Skip to main content

Home/ Dr. Goodyear/ Group items tagged B-complex

Rss Feed Group items tagged

Nathan Goodyear

The Complex Role of Estrogens in Inflammation - 0 views

  • These studies suggest inflammation-dependent up-regulation of ERβ relative to ERα.
  • up-regulation of ERβ relative to ERα under hypoxic conditions, which might lead to a preponderance of signaling through ERβ pathways
  • it seems that E2 at periovulatory to pregnancy levels inhibited proinflammatory cytokines from PBMCs
  • ...26 more annotations...
  • it is clear that E2 can stimulate antibody production by B cells, probably by inhibiting T cell suppression of B cells
  • In cycling women, the largest quantities of Ig were detected before ovulation
  • In contrast, E2 at high concentrations leads to a suppression of B-lymphocyte lineage precursors
  • E2 at periovulatory to pregnancy serum levels is able to stimulate antibody secretion under healthy conditions but also in autoimmune diseases, whereas similar serum levels of E2 lead to a suppression of bone marrow B cell lineage precursors
  • In chronic inflammatory disorders, where B cells play a decisive role, E2 would promote the disease when autoaggressive B cells are already present, whereas chronically elevated E2 would inhibit initiation of an autoimmune disease when no such B cells are available. This might be a good reason why particularly B cell-dependent diseases such as SLE, mixed connective tissue disease (Sharp syndrome), IgA nephropathy, dermatitis herpetiformis, gluten sensitive enteropathy, myasthenia gravis, and thyroiditis appear in women in the reproductive years, predominantly, in the third or fourth decades of life
  • Th17 cells are thought to be the main responsible cells for chronic inflammatory tissue destruction in autoimmune diseases
  • IFN-γ, IL-12, and TNF were allocated to Th1 reactions
  • IL-4, IL-5, and IL-10 to Th2 responses
  • antiinflammatory T regulatory cells producing TGF-β and proinflammatory T helper type 17 cells (Th17) producing IL-17
  • no direct effects of estrogens on Th17 cells or IL-17 secretion have been described until now.
  • So-called Th17 cells producing IL-17 are the main T cells responsible for chronic inflammation.
  • Because IFN-γ has been allocated a Th17-inhibiting role (Fig. 1⇑), its increase by E2 at pregnancy doses and the E2-mediated inhibition of TNF must be viewed as a favorable effect in chronic inflammation
  • in humans and mice, E2 at periovulatory to pregnancy levels stimulates IL-4, IL-10, and IFN-γ but inhibits TNF from CD4+ T cells
  • In humans and mice, E3 and E2, respectively, at pregnancy levels inhibit T cell-dependent delayed type hypersensitivity
  • increased IL-4, IL-10, and IFN-γ in the presence of low TNF support an antiaggressive immune response
  • secretion of IL-1β is increased at periovulatory/proestrus to early pregnancy levels, whereas IL-1 secretion is inhibited at high pregnancy levels
  • The dichotomous effect of E2 on IL-1β and TNF at high and low concentrations is most probably due to inhibition of NF-κB at high concentrations
  • experiments with mouse and rat macroglial and microglial cells demonstrate that E2 at proestrus to pregnancy levels exerts neuroprotective effects by increasing TGF-β and by inhibiting iNOS and NO release, and reducing expression of proinflammatory cytokines and prostaglandin E2 production.
  • E2 at periovulatory to pregnancy levels inhibits NF-κB activation, which must be viewed as an antiinflammatory signal
  • It was shown that E2 concentrations equal to or above 10−10 m are necessary to inhibit NF-κB activation
  • important proinflammatory cytokines are typically inhibited at periovulatory (proestrus) to pregnancy levels of E2, which is evident for IL-6, IL-8, and TNF
  • low E2 concentrations were demonstrated to have no or even stimulatory effects
  • This renders a woman in the postmenopausal phase to a more proinflammatory situation
  • most in vitro studies demonstrated a stimulatory effect of E2 on secretion of IL-4, IL-10, and TGF-β typically at periovulatory to pregnancy levels
  • E2 at periovulatory to pregnancy levels has an ameliorating effect on chronic inflammatory diseases as long as B cell-dependent immunity or an overshooting fibrotic tissue repair process do not play a crucial pathogenic role. However, when the B cell plays an important role, E2 might even stimulate the disease process as substantiated by flare-ups in SLE during pregnancy
    • Nathan Goodyear
       
      SLE, mixed connective tissue disease (Sharp syndrome), IgA nephropathy, dermatitis herpetiformis, gluten sensitive enteropathy, myasthenia gravis, and thyroiditis
  • Short-term administration of E2 at pregnancy levels was shown to induce an inflammatory response specific to the lateral prostate of the castrated male rat
  •  
    great review of the complex interaction between Estrogens and inflammation.  Reference here is in females.
Nathan Goodyear

World J Gastroenterol - 0 views

  •  
    IV antioxidant mixture of vitamin C, glutathione, glycyrrhiza, and B-complex reduces liver enzymes.  Arm taking only oral shows no decline in liver enzymes.
Nathan Goodyear

Frontiers | Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of... - 0 views

  • lipopolysaccharides (LPS), either alone or in combination, have indicated that when compared, bacterial LPSs exhibit the strongest induction of pro-inflammatory signaling in human neuronal–glial cells in primary coculture of any single inducer, and different LPS extracts from different gastrointestinal (GI)-tract resident Gram-negative bacteria appeared to have different pro-inflammatory potential
  • powerful inducer of the NF-κB
  • In both neocortex and hippocampus, LPS has been detected to range from a ~7- to ~21-fold increase abundance in AD brain
  • ...15 more annotations...
  • Major Gram-negative bacilli of the human GI-tract, such as the abundant B. fragilis and Escherichia coli (E. coli), are capable of discharging a remarkably complex assortment of pro-inflammatory neurotoxins
  • (i) bacterial amyloids (10, 21); (ii) endotoxins and exotoxins (5, 12); (iii) LPS (12, 18); and (iv) small non-coding RNAs (sncRNAs)
  • integral components of the outer leaflet of the outer membrane of Gram-negative bacteria, LPS
  • LPS, the major molecular component of the outer membrane of Gram-negative bacteria normally serves as a physical barrier providing the bacteria protection from its surroundings
  • LPS is also recognized by the immune system as a marker for the detection of bacterial pathogen invasion and responsible for the development of inflammatory response is perhaps the most potent stimulator and trigger of inflammation known
  • AD-affected brains have remarkably large loads of bacterial-derived toxins compared to controls. The transfer of noxious, pro-inflammatory molecules from the GI-tract microbiome to the CNS may be increasingly important during the course of aging when both the GI-tract and blood–brain barriers become significantly more permeable
  • first evidence of a perinuclear association of LPS with AD brain cell nuclei
  • LPS-mediated stimulation of chronic inflammation, beta-amyloid accumulation, and episodic memory decline in murine models of AD (39, 40) and a biophysical association of LPS with amyloid deposits and blood vessels in human AD patients
  • Strong adherence of LPS to the nuclear periphery has recently been shown to inhibit nuclear maturation and function that may impair or block export of mRNA signals from brain cell nuclei, a highly active organelle with extremely high rates of transcription, mRNA processing, and export into the cytoplasm
  • LPS may be further injurious to the nuclear membrane just as LPS contributes to cerebrovascular endothelial cell membrane injury
  • high intake of dietary fiber is a strong inhibitor of B. fragilis abundance and proliferation in the intact human GI-tract and as such is a potent inhibitor of the neurotoxic B. fragilis-derived amyloids, LPS, enterotoxins, and sncRNAs.
  • GI-tract microbiome-derived LPS may be an important initiator and/or significant contributor to inflammatory degeneration in the AD CNS
  • LPS has been recently localized to the same anatomical regions involved in AD-type neuropathology
  • a known pro-inflammatory transcription factor complex that triggers the expression of pathogenic pathways involved in neurodegenerative inflammation
  • pro-inflammatory amyloids, endo- and exotoxins, LPSs, and sncRNAs but also serve as potent sources of membrane-disrupting agents
  •  
    LPS links gut to inflammation in Alzheimer's disease
Nathan Goodyear

Late Disseminated Lyme Disease: Associated Pathology and Spirochete Persistence Post-Tr... - 0 views

  • In this study, we have demonstrated microscopic pathology ranging from minimal to moderate in multiple different tissues previously reported to be involved with LD, including the nervous system (central and peripheral), heart, skeletal muscle, joint-associated tissues, and urinary bladder 12 to 13 months following tick-inoculation of rhesus macaques by Bb strain B31
  • Based on histomorphology, inflammation consisted predominantly of lymphocytes and plasma cells, with rare scattered histiocytes
  • in rare instances, morphologically intact spirochetes were observed in inflamed brain and heart tissue sections from doxycycline-treated animals
  • ...41 more annotations...
  • colocalization of the Bb 23S rRNA probe was not observed in any of the sections of experimental inoculated animals shown to harbor rare persistent spirochetes (Supplemental Figure S1). Previous in vitro work has shown large decreases in Bb rRNA levels when in a stationary phase of growth despite the majority of spirochetes remaining viable
  • The possibility that the spirochetes were intact but dead also exists, though this may be unlikely given the precedence for viable but non-cultivable B. burgdorferi post-treatment
  • The doxycycline dose utilized in this study (5mg/kg) was based on a previous pharmacokinetic analysis of oral doxycycline in rhesus macaques proven to be comparable to levels achieved in humans and was meant to mimic treatment of disseminated LD
  • In addition to the brain of two treated animals, rare morphologically intact spirochetes immunoreactive to OspA were observed in the heart of one treated animal
  • Although we did not measure the doxycycline levels in the cerebrospinal fluid, they have been found to be 12% to 15% of the amount measured in serum
  • We and others have demonstrated the development of a drug-tolerant persister population when B. burgdorferi are treated with antibiotics in vitro
  • The adoption of a dormant or slow-growing phenotype likely allows the spirochetes to survive and re-grow following removal of antibiotic
  • The basic premise that antibiotic tolerance may be an adaptation of the sophisticated stringent response required for the enzootic cycle by the spirochetes is described in a recent review as well
  • Although current IDSA guidelines recommend intravenous ceftriaxone (2g daily for 30 days) over oral doxycycline for treatment of neuroborreliosis, a randomized clinical trial failed to show any enhanced efficacy of I.V. penicillin G to oral doxycycline for treatment of Lyme neuroborreliosis (no treatment failures were reported in this study of 54 patients).
  • we can speculate that the minimal to moderate inflammation that was observed, especially within the CNS and PNS can, in part, explain the breadth of symptoms experienced by late stage Lyme disease patients, such as cognitive impairment and neuralgia.
  • Erythema migrans, the clinical hallmark of early localized Lyme disease, was observed in one of the rhesus macaques from this study.
  • In 2014, a trailblazing study in mice demonstrated a dramatic decline in B. burgdorferi DNA in the tissues for up to eight months after antibiotic treatment followed by the resurgence of B. burgdorferi growth 12 months after treatment
  • This study provides evidence that the slow-growing spirochetes which persist after treatment, but are not cultivable in standard growth media may remain viable.
  • The first well-documented indication of Lyme disease (LD) in the United States occurred in the early 1970s
  • Lyme, Connecticut.
  • Lyme disease is now known to be caused by multiple closely related genospecies classified within the Bb sensu lato complex, representing the most common tick-borne human disease in the Northern Hemisphere
  • approximately 30,000 physician-reported cases occur annually in the United States, the annual incidence has been estimated to be 10-fold higher by the Centers for Disease Control and Prevention.6
  • Current antibiotic therapy guidelines outlined by the Infectious Disease Society of America (IDSA) are successful in the treatment of LD for the majority of LD patients, especially when administered early in disease immediately following identification of erythema migrans (EM)
  • ‘post-treatment Lyme disease syndrome’ (PTLDS)
  • host-adapted spirochetes that persist in the tissues, probably in small numbers, inaccessible or impervious to antibiotic
  • inflammatory responses to residual antigens from dead organisms
  • residual tissue damage following pathogen clearance;
  • autoimmune responses, possibly elicited by antigenic mimicry
  • Experimental studies on immunocompetent mice, dogs, and rhesus macaques have provided evidence for the persistence of Bb spirochetes subsequent to antibiotic treatment in the form of residual spirochetes detected within tissue by IFA and PCR, and recovered by xenodiagnoses
  • Ten male rhesus macaques
  • half (five) of the NHP received antibiotic treatment, consisting of 5 mg/kg oral doxycycline twice per day.
  • Minimal and focal lymphoplasmacytic inflammation
  • inflammation was observed in the leptomeninges overlying a section of temporal cerebral cortex
  • Minimal localized lymphoplasmacytic choroiditis
  • Peripheral nerves contained minimal to moderate lymphoplasmacytic inflammation with a predilection for collagen-rich epineurium and perivascular spaces
  • Inflammation was observed in 56% (5/9) of the NHPs irrespective of treatment group
  • For all animals, inflammation was reserved to perineural tissue
  • The treatment lasted 28 days
  • Minimal to mild lymphoplasmacytic inflammation of either the myocardial interstitium (Figure 2Figure 2A), pericardium (Figure 2Figure 2B), or combination therein was observed in 60% of NHPs
  • A single morphologically intact spirochete, as indicated by positive red immunofluorescence (Figure 2Figure 2C), was observed in the myocardium of one treated animal
  • mild, multifocal lymphoplasmacytic inflammation was observed in one doxycycline-treated animal
  • three animals exhibited minimal to mild lymphoplasmacytic inflammation affecting joint-associated structures
  • 10% to -20% of human patients treated
  • Multiple randomized placebo-controlled studies which evaluated sustained antimicrobial therapy concluded that there is no benefit in alleviating patients’ symptoms and indicated that long-term antibiotic therapy may even be detrimental to patients due to potential associated complications (ie, catheter infection and/or clostridial colitis)
  • and the rapid clearance of dead spirochetes in a murine model
  • higher doses may be needed to combat neuroborreliosis
  •  
    persistent borrelia burgdorferia were found in the brain (2) and the heart (1) up to 13 months post standard antibiotic treatment suggesting borrelia burdorferia, the cause of Lyme, can persist in a chronic, persistant state poste acute treatment.
Nathan Goodyear

Treatment of chronic hepatitis C virus ... [J Clin Gastroenterol. 2005] - PubMed - NCBI - 0 views

  •  
    Treatment of chronic Hepatitis with antioxidants, particularly IV vitamin C with glutathione, B complex and glycyrrhizin results in normalization of liver enzymes in 44% of patients with elevated enzymes with HCV.
Nathan Goodyear

Utility of MYD88 in the Differential Diagnosis and Choice of Second-Line Therapy in a C... - 0 views

  •  
    Interesting study that highlights the complexities between Waldenstrom's Macroglobulinemia and other B-cell lymphoma's. These authors concluded that sFLC's correlated better with treatment outcomes than IgM levels.
Nathan Goodyear

PPARs, Obesity, and Inflammation - 0 views

  • increase of 61% within 10 years
  • Many of the inflammatory markers found in plasma of obese individuals appear to originate from adipose tissue
  • obesity is a state of chronic low-grade inflammation that is initiated by morphological changes in the adipose tissue.
  • ...19 more annotations...
  • secretion of MCP-1, resistin, and other proinflammatory cytokines is increased by obesity, the adipose secretion of the anti-inflammatory protein adiponectin is decreased
  • the peroxisome proliferators- activated receptor (PPAR) family are involved in the regulation of inflammation and energy homestasis
  • natural agonists, including unsaturated fatty acids and eicosanoids
  • PPARα also regulates inflammatory processes, mainly by inhibiting inflammatory gene expression
  • upregulation of COX-2 is seen in alcoholic steatohepatitis and nonalcoholic steatohepatitis and has been directly linked to the progression of steatosis to steatohepatitis, the inhibitory effect of PPARα on COX-2 may reduce steatohepatitis
  • PPARα agonists have a clear anorexic effect resulting in decreased food intake, evidence is accumulating that PPARα may also directly influence adipose tissue function, including its inflammatory status.
  • PPARα may govern adipose tissue inflammation in three different ways: (1) by decreasing adipocyte hypertrophy, which is known to be connected with a higher inflammatory status of the tissue [3, 11, 59], (2) by direct regulation of inflammatory gene expression via locally expressed PPARα, or (3) by systemic events likely originating from liver
  • PPARγ is considered the master regulator of adipogenesis
  • Unsaturated fatty acids and several eicosanoids serve as endogenous agonists of PPARγ
  • PPARγ2, which is adipose-tissue specific
  • two different molecular mechanisms have been proposed by which anti-inflammatory actions of PPARγ are effectuated: (1) via interference with proinflammatory transcription factors including STAT, NF-κB, and AP-1
  • and (2) by preventing removal of corepressor complexes from gene promoter regions resulting in suppression of inflammatory gene transcription
  • diet-induced obesity is associated with increased inflammatory gene expression in adipose tissue via adipocyte hypertrophy and macrophage infiltration
  • PPARγ is able to reverse macrophage infiltration, and subsequently reduces inflammatory gene expression
  • Inflammatory adipokines mainly originate from macrophages which are part of the stromal vascular fraction of adipose tissue [18, 19], and accordingly, the downregulation of inflammatory adipokines in WAT by PPARγ probably occurs via effects on macrophages
  • By interfering with NF-κB signaling pathways, PPARγ is known to decrease inflammation in activated macrophages
  • Recent data suggest that activation of PPARγ in fatty liver may protect against inflammation
  • PPARs may influence the inflammatory response either by direct transcriptional downregulation of proinflammatory genes
  • anti-inflammatory properties of PPARs in human obesity
  •  
    PPARs play pivotal in obesity.  PPARs appear to reduce the inflammatory cascade associated with obesity.  Downregulation of PPARs are associated with increased inflammation.  Natural PPARs include unsaturated fats and eicosanoids.
Nathan Goodyear

Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking m... - 0 views

  • Accumulating evidence suggests that niclosamide targets multiple signaling pathways such as nuclear factor-kappaB (NF-kB), Wnt/β-catenin, and Notch, most of which are closely involved with cancer stem cell proliferation
  • The transcription factor NF-κB has been demonstrated to promote cancer growth, angiogenesis, escape from apoptosis, and tumorigenesis
  • NF-κB is sequestered in the cytosol of resting cells through binding the inhibitory subunit IκBα
  • ...13 more annotations...
  • Niclosamide blocked TNFα-induced IκBα phosphorylation, translocation of p65, and the expression of NF-κB-regulated genes
  • Niclosamide also inhibited the DNA binding of NF-κB to the promoter of its target genes
  • niclosamide has two independent effects: NF-kB activation and ROS elevation
  • The Wnt signaling pathway plays fundamental roles in directing tissue patterning in embryonic development, in maintaining tissue homeostasis in differentiated tissue, and in tumorigenesis
  • niclosamide is a potent inhibitor of the Wnt/β-catenin pathway
  • The Notch signaling pathway plays important roles in a variety of cellular processes such as proliferation, differentiation, apoptosis, cell fate decisions, and maintenance of stem cells
  • niclosamide potently suppresses the luciferase activity of a CBF-1-dependent reporter gene in both a dose-dependent and a time-dependent manners in K562 leukemia cells
  • niclosamide treatment abrogated the epidermal growth factor (EGF)-stimulated dimerization and nuclear translocation and transcriptional activity of Stat3, and induced cell growth inhibition and apoptosis in several types of cancer cells (e.g. Du145, Hela, A549) that exhibit relatively higher levels of Stat3 constitutive activation
  • niclosamide can rapidly increase autophagosome formation
  • niclosamide induced autophagy and inhibited mammalian target of rapamycin complex 1 (mTORC1)
  • Niclosamide has low toxicity in mammals (oral median lethal dose in rats >5000 mg/kg
  • Niclosamide is active against cancer cells such as AML and colorectal cancer cells, not only as a monotherapy but also as part of combination therapy, in which it has been found to be synergistic with frontline chemotherapeutic agents (e.g., oxaliplatin, cytarabine, etoposide, and daunorubicin)
  • Because niclosamide targets multiple signaling pathways (e.g., NF-κB, Wnt/β-catenin, and Notch), most of which are closely involved with cancer stem cells, it holds promise in eradicating cancer stem cells
  •  
    Review article: common anti-parasitic medication, niclosamide, provides anti-proliferative effect in cancer stem cells (CSC), via inhibition of NF-kappaBeta, Wnt/B-catenin, Notch, ROS, mTORC1, and STAT2 pathways.
Nathan Goodyear

Testosterone: a vascular hormone in health and disease - 0 views

  • Testosterone has beneficial effects on several cardiovascular risk factors, which include cholesterol, endothelial dysfunction and inflammation
  • In clinical studies, acute and chronic testosterone administration increases coronary artery diameter and flow, improves cardiac ischaemia and symptoms in men with chronic stable angina and reduces peripheral vascular resistance in chronic heart failure.
  • testosterone is an L-calcium channel blocker and induces potassium channel activation in vascular smooth muscle cells
  • ...54 more annotations...
  • Animal studies have consistently demonstrated that testosterone is atheroprotective, whereas testosterone deficiency promotes the early stages of atherogenesis
  • there is no compelling evidence that testosterone replacement to levels within the normal healthy range contributes adversely to the pathogenesis of CVD (Carson & Rosano 2011) or prostate cancer (Morgentaler & Schulman 2009)
  • bidirectional effect between decreased testosterone concentrations and disease pathology exists as concomitant cardiovascular risk factors (including inflammation, obesity and insulin resistance) are known to reduce testosterone levels and that testosterone confers beneficial effects on these cardiovascular risk factors
  • Achieving a normal physiological testosterone concentration through the administration of testosterone replacement therapy (TRT) has been shown to improve risk factors for atherosclerosis including reducing central adiposity and insulin resistance and improving lipid profiles (in particular, lowering cholesterol), clotting and inflammatory profiles and vascular function
  • It is well known that impaired erectile function and CVD are closely related in that ED can be the first clinical manifestation of atherosclerosis often preceding a cardiovascular event by 3–5 years
  • no decrease in the response (i.e. no tachyphylaxis) of testosterone and that patient benefit persists in the long term.
  • free testosterone levels within the physiological range, has been shown to result in a marked increase in both flow- and nitroglycerin-mediated brachial artery vasodilation in men with CAD
  • Clinical studies, however, have revealed either small reductions of 2–3 mm in diastolic pressure or no significant effects when testosterone is replaced within normal physiological limits in humans
  • Endothelium-independent mechanisms of testosterone are considered to occur primarily via the inhibition of voltage-operated Ca2+ channels (VOCCs) and/or activation of K+ channels (KCs) on smooth muscle cells (SMCs)
  • Testosterone shares the same molecular binding site as nifedipine
  • Testosterone increases the expression of endothelial nitric oxide synthase (eNOS) and enhances nitric oxide (NO) production
  • Testosterone also inhibited the Ca2+ influx response to PGF2α
  • one of the major actions of testosterone is on NO and its signalling pathways
  • In addition to direct effects on NOS expression, testosterone may also affect phosphodiesterase type 5 (PDE5 (PDE5A)) gene expression, an enzyme controlling the degradation of cGMP, which acts as a vasodilatory second messenger
  • the significance of the action of testosterone on VSMC apoptosis and proliferation in atherosclerosis is difficult to delineate and may be dependent upon the stage of plaque development
  • Several human studies have shown that carotid IMT (CIMT) and aortic calcification negatively correlate with serum testosterone
  • t long-term testosterone treatment reduced CIMT in men with low testosterone levels and angina
  • neither intracellular nor membrane-associated ARs are required for the rapid vasodilator effect
  • acute responses appear to be AR independent, long-term AR-mediated effects on the vasculature have also been described, primarily in the context of vascular tone regulation via the modulation of gene transcription
  • Testosterone and DHT increased the expression of eNOS in HUVECs
  • oestrogens have been shown to activate eNOS and stimulate NO production in an ERα-dependent manner
  • Several studies, however, have demonstrated that the vasodilatory actions of testosterone are not reduced by aromatase inhibition
  • non-aromatisable DHT elicited similar vasodilation to testosterone treatment in arterial smooth muscle
  • increased endothelial NOS (eNOS) expression and phosphorylation were observed in testosterone- and DHT-treated human umbilical vein endothelial cells
  • Androgen deprivation leads to a reduction in neuronal NOS expression associated with a decrease of intracavernosal pressure in penile arteries during erection, an effect that is promptly reversed by androgen replacement therapy
  • Observational evidence suggests that several pro-inflammatory cytokines (including interleukin 1β (IL1β), IL6, tumour necrosis factor α (TNFα), and highly sensitive CRP) and serum testosterone levels are inversely associated in patients with CAD, T2DM and/or hypogonadism
  • patients with the highest IL1β concentrations had lower endogenous testosterone levels
  • TRT has been reported to significantly reduce TNFα and elevate the circulating anti-inflammatory IL10 in hypogonadal men with CVD
  • testosterone treatment to normalise levels in hypogonadal men with the MetS resulted in a significant reduction in the circulating CRP, IL1β and TNFα, with a trend towards lower IL6 compared with placebo
  • parenteral testosterone undecanoate, CRP decreased significantly in hypogonadal elderly men
  • Higher levels of serum adiponectin have been shown to lower cardiovascular risk
  • Research suggests that the expression of VCAM-1, as induced by pro-inflammatory cytokines such as TNFα or interferon γ (IFNγ (IFNG)) in endothelial cells, can be attenuated by treatment with testosterone
  • Testosterone also inhibits the production of pro-inflammatory cytokines such as IL6, IL1β and TNFα in a range of cell types including human endothelial cells
  • decreased inflammatory response to TNFα and lipopolysaccharide (LPS) in human endothelial cells when treated with DHT
  • The key to unravelling the link between testosterone and its role in atherosclerosis may lay in the understanding of testosterone signalling and the cross-talk between receptors and intracellular events that result in pro- and/or anti-inflammatory actions in athero-sensitive cells.
  • testosterone functions through the AR to modulate adhesion molecule expression
  • pre-treatment with DHT reduced the cytokine-stimulated inflammatory response
  • DHT inhibited NFκB activation
  • DHT could inhibit an LPS-induced upregulation of MCP1
  • Both NFκB and AR act at the transcriptional level and have been experimentally found to be antagonistic to each other
  • As the AR and NFκB are mutual antagonists, their interaction and influence on functions can be bidirectional, with inflammatory agents that activate NFκB interfering with normal androgen signalling as well as the AR interrupting NFκB inflammatory transcription
  • prolonged exposure of vascular cells to the inflammatory activation of NFκB associated with atherosclerosis may reduce or alter any potentially protective effects of testosterone
  • DHT and IFNγ also modulate each other's signalling through interaction at the transcriptional level, suggesting that androgens down-regulate IFN-induced genes
  • (Simoncini et al. 2000a,b). Norata et al. (2010) suggest that part of the testosterone-mediated atheroprotective effects could depend on ER activation mediated by the testosterone/DHT 3β-derivative, 3β-Adiol
  • TNFα-induced induction of ICAM-1, VCAM-1 and E-selectin as well as MCP1 and IL6 was significantly reduced by a pre-incubation with 3β-Adiol in HUVECs
  • 3β-Adiol also reduced LPS-induced gene expression of IL6, TNFα, cyclooxygenase 2 (COX2 (PTGS2)), CD40, CX3CR1, plasminogen activator inhibitor-1, MMP9, resistin, pentraxin-3 and MCP1 in the monocytic cell line U937 (Norata et al. 2010)
  • This study suggests that testosterone metabolites, other than those generated through aromatisation, could exert anti-inflammatory effects that are mediated by ER activation.
  • The authors suggest that DHT differentially effects COX2 levels under physiological and pathophysiological conditions in human coronary artery smooth muscle cells and via AR-dependent and -independent mechanisms influenced by the physiological state of the cell
  • There are, however, a number of systematic meta-analyses of clinical trials of TRT that have not demonstrated an increased risk of adverse cardiovascular events or mortality
  • The TOM trial, which was designed to investigate the effect of TRT on frailty in elderly men, was terminated prematurely as a result of an increased incidence of cardiovascular-related events after 6 months in the treatment arm
  • trials of TRT in men with either chronic stable angina or chronic cardiac failure have also found no increase in either cardiovascular events or mortality in studies up to 12 months
  • Evidence may therefore suggest that low testosterone levels and testosterone levels above the normal range have an adverse effect on CVD, whereas testosterone levels titrated to within the mid- to upper-normal range have at least a neutral effect or, taking into account the knowledge of the beneficial effects of testosterone on a series of cardiovascular risk factors, there may possibly be a cardioprotective action
  • The effect of testosterone on human vascular function is a complex issue and may be dependent upon the underlying androgen and/or disease status.
  • the majority of studies suggest that testosterone may display both acute and chronic vasodilatory effects upon various vascular beds at both physiological and supraphysiological concentrations and via endothelium-dependent and -independent mechanisms
  •  
    Good deep look into the testosterone and CVD link.
Nathan Goodyear

Communication between genomic and non-genomic signaling events coordinate steroid hormo... - 0 views

  • steroid hormones typically interact with their cognate receptor in the cytoplasm for AR, glucocorticoid receptor (GR) and PR, but may also bind receptor in the nucleus as appears to often be the case for ERα and ERβ
  • This ligand binding results in a conformational change in the cytoplasmic NRs that leads to the dissociation of HSPs, translocation of the ligand-bound receptor to the nucleus
  • In the nucleus, the ligand-bound receptor dimerizes and then binds to DNA at specific HREs to regulate gene transcription
  • ...25 more annotations...
  • some steroid hormone-induced nuclear events can occur in minutes
  • the genomic effects of steroid hormones take longer, with changes in gene expression occurring on the timescale of hours
  • Classical steroid hormone signaling occurs when hormone binds nuclear receptors (NR) in the cytoplasm, setting off a chain of genomic events that results in, among other changes, dimerization and translocation to the nucleus where the ligand-bound receptor forms a complex with coregulators to modulate gene transcription through direct interactions with a hormone response element (HRE)
  • NRs have been found at the plasma membrane of cells, where they can propagate signal transduction often through kinase pathways
  • Membrane-localized ER, PR and AR have been reported to modulate the activity of MAPK/ERK, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), nitric oxide (NO), PKC, calcium flux and increase inositol triphosphate (IP3) levels to promote cell processes including autophagy, proliferation, apoptosis, survival, differentiation, and vasodilation
  • ERα36, a 36kDa truncated form of ERα that lacks the transcriptional activation domains of the full-length protein. Membrane-localized ERα36 can activate pathways including protein kinase C (PKC) and/or mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) to promote the progression of various cancers
  • G protein-coupled receptor 30 (GPR30), also referred to as G protein-coupled estrogen receptor (GPER), is a membrane-localized receptor that has been observed to respond to estrogen to activate rapid signaling
  • hormone-responsive G protein coupled receptor is Zip9, which androgens can activate
  • GPRC6A is another G protein-coupled membrane receptor that is responsive to androgen
  • androgen-mediated non-genomic signaling through this GPCR can modulate male fertility, hormone secretion and prostate cancer progression
  • non-NR proteins located at the cell surface can bind to steroid hormones and respond by eliciting rapid signaling events
  • Estrogens have been shown to induce rapid (i.e. seconds) calcium flux via membrane-localized ER (mER)
  • ER-calcium dynamics lead to activation of kinase pathways such as MAPK/ERK which can result in cellular effects like migration and proliferation
  • 17β-estradiol (E2) has been reported to promote angiogenesis through the activation of GPER
  • Membrane NRs may also mediate rapid signaling through crosstalk with growth factor receptors (GFR)
  • A similar crosstalk occurs between the receptor tyrosine kinase insulin-related growth factor-1 receptor (IGF-IR) and ERα. Not only does IGF-IR activate ERα, but inhibition of IGF-IR downregulates estrogen-mediated ERα activity, suggesting that IGF-IR is essential for maximal ERα signaling
    • Nathan Goodyear
       
      This is a bombshell that shatters the current right brain approach to ER. It completely shatters the concept of eat sugar, whatever you want, with cancer treatment in ER+ or hormonally responsive cancer!
  • Further, ER activates IGF-IR pathways including MAPK
  • GPER is involved in the transactivation of the EGFR independent of classical ER
  • tight interconnection between genomic and non-genomic effects of NRs.
  • non-genomic pathways can also lead to genomic effects
  • androgen-bound AR associates with the kinase Src at the plasma membrane, activating Src which then leads to a signaling cascade through MAPK/ERK
  • However, Src can also increase the expression of AR target genes by the ligand-independent transactivation of AR
  • extranuclear steroid hormone actions can potentially reprogram nuclear NR events
  • estrogen modulated the expression of several genes including endothelial nitric oxide synthase (eNOS) via rapid signaling pathways
  • epigenetic changes can then mediate genomic events in uterine tissue and breast cancer cells
1 - 10 of 10
Showing 20 items per page