired by surgical stress
  • In addition to glucocorticoids, during stimulation of the HPA axis, the catecholamine hormones epinephrine and norepinephrine are released from the adrenal medulla
  • NK cell suppression may be attributed to increased levels of catecholamines as well as glucocorticoids
  • In mice bearing a primary tumor, it was observed that the removal of the primary tumor facilitated the growth of highly vascularized metastases
  • primary tumors may secrete angiogenic inhibitors as well as angiogenic activators
  • second phase of tumor recurrence and metastasis, which are newly acquired events, rather than just outcomes of incomplete treatment.
    • Nathan Goodyear
       
      Another key point
  • double-edged sword
  • HIF-1 in neutrophils plays a critical role in NETosis and bacteria-killing activity
  • neutrophils play various roles in the initiation and progression of cancer
  • NETosis
  • many inflammatory and neoplastic diseases
  • formation of neutrophil extracellular traps (NETs), which are large extracellular complexes composed of chromatin and cytoplasmic/granular proteins1
  • NETosis has been highlighted as an inflammatory event that promotes cancer metastasis
  • Once activated, neutrophils produce intracellular precursors by using DNA, histones, and granular and cytoplasmic proteins and then spread the mature form of NETs out around themselves
  • A series of these events is called NETosis.
  • neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, lactoferrin, gelatinase, lysozyme C, calprotectin, neutrophil defensins, and cathelicidins
  • innate immune response against infection
  • Neutrophils are the most abundant type of granulocytes, comprising 40–70% of all white blood cells
  • two types of NEToses, suicidal (or lytic) NETosis and vital NETosis
  • Suicidal NETosis mainly depends on the production of reactive oxygen species (ROS)
  • Since neutrophils die during this process, it is called suicidal NETosis.
  • vital NETosis
  • vital NETosis occurs independently of ROS production
  • Vital NETosis can be induced by Gram-negative bacteria. LPS
  • NETs are present in a variety of cancers, such as lung cancer, colon cancer, ovarian cancer, and leukemia
  • neutrophils actively undergo NETosis in the tumor microenvironment
  • Hypoxia
  • NETosis plays a pivotal role in noninfectious autoimmune diseases,
  • cytokines
  • tumor-derived proteases
  • tumor exosomes
  • NETosis generally actively progresses in the tumor microenvironment.
  • the proliferative cytokines TGFβ and IL-10 and the angiogenic factor VEGF are representative of neutrophil-derived tissue repair proteins.
  • NETosis is a defense system to protect the body from invading pathogens
  • when neutrophils are excessively stimulated, they produce excess NETs, thereby leading to pathological consequences
  • plasma levels of NETosis markers are elevated after major surgeries
  • local invasion, intravasation into the blood or lymphatic vessels, escape from the immune system, anchoring to capillaries in target organs, extravasation into the organs, transformation from dormant cells to proliferating cells, colonization to micrometastases, and growth to macrometastases
  • NETs promote metastasis at multiple steps
  • NETs loosen the ECM and capillary wall to promote the intravasation of cancer cells
  • NETs and platelets wrap CTCs, which protects them from attack by immune cells and shearing force by blood flow
  • NETs promote the local invasion of cancer cells by degrading the extracellular matrix (ECM)
  • neutrophil elastase, matrix metalloproteinase 9, and cathepsin G
  • NETs also promote the intravasation of cancer cells
  • millions of tumor cells are released into the circulation every day,
  • NETs can wrap up CTCs with platelets
  • β1-integrin plays an important role in the interaction between CTCs and NETs
  • NET-platelet-CTC aggregates.
  • After metastasizing to distant tissues, tumor cells are often found to remain dormant for a period of time and unexpectedly regrow late
  • NETs are believed to participate in the reactivation of dormant cancer cells in metastatic regions
  • NET-associated proteases NE and MMP-9 were found to be responsible for the reactivation of dormant cancer cells
  •  
    Surgery induced metastasis: it is real and steered by NETosis.
Nathan Goodyear

Inhibition of platelet aggregation and immunomodulation of NK lymphocytes by administra... - 0 views

  •  
    Vitamin C, ascorbic acid, prevents platelet cell aggregation and increases cytotoxic NK cell activity against circulating cancer cells.
Nathan Goodyear

Effect of ozone therapy on T-lymphocyte subsets,NK cell in the patients with ... - 0 views

  •  
    Ozone therapy appears to support NK cell and other immune cells when used in conjunction with chemotherapy versus chemotherapy alone in the treatment of lymphoma
Nathan Goodyear

Adjuvant histamine in cancer immunotherapy, Seminars in Cancer Biology | 10.1006/scbi.2... - 0 views

  •  
    histamine dihydrochloride augments IL-2 stimulation of NK and blocks the monocyte/macrophage inhibition of IL-2 stimulation of NK cells.
Nathan Goodyear

Cancer-Expanded Myeloid-Derived Suppressor Cells Induce Anergy of NK Cells th... - 0 views

  •  
    Myeloid-derived suppressor cells decrease NK cell activity
Nathan Goodyear

Mistletoe viscotoxins increase natural killer cell‐mediated cytotoxicity - Ta... - 0 views

  •  
    Study finds that mistletoe augments NK activity not via an increase in NK numbers.
Nathan Goodyear

(PDF) Mistletoe Extract Reduces the Surgical Suppression of Natural Killer Cell Activit... - 0 views

  •  
    Phase III study finds that IV mistletoe reversed operative NK suppressio pointed to the increase NK effect of mistletoe.
Nathan Goodyear

Therapeutic hyperthermia: The old, the new, and the upcoming - Critical Reviews in Onco... - 1 views

  • not well understood, but it is felt to be a combination of both heat-induced necrosis and of protein inactivation (e.g., repair enzymes) as opposed to DNA damage
  • alterations in tumor cytoskeletal and membrane structures, which disrupt cell motility and intracellular signal transduction
  • A common explanation for HT-enhancement of RT and CT involves inhibition of homologous recombination repair of double-strand DNA breaks, preventing cells from repairing sub-lethal damage
  • ...15 more annotations...
  • it does appear to inhibit rejoining of RT-induced DNA breaks more than is commonly observed after RT alone
  • HT damages cells and enhances RT and CT sensitivity as a function of both temperature and duration of treatment
  • as temperature or duration increase, the rate of cell killing also increases
  • At temperatures above 42 °C, tumor vasculature is damaged, resulting in decreased blood flow
  • Cancer cells are particularly vulnerable to heating; in vivo studies have shown that temperatures in the range of 40–44 °C cause more selective damage to tumor cells
  • cancerous blood vessels are chaotic, leaky, and inefficient
  • selective cytotoxic effect on tumor cells include inhibition of key cancer cell-signaling pathways such as AKT, inducing apoptosis, suppression of cancer stem cell proliferation, and others
  • increase in immunological attacks against tumors after HT, which were believed to be achieved through activation of HSPs and subsequent modulation of the innate and adaptive immune responses against tumor cells
  • HT does lead to activation of the immune system and HSP-induced cell death through modification of the tumor cell surface
  • These HSPs and tumor antigens are taken up by dendritic cells and macrophages and go on to induce specific anti-tumor immunity
  • In vivo studies demonstrate HT-enhancement of NK cell activity, and HT has been shown to increase neutrophilic granulocytes with anti-tumor activity
  • it has become increasingly clear that HT results in immune stimulation, through both direct heat-mediated cell killing as well as innate and adaptive immune system modulation
  • The term hyperthermia is used in this review to refer to heating within the clinically accepted range of 40–45 °C
  • temperatures above 42.5–43 °C the exposure time can be halved with each 1 °C increase while maintaining equivalent cell killing
  • gradual heating at 43 °C for 1 h worked through an apoptotic pathway
  •  
    Comprehensive review of hyperthemic therapy.
1 - 20 of 118 Next › Last »
Showing 20 items per page