Skip to main content

Home/ Dr. Goodyear/ Group items tagged programmed cell death

Rss Feed Group items tagged

Nathan Goodyear

Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil... - 0 views

  • tumor surgery must be carefully considered because the risk of metastasis could be increased by the surgical procedure.
  • NETosis, which is the process of forming neutrophil extracellular traps (NETs)
  • surgery-induced metastasis
  • ...61 more annotations...
  • surgery per se can promote cancer metastasis through a series of local and systemic events
  • surgery results in a serious wound that disrupts the structural barrier preventing the outspreading of cancer cells, change the properties of the cancer cells and stromal cells remaining in the tumor microenvironment, or impairs the host defense systems against cancers
    • Nathan Goodyear
       
      Key point; add to presentation on surgery and metastasis
  • After the primary tumor is surgically removed, the metastases can start to grow vigorously via neoangiogenesis because the circulating inhibitors disappear
  • infection and inflammation during the postoperative period have been reported to increase the risk of cancer recurrence in patients
  • Surgeons have long suspected that surgery, even if it is a necessary step in cancer treatment, facilitates cancer metastasis
  • Surgery-induced cancer metastasis has been well established in animal models
  • tumor cell dissemination, tumor-favoring immune responses, and neoangiogenesis
  • the surgical resection of primary tumors is beneficial is controversial
  • CTCs abruptly increase just after surgery
  • Even externally palpitating tumors for diagnosis could increase the numbers of CTCs in skin cancer and breast cancer
  • excessive glucocorticoids negatively modulate immune functions
  • immune surveillance against tumors is considered to be impaired by surgical stress
  • In addition to glucocorticoids, during stimulation of the HPA axis, the catecholamine hormones epinephrine and norepinephrine are released from the adrenal medulla
  • NK cell suppression may be attributed to increased levels of catecholamines as well as glucocorticoids
  • In mice bearing a primary tumor, it was observed that the removal of the primary tumor facilitated the growth of highly vascularized metastases
  • primary tumors may secrete angiogenic inhibitors as well as angiogenic activators
  • second phase of tumor recurrence and metastasis, which are newly acquired events, rather than just outcomes of incomplete treatment.
    • Nathan Goodyear
       
      Another key point
  • double-edged sword
  • HIF-1 in neutrophils plays a critical role in NETosis and bacteria-killing activity
  • neutrophils play various roles in the initiation and progression of cancer
  • NETosis
  • many inflammatory and neoplastic diseases
  • formation of neutrophil extracellular traps (NETs), which are large extracellular complexes composed of chromatin and cytoplasmic/granular proteins1
  • NETosis has been highlighted as an inflammatory event that promotes cancer metastasis
  • Once activated, neutrophils produce intracellular precursors by using DNA, histones, and granular and cytoplasmic proteins and then spread the mature form of NETs out around themselves
  • A series of these events is called NETosis.
  • neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 3, lactoferrin, gelatinase, lysozyme C, calprotectin, neutrophil defensins, and cathelicidins
  • innate immune response against infection
  • Neutrophils are the most abundant type of granulocytes, comprising 40–70% of all white blood cells
  • two types of NEToses, suicidal (or lytic) NETosis and vital NETosis
  • Suicidal NETosis mainly depends on the production of reactive oxygen species (ROS)
  • Since neutrophils die during this process, it is called suicidal NETosis.
  • vital NETosis
  • vital NETosis occurs independently of ROS production
  • Vital NETosis can be induced by Gram-negative bacteria. LPS
  • NETs are present in a variety of cancers, such as lung cancer, colon cancer, ovarian cancer, and leukemia
  • neutrophils actively undergo NETosis in the tumor microenvironment
  • Hypoxia
  • NETosis plays a pivotal role in noninfectious autoimmune diseases,
  • cytokines
  • tumor-derived proteases
  • tumor exosomes
  • NETosis generally actively progresses in the tumor microenvironment.
  • the proliferative cytokines TGFβ and IL-10 and the angiogenic factor VEGF are representative of neutrophil-derived tissue repair proteins.
  • NETosis is a defense system to protect the body from invading pathogens
  • when neutrophils are excessively stimulated, they produce excess NETs, thereby leading to pathological consequences
  • plasma levels of NETosis markers are elevated after major surgeries
  • local invasion, intravasation into the blood or lymphatic vessels, escape from the immune system, anchoring to capillaries in target organs, extravasation into the organs, transformation from dormant cells to proliferating cells, colonization to micrometastases, and growth to macrometastases
  • NETs promote metastasis at multiple steps
  • NETs loosen the ECM and capillary wall to promote the intravasation of cancer cells
  • NETs and platelets wrap CTCs, which protects them from attack by immune cells and shearing force by blood flow
  • NETs promote the local invasion of cancer cells by degrading the extracellular matrix (ECM)
  • neutrophil elastase, matrix metalloproteinase 9, and cathepsin G
  • NETs also promote the intravasation of cancer cells
  • millions of tumor cells are released into the circulation every day,
  • NETs can wrap up CTCs with platelets
  • β1-integrin plays an important role in the interaction between CTCs and NETs
  • NET-platelet-CTC aggregates.
  • After metastasizing to distant tissues, tumor cells are often found to remain dormant for a period of time and unexpectedly regrow late
  • NETs are believed to participate in the reactivation of dormant cancer cells in metastatic regions
  • NET-associated proteases NE and MMP-9 were found to be responsible for the reactivation of dormant cancer cells
  •  
    Surgery induced metastasis: it is real and steered by NETosis.
Nathan Goodyear

Update on Programmed Death-1 and Programmed Death-Ligand 1 Inhibition in the Treatment ... - 0 views

  • Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), the first immune checkpoint receptor to be clinically targeted, is exclusively expressed on the surface of CD4+ and CD8+ T cells in lymphatic tissue and is involved in T-cell regulation, proliferation, and tolerance
  • programmed death-1 (PD-1) immune checkpoint inhibitor antibodies, which restores T-cell effector function and augments the host anti-tumor response by blocking the binding of either programmed death-ligand 1 (PD-L1) and/or PD-L2 to PD-1 receptors
  • lung cancer is the first and second cause of cancer mortality in men and women
  • ...1 more annotation...
  • Eighty-five percent of lung cancers are non-small-cell lung cancer (NSCLC)
  •  
    To read update article on PD-1 and immunotherapy.
Nathan Goodyear

Chemotherapy induces tumor immune evasion by upregulation of programmed cell ... - 0 views

  • upregulation of glycolysis in cancer cells, with subsequent exhaustion of glucose in the microenvironment, leading to the death of T cells from starvation
  • PD‐L1 expression promotes the production of interleukin 10, a cytokine involved in the death of activated T cells
  • PD‐L1 expression in tumor tissue might lead to T‐cell exhaustion and unresponsiveness
  • ...1 more annotation...
  • PD‐L1 on cancer cells could induce T‐cell apoptosis through
  •  
    Chemotherapy found to increase PD-L1 expression in vitro and in vivo studies.
Nathan Goodyear

Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cr... - 0 views

  •  
    Cannabidiol (CBD) induces cancer cell apoptosis in human cell culture.
Nathan Goodyear

Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde... - 0 views

  • Hydroxyl radicals cause oxidative damage to cells because they unspecifically attack biomolecules [22] located less than a few nanometres from its site of generation and are involved in cellular disorders such as neurodegeneration [23, 24], cardiovascular disease [25], and cancer [26, 27].
  • It is generally assumed that in biological systems is formed through redox cycling by Fenton reaction, where free iron (Fe2+) reacts with hydrogen peroxide (H2O2) and the Haber-Weiss reaction that results in the production of Fe2+ when superoxide reacts with ferric iron (Fe3+)
  • other transition-metal including Cu, Ni, Co, and V can be responsible for formation in living cells
  • ...20 more annotations...
  • The hydroperoxyl radical () plays an important role in the chemistry of lipid peroxidation
  • The is a much stronger oxidant than superoxide anion-radical
  • Lipid peroxidation can be described generally as a process under which oxidants such as free radicals or nonradical species attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs) that involve hydrogen abstraction from a carbon, with oxygen insertion resulting in lipid peroxyl radicals and hydroperoxides as described previously
  • under medium or high lipid peroxidation rates (toxic conditions) the extent of oxidative damage overwhelms repair capacity, and the cells induce apoptosis or necrosis programmed cell death
  • The overall process of lipid peroxidation consists of three steps: initiation, propagation, and termination
  • Once lipid peroxidation is initiated, a propagation of chain reactions will take place until termination products are produced.
  • The main primary products of lipid peroxidation are lipid hydroperoxides (LOOH)
  • Among the many different aldehydes which can be formed as secondary products during lipid peroxidation, malondialdehyde (MDA), propanal, hexanal, and 4-hydroxynonenal (4-HNE) have been extensively studied
  • MDA has been widely used for many years as a convenient biomarker for lipid peroxidation of omega-3 and omega-6 fatty acids because of its facile reaction with thiobarbituric acid (TBA)
  • MDA is one of the most popular and reliable markers that determine oxidative stress in clinical situations [53], and due to MDA’s high reactivity and toxicity underlying the fact that this molecule is very relevant to biomedical research community
  • 4-HNE is considered as “second toxic messengers of free radicals,” and also as “one of the most physiologically active lipid peroxides,” “one of major generators of oxidative stress,” “a chemotactic aldehydic end-product of lipid peroxidation,” and a “major lipid peroxidation product”
  • MDA is an end-product generated by decomposition of arachidonic acid and larger PUFAs
  • Identifying in vivo MDA production and its role in biology is important as indicated by the extensive literature on the compound (over 15 800 articles in the PubMed database using the keyword “malondialdehyde lipid peroxidation” in December 2013)
  • MDA reactivity is pH-dependent
  • When pH decreases MDA exists as beta-hydroxyacrolein and its reactivity increases
  • MAA adducts are shown to be highly immunogenic [177–181]. MDA adducts are biologically important because they can participate in secondary deleterious reactions (e.g., crosslinking) by promoting intramolecular or intermolecular protein/DNA crosslinking that may induce profound alteration in the biochemical properties of biomolecules and accumulate during aging and in chronic diseases
  • MDA is an important contributor to DNA damage and mutation
  • This MDA-induced DNA alteration may contribute significantly to cancer and other genetic diseases.
  • Dietary intake of certain antioxidants such as vitamins was associated with reduced levels of markers of DNA oxidation (M1dG and 8-oxodG) measured in peripheral white blood cells of healthy subjects, which could contribute to the protective role of vitamins on cancer risk
  • 4-HNE is an extraordinarily reactive compound
  •  
    Great review of lipid peroxidation
Nathan Goodyear

NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond - PMC - 0 views

  • Pneumonia is a typical symptom of COVID-19 infection, while acute respiratory distress syndrome (ARDS) and multiple organ failure are common in severe COVID-19 patients
  • NETs are important for preventing pathogen invasion, their excessive formation can result in a slew of negative consequences, such as autoimmune inflammation and tissue damage
  • SARS-CoV-2 infection has also been linked to increased neutrophil-to-lymphocyte ratios, which is associated with disease severity and clinical prognosis
  • ...40 more annotations...
  • NETosis is a special form of programmed cell death in neutrophils, which is characterized by the extrusion of DNA, histones, and antimicrobial proteins in a web-like structure known as neutrophil extracellular traps (NETs)
    • Nathan Goodyear
       
      Definition
  • increased generation of reactive oxygen species (ROS) is a crucial intracellular process that causes NETosis
  • Another indirect route of SARS-CoV-2-induced NET production is platelet activation
  • When NETs are activated in the circulation, they can also induce hypercoagulability and thrombosis
  • In COVID-19, major NET protein cargos of NETs (i.e., NE, MPO, and histones) are significantly elevated.
  • SARS-CoV-2 can also infect host cells through noncanonical receptors such as C-type lectin receptors
  • Immunopathological manifestations, including cytokine storms and impaired adaptive immunity, are the primary drivers behind COVID-19, with neutrophil infiltration being suggested as a significant cause
  • NETosis and NETs are increasingly recognized as causes of vascular injury
  • SARS-CoV-2 and its components (e.g., spike proteins and viral RNA) attach to platelets and increase their activation and aggregation in COVID-19, resulting in vascular injury and thrombosis, both of which are linked to NET formation
    • Nathan Goodyear
       
      Connects SARS-CoV-2 to TLR on Platelets to NETosis to metastasis.
  • NET formation may be caused by activated platelets rather than SARS-CoV-2 itself
  • NETosis, leading to aberrant immunity such as cytokine storms, autoimmune disorders, and immunosuppression.
  • early bacterial coinfections were more prevalent in COVID-19 patients than those infected with other viruses
  • NETosis and NETs may also have a role in the development of post COVID-19 syndromes, including lung fibrosis, neurological disorders, tumor growth, and worsening of concomitant disease
    • Nathan Goodyear
       
      NETosis-> tumor growth
  • NETs and other by-products of NETosis have been shown to act as direct inflammation amplifiers. Hyperinflammation
  • “cytokine storm”
  • SARS-CoV-2 drives NETosis and NET formation to allow for the release of free DNA and by-products (e.g., elastases and histones). This may trigger surrounding macrophages and endothelial cells to secrete excessive proinflammatory cytokines and chemokines, which, in turn, enhance NET formation and form a positive feedback of cytokine storms in COVID-19
    • Nathan Goodyear
       
      Cycle of hyperinflammation
  • NET release enables self-antigen exposure and autoantibody production, thereby increasing the autoinflammatory response
  • patients with COVID-19 who have higher anti-NET antibodies are more likely to be detected with positive autoantibodies [e.g., antinuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA)]
  • COVID-19 NETs may act as potential inducers for autoimmune responses
  • have weakened adaptive immunity as well as a high level of inflammation
    • Nathan Goodyear
       
      Immunomodulation
  • tumor-associated NETosis and NETs promote an immunosuppressive environment in which anti-tumor immunity is compromised
  • NETs have also been shown to enhance macrophage pyroptosis in sepsis
  • facilitating an immunosuppressive microenvironment
  • persistent immunosuppression may result in bacterial co-infection or secondary infection
  • can enhance this process by interacting with neutrophils through toll-like receptor 4 (TLR4), platelet factor 4 (PF4), and extracellular vesicle-dependent processes
  • NET-induced immunosuppression in COVID-19 in the context of co-existing bacterial infection
  • Following initial onset of COVID-19, an estimated 50% or more of COVID-19 survivors may develop multi-organ problems (e.g., pulmonary dysfunction and neurologic impairment) or have worsening concomitant chronic illness
  • NETs in the bronchoalveolar lavage fluid of severe COVID-19 patients cause EMT in lung epithelial cells
  • decreased E-cadherin (an epithelial marker) expression
    • Nathan Goodyear
       
      Leads to emt
  • COVID-19 also has a long-term influence on tumor progression
  • Patients with tumors have been shown to be more vulnerable to SARS-CoV-2 infection and subsequent development of severe COVID-19
  • patients who have recovered from COVID-19 may have an increased risk of developing cancer or of cancer progression and metastasis
  • awaken cancer cells
  • NETs have been shown to change the tumor microenvironment
  • enhance tumor progression and metastasis
  • vitamin C has been tested in phase 2 clinical trials aimed at reducing COVID-19-associated mortality by reducing excessive activation of the inflammatory response
  • vitamin C is an antioxidant that significantly attenuates PMA-induced NETosis in healthy neutrophils by scavenging ROS
  • vitamin C may also inhibit NETosis and NET production in COVID-19
  • Metformin
  • Vitamin C
  •  
    NETosis intimately involved in progressive COVID, long COVID, autoimmunity, and cancer
Nathan Goodyear

Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for No... - 0 views

  • the lack of immunologic control is recognized as a hallmark of cancer currently
  • Programmed death-1 (PD-1) and its ligand PD-L1 play a key role in tumor immune escape and the formation of tumor microenvironment, closely related with tumor generation and development
  • Blockading the PD-1/PD-L1 pathway could reverse the tumor microenvironment and enhance the endogenous antitumor immune responses.
  • ...4 more annotations...
  • environmental factors, living habits, genetic mutations, dysfunction of the immune system and so on
  • special tumor immune microenvironment
  • cytotoxic T lymphocyte-associated antigen 4 (CLTA-4), Programmed death-1 (PD-1) and its ligands PD-L1 (B7H1) and PD-L2 (B7-DC)
  • CTLA-4 regulates T cell activity in the early stage predominantly, and PD-1 mainly limits the activity of T-cell in the tumor microenvironment at later stage of tumor growth
  •  
    PD-1 to read.
Nathan Goodyear

Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cr... - 0 views

  •  
    CBD induces endoplasmic reticulum stress and, subsequently, inhibits AKT and mTOR signaling through non-CBD receptor mechanism inducing apoptosis and autophagy.
1 - 19 of 19
Showing 20 items per page