Skip to main content

Home/ Dr. Goodyear/ Group items tagged primary androgen deprivation therapy

Rss Feed Group items tagged

Nathan Goodyear

Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy - 0 views

  • Additional studies have similarly found that prostate tissue levels of DHT in PCa patients treated with ADT therapy before prostatectomy declined by only ∼75% versus declines of ∼95% in serum levels
  • In a recent study in healthy men, treatment for 1 month with a GnRH antagonist to suppress testicular androgen synthesis caused a 94% decline in serum testosterone, but only a 70–80% decline in prostate tissue testosterone and DHT
  • progression to CRPC was associated with increased intratumoral accumulation or synthesis of testosterone.
  • ...9 more annotations...
  • the intraprostatic synthesis of testosterone from adrenal-derived precursors likely accounts for the relatively high testosterone levels in prostate after ADT
  • In addition, AR activity in these cells is likely further enhanced by multiple mechanisms that sensitize AR to low levels of androgens
  • higher affinity ligand DHT (approximately eightfold higher affinity
  • type 2 5α-reductase (SRD5A2) being the major enzyme in prostate
  • reduce DHT to 5α-androstane-3α,17β-diol (3α-androstanediol; Ji et al. 2003, Rizner et al. 2003), which is then glucuronidated to form 3α-androstanediol glucuronide by the enzymes UDP glycosyltransferase 2, B15 (UGT2B15) or UGT2B17
  • DHT in prostate is inactivated by the enzyme AKR1C2, which is also termed 3α-hydroxysteroid dehydrogenase type 3 (3α-HSD type 3
    • Nathan Goodyear
       
      The metabolite 3-alpha androstanediol is NOT inactive as this author states.  This DHT metabolite actually can stimulate  ER alpha receptors in the prostate.
  • AKR1C1, is also expressed in prostate. However, in contrast to AKR1C2, it converts DHT primarily to 5α-androstane-3β,17β-diol (3β-androstanediol; Steckelbroeck et al. 2004), which is a potential endogenous ligand for the estrogen receptor β
  • Significantly, intraprostatic testosterone levels were not substantially reduced relative to controls with normal serum androgen levels, although DHT levels were reduced to 18% of controls
  • testosterone levels in many of the CRPC samples were actually increased relative to control tissues (Montgomery et al. 2008). While DHT levels were less markedly increased, this may have reflected DHT catabolism
  •  
    This article discusses the failure of androgen deprivation therapy and prostate cancer.  This failure is quite common.  The authors point to alpha-DHT as the primary mechanism through AR stimulation.  However, we know that DHT metabolites also stimulate estrogen receptors.
Nathan Goodyear

Effectiveness of Primary Androgen-Deprivation Therapy for Clinically Localized Prostate... - 0 views

  •  
    No benefit from Primary androgen deprivation therapy in localized prostate cancer.
1 - 2 of 2
Showing 20 items per page