Skip to main content

Home/ Dr. Goodyear/ Group items tagged platelet cancer cell aggregate

Rss Feed Group items tagged

Nathan Goodyear

How is the Immune System Suppressed by Cancer - 1 views

  • nitric oxide (NO) released by tumor cells
  • Excellent work by Prof de Groot of Essen, indicated by adding exogenous xanthine oxidase ( XO) in hepatoma cells, hydrogen peroxide was produced to destroy the hepatoma cells
  • NO from eNOS in cancer cells can travel through membranes and over long distances in the body
  • ...43 more annotations...
  • NO also is co linked to VEGF which in turn increases the antiapoptotic gene bcl-2
  • The other important influence of NO is in its inhibition of the proapoptoic caspases cascade. This in turn protects the cells from intracellular preprogrammed death.
  • nitric oxide in immune suppression in relation to oxygen radicals is its inhibitory effect on the binding of leukocytes (PMN) at the endothelial surface
  • Inhibition of inducible Nitric Oxide Synthase (iNOS)
  • NO from the tumor cells actually suppresses the iNOS, and in addition it reduces oxygen radicals to stop the formation of peroxynitrite in these cells. But NO is not the only inhibitor of iNOS in cancer.
  • Spermine and spermidine, from the rate limiting enzyme for DNA synthases, ODC, also inhibit iNOS
  • tolerance in the immune system that decreases the immune response to antigens on the tumors
  • Freund’s adjuvant
  • increase in kinases in these cells which phosphorylate serine, and tyrosine
  • responsible for activation of many growth factors and enzymes
  • phosphorylated amino acids suppress iNOS activity
  • Hexokinase II
  • Prostaglandin E2, released from tumor cells is also an inhibitor of iNOS, as well as suppressing the immune system
  • Th-1 subset of T-cells. These cells are responsible for anti-viral and anti-cancer activities, via their cytokine production including Interleukin-2, (IL-2), and Interleukin-12 which stimulates T-killer cell replication and further activation and release of tumor fighting cytokines.
    • Nathan Goodyear
       
      Th1 cells stimulate NK and other tumor fighting macrophages via IL-2 and IL-12; In contrast, Th2, which is stimulated in allergies and parasitic infections, produce IL-4 and IL-10.  IL-4 and IL-10 inhibit TH-1 activation and the histamine released from mast cell degranulation upregulates T suppressor cells to further immune suppression.
  • Th-2 subset of lymphocytes, on the other hand are activated in allergies and parasitic infections to release Interleukin-4 and Interleukin-10
  • These have respectively inhibitory effects on iNOS and lymphocyte Th-1 activation
  • Mast cells contain histamine which when released increases the T suppressor cells, to lower the immune system and also acts directly on many tumor Histamine receptors to stimulate tumor growth
  • Tumor cells release IL-10, and this is thought to be one of the important areas of Th-1 suppression in cancer patients
  • IL-10 is also increased in cancer causing viral diseases such as HIV, HBV, HCV, and EBV
  • IL-10 is also a central regulator of cyclooxygenase-2 expression and prostaglandin production in tumor cells stimulating their angiogenesis and NO production
  • nitric oxide in tumor cells even prevents the activation of caspases responsible for apoptosis
    • Nathan Goodyear
       
      NO produced by cancer cells inhibits proapoptotic pathways such as the caspases.
  • early stages of carcinogenesis, which we call tumor promotion, one needs a strong immune system, and fewer oxygen radicals to prevent mutations but still enough to destroy the tumor cells should they develop
  • later stages of cancer development, the oxygen radicals are decreased around the tumors and in the tumor cells themselves, and the entire cancer fighting Th-1 cell replication and movement are suppressed. The results are a decrease in direct toxicity and apoptosis, which is prevented by NO, a suppression of the macrophage and leukocyte toxicity and finally, a suppression of the T-cell induced tumor toxicity
  • cGMP is increased by NO
  • NO in cancer is its ability to increase platelet-tumor cell aggregates, which enhances metastases
  • the greater the malignancies and the greater the metastatic potential of these tumors
  • The greater the NO production in many types of tumors,
  • gynecological
  • elevated lactic acid which neutralizes the toxicity and activity of Lymphocyte immune response and mobility
  • The lactic acid is also feeding fungi around tumors and that leads to elevated histamine which increases T-suppressor cells.  Histamine alone stimulates many tumor cells.
    • Nathan Goodyear
       
      The warburg effect in cancer cells results in the increase in local lactic acid production which suppresses lymphocyte activity and toxicity as well as stimulates histamine production with further stimulates tumor cell growth.
  • T-regulatory cells (formerly,T suppressor cells) down regulate the activity of Natural killer cells
  • last but not least, the Lactic acid from tumor cells and acidic diets shifts the lymphocyte activity to reduce its efficacy against cancer cells and pathogens in addition to altering the bacteria of the intestinal tract.
  • intestinal tract bacteria in cancer cells release sterols that suppress the immune system and down regulate anticancer activity from lymphocytes.
  • In addition to the lactic acid, adenosine is also released from tumors. Through IL-10, adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state
  • Adenosine up regulates the PD1 receptor in T-1 Lymphocytes and inhibits their activity
  • Adenosine is a purine nucleoside found within the interstitial fluid of solid tumors at concentrations that are able to inhibit cell-mediated immune responses to tumor cells
  • Adenosine appears to up-regulate the PD1 receptor in T-1 Lymphocytes and inhibits the immune system further
  • Mast cells with their release of histamine lower the immune system and also stimulate tumor growth and activate the metalloproteinases involved in angiogenesis and metastases
  • COX 2 inhibitors or all trans-retinoic acid
  • Cimetidine, an antihistamine has been actually shown to increase in apoptosis in MDSC via a separate mechanism than the antihistamine effect
    • Nathan Goodyear
       
      cimetidine is an H2 blocker
  • interleukin-8 (IL-8), a chemokine related to invasion and angiogenesis
  • In vitro analyses revealed a striking induction of IL-8 expression in CAFs and LFs by tumor necrosis factor-alpha (TNF-alpha)
  • these data raise the possibility that the majority of CAFs in CLM originate from resident LFs. TNF-alpha-induced up-regulation of IL-8 via nuclear factor-kappaB in CAFs is an inflammatory pathway, potentially permissive for cancer invasion that may represent a novel therapeutic target
  •  
    Great review of the immunosuppression in cancer driven by the likes of NO.
Nathan Goodyear

Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil... - 0 views

  • tumor surgery must be carefully considered because the risk of metastasis could be increased by the surgical procedure.
  • NETosis, which is the process of forming neutrophil extracellular traps (NETs)
  • surgery-induced metastasis
  • ...61 more annotations...
  • surgery per se can promote cancer metastasis through a series of local and systemic events
  • surgery results in a serious wound that disrupts the structural barrier preventing the outspreading of cancer cells, change the properties of the cancer cells and stromal cells remaining in the tumor microenvironment, or impairs the host defense systems against cancers
    • Nathan Goodyear
       
      Key point; add to presentation on surgery and metastasis
  • After the primary tumor is surgically removed, the metastases can start to grow vigorously via neoangiogenesis because the circulating inhibitors disappear
  • infection and inflammation during the postoperative period have been reported to increase the risk of cancer recurrence in patients
  • Surgeons have long suspected that surgery, even if it is a necessary step in cancer treatment, facilitates cancer metastasis
  • Surgery-induced cancer metastasis has been well established in animal models
  • tumor cell dissemination, tumor-favoring immune responses, and neoangiogenesis
  • the surgical resection of primary tumors is beneficial is controversial
  • CTCs abruptly increase just after surgery
  • Even externally palpitating tumors for diagnosis could increase the numbers of CTCs in skin cancer and breast cancer
  • excessive glucocorticoids negatively modulate immune functions
  • immune surveillance against tumors is considered to be impaired by surgical stress
  • In addition to glucocorticoids, during stimulation of the HPA axis, the catecholamine hormones epinephrine and norepinephrine are released from the adrenal medulla
  • NK cell suppression may be attributed to increased levels of catecholamines as well as glucocorticoids
  • In mice bearing a primary tumor, it was observed that the removal of the primary tumor facilitated the growth of highly vascularized metastases
  • primary tumors may secrete angiogenic inhibitors as well as angiogenic activators
  • second phase of tumor recurrence and metastasis, which are newly acquired events, rather than just outcomes of incomplete treatment.
    • Nathan Goodyear
       
      Another key point
  • double-edged sword
  • HIF-1 in neutrophils plays a critical role in NETosis and bacteria-killing activity
  • neutrophils play various roles in the initiation and progression of cancer
  • NETosis
  • many inflammatory and neoplastic diseases
  • formation of neutrophil extracellular traps (NETs), which are large extracellular complexes composed of chromatin and cytoplasmic/granular proteins1
  • NETosis has been highlighted as an inflammatory event that promotes cancer metastasis
  • Once activated, neutrophils produce intracellular precursors by using DNA, histones, and granular and cytoplasmic proteins and then spread the mature form of NETs out around themselves
  • A series of these events is called NETosis.
  • neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, lactoferrin, gelatinase, lysozyme C, calprotectin, neutrophil defensins, and cathelicidins
  • innate immune response against infection
  • Neutrophils are the most abundant type of granulocytes, comprising 40–70% of all white blood cells
  • two types of NEToses, suicidal (or lytic) NETosis and vital NETosis
  • Suicidal NETosis mainly depends on the production of reactive oxygen species (ROS)
  • Since neutrophils die during this process, it is called suicidal NETosis.
  • vital NETosis
  • vital NETosis occurs independently of ROS production
  • Vital NETosis can be induced by Gram-negative bacteria. LPS
  • NETs are present in a variety of cancers, such as lung cancer, colon cancer, ovarian cancer, and leukemia
  • neutrophils actively undergo NETosis in the tumor microenvironment
  • Hypoxia
  • NETosis plays a pivotal role in noninfectious autoimmune diseases,
  • cytokines
  • tumor-derived proteases
  • tumor exosomes
  • NETosis generally actively progresses in the tumor microenvironment.
  • the proliferative cytokines TGFβ and IL-10 and the angiogenic factor VEGF are representative of neutrophil-derived tissue repair proteins.
  • NETosis is a defense system to protect the body from invading pathogens
  • when neutrophils are excessively stimulated, they produce excess NETs, thereby leading to pathological consequences
  • plasma levels of NETosis markers are elevated after major surgeries
  • local invasion, intravasation into the blood or lymphatic vessels, escape from the immune system, anchoring to capillaries in target organs, extravasation into the organs, transformation from dormant cells to proliferating cells, colonization to micrometastases, and growth to macrometastases
  • NETs promote metastasis at multiple steps
  • NETs loosen the ECM and capillary wall to promote the intravasation of cancer cells
  • NETs and platelets wrap CTCs, which protects them from attack by immune cells and shearing force by blood flow
  • NETs promote the local invasion of cancer cells by degrading the extracellular matrix (ECM)
  • neutrophil elastase, matrix metalloproteinase 9, and cathepsin G
  • NETs also promote the intravasation of cancer cells
  • millions of tumor cells are released into the circulation every day,
  • NETs can wrap up CTCs with platelets
  • β1-integrin plays an important role in the interaction between CTCs and NETs
  • NET-platelet-CTC aggregates.
  • After metastasizing to distant tissues, tumor cells are often found to remain dormant for a period of time and unexpectedly regrow late
  • NETs are believed to participate in the reactivation of dormant cancer cells in metastatic regions
  • NET-associated proteases NE and MMP-9 were found to be responsible for the reactivation of dormant cancer cells
  •  
    Surgery induced metastasis: it is real and steered by NETosis.
Nathan Goodyear

Inhibition of platelet aggregation and immunomodulation of NK lymphocytes by administra... - 0 views

  •  
    Vitamin C, ascorbic acid, prevents platelet cell aggregation and increases cytotoxic NK cell activity against circulating cancer cells.
Nathan Goodyear

NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond - PMC - 0 views

  • Pneumonia is a typical symptom of COVID-19 infection, while acute respiratory distress syndrome (ARDS) and multiple organ failure are common in severe COVID-19 patients
  • NETs are important for preventing pathogen invasion, their excessive formation can result in a slew of negative consequences, such as autoimmune inflammation and tissue damage
  • SARS-CoV-2 infection has also been linked to increased neutrophil-to-lymphocyte ratios, which is associated with disease severity and clinical prognosis
  • ...40 more annotations...
  • NETosis is a special form of programmed cell death in neutrophils, which is characterized by the extrusion of DNA, histones, and antimicrobial proteins in a web-like structure known as neutrophil extracellular traps (NETs)
    • Nathan Goodyear
       
      Definition
  • increased generation of reactive oxygen species (ROS) is a crucial intracellular process that causes NETosis
  • Another indirect route of SARS-CoV-2-induced NET production is platelet activation
  • When NETs are activated in the circulation, they can also induce hypercoagulability and thrombosis
  • In COVID-19, major NET protein cargos of NETs (i.e., NE, MPO, and histones) are significantly elevated.
  • SARS-CoV-2 can also infect host cells through noncanonical receptors such as C-type lectin receptors
  • Immunopathological manifestations, including cytokine storms and impaired adaptive immunity, are the primary drivers behind COVID-19, with neutrophil infiltration being suggested as a significant cause
  • NETosis and NETs are increasingly recognized as causes of vascular injury
  • SARS-CoV-2 and its components (e.g., spike proteins and viral RNA) attach to platelets and increase their activation and aggregation in COVID-19, resulting in vascular injury and thrombosis, both of which are linked to NET formation
    • Nathan Goodyear
       
      Connects SARS-CoV-2 to TLR on Platelets to NETosis to metastasis.
  • NET formation may be caused by activated platelets rather than SARS-CoV-2 itself
  • NETosis, leading to aberrant immunity such as cytokine storms, autoimmune disorders, and immunosuppression.
  • early bacterial coinfections were more prevalent in COVID-19 patients than those infected with other viruses
  • NETosis and NETs may also have a role in the development of post COVID-19 syndromes, including lung fibrosis, neurological disorders, tumor growth, and worsening of concomitant disease
    • Nathan Goodyear
       
      NETosis-> tumor growth
  • NETs and other by-products of NETosis have been shown to act as direct inflammation amplifiers. Hyperinflammation
  • “cytokine storm”
  • SARS-CoV-2 drives NETosis and NET formation to allow for the release of free DNA and by-products (e.g., elastases and histones). This may trigger surrounding macrophages and endothelial cells to secrete excessive proinflammatory cytokines and chemokines, which, in turn, enhance NET formation and form a positive feedback of cytokine storms in COVID-19
    • Nathan Goodyear
       
      Cycle of hyperinflammation
  • NET release enables self-antigen exposure and autoantibody production, thereby increasing the autoinflammatory response
  • patients with COVID-19 who have higher anti-NET antibodies are more likely to be detected with positive autoantibodies [e.g., antinuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA)]
  • COVID-19 NETs may act as potential inducers for autoimmune responses
  • have weakened adaptive immunity as well as a high level of inflammation
    • Nathan Goodyear
       
      Immunomodulation
  • tumor-associated NETosis and NETs promote an immunosuppressive environment in which anti-tumor immunity is compromised
  • NETs have also been shown to enhance macrophage pyroptosis in sepsis
  • facilitating an immunosuppressive microenvironment
  • persistent immunosuppression may result in bacterial co-infection or secondary infection
  • can enhance this process by interacting with neutrophils through toll-like receptor 4 (TLR4), platelet factor 4 (PF4), and extracellular vesicle-dependent processes
  • NET-induced immunosuppression in COVID-19 in the context of co-existing bacterial infection
  • Following initial onset of COVID-19, an estimated 50% or more of COVID-19 survivors may develop multi-organ problems (e.g., pulmonary dysfunction and neurologic impairment) or have worsening concomitant chronic illness
  • NETs in the bronchoalveolar lavage fluid of severe COVID-19 patients cause EMT in lung epithelial cells
  • decreased E-cadherin (an epithelial marker) expression
    • Nathan Goodyear
       
      Leads to emt
  • COVID-19 also has a long-term influence on tumor progression
  • Patients with tumors have been shown to be more vulnerable to SARS-CoV-2 infection and subsequent development of severe COVID-19
  • patients who have recovered from COVID-19 may have an increased risk of developing cancer or of cancer progression and metastasis
  • awaken cancer cells
  • NETs have been shown to change the tumor microenvironment
  • enhance tumor progression and metastasis
  • vitamin C has been tested in phase 2 clinical trials aimed at reducing COVID-19-associated mortality by reducing excessive activation of the inflammatory response
  • vitamin C is an antioxidant that significantly attenuates PMA-induced NETosis in healthy neutrophils by scavenging ROS
  • vitamin C may also inhibit NETosis and NET production in COVID-19
  • Metformin
  • Vitamin C
  •  
    NETosis intimately involved in progressive COVID, long COVID, autoimmunity, and cancer
Nathan Goodyear

High D-dimer levels are associated with poor prognosis in cancer patients - 0 views

  • a systemic activation of blood coagulation and procoagulant changes in the hemostatic system have frequently been observed in cancer patients, even in the absence of venous thromboembolism
  • Thrombin is a pivotal enzyme in the process of blood coagulation and leads to the conversion of fibrinogen to fibrin, which is the end product of blood coagulation and finally results in the formation of a fibrin clot
  • deposition of fibrin, which has an important role in the formation of tumor stroma and hematogenous spread of tumor cells.
  • ...5 more annotations...
  • The interaction of fibrin, platelets and tumor cells leads to the formation of platelet-fibrin-tumor-cell aggregates that promote endothelial adhesion and metastatic spread, as well as tumor cell growth and tumor cell survival
  • fibrin degradation products have been shown to display strong angiogenic properties
  • D-dimer is a biomarker that globally indicates the activation of hemostasis and fibrinolysis
  • It is a degradation product of fibrin
  • high D-dimer levels were reported to be predictive of the occurrence of VTE in cancer patients
  •  
    elevated D-Dimer associated with poor prognosis in cancer. Good review of cancer and ehmostasis.
1 - 10 of 10
Showing 20 items per page