Skip to main content

Home/ RIS IB Biology/ Group items tagged dna

Rss Feed Group items tagged

nidthamsirisup

Mysterious Noncoding DNA: 'Junk' or Genetic Power Player? | PBS NewsHour - 0 views

  • Genes represent only a tiny fraction -- 1 percent -- of our overall genetic material. Then there's the other 99 percent of our DNA -- the stuff that doesn't make protein
  • Researchers have found that some of this noncoding DNA is in fact essential to how our genes function and plays a role in how we look, how we act and the diseases that afflict us.
  • Embedded in this 99 percent is DNA responsible for the mechanics of gene behavior: regulatory DNA. Greg Wray of Duke University's Institute for Genome Sciences and Policy describes the regulatory DNA as the software for our genes, a set of instructions that tells the genome how to use the traditional coding genes.
  • ...5 more annotations...
  • "It's like a recipe book," Wray said. "It tells you how to make the meal. You need to know the amounts. You need to know the order. The noncoding DNA tells you how much to make, when to make it and under what circumstances."
  • common diseases are probably more influenced by regulatory differences, Harismendy said. These include Type 2 diabetes, Crohn's disease, Alzheimer's Disease and a variety of cancers, including breast, colon, ovarian, prostate and lung.
  • According to Wray, research has shown that diseases like bipolar syndrome and clinical depression may be associated with noncoding mutations that determine whether the brain is producing too much or not enough of a particular neurotransmitter. One noncoding mutation gives a person almost complete protection against the nasty malaria parasite, plasmodium vivax.
  • Another piece of noncoding DNA regulates the enzyme responsible for lactose tolerance, the ability to digest milk. Research by Wray and other scientists has shown that in four populations where dairy consumption is a vital part of the diet, new mutations have appeared that essentially keep the gene that produces the lactase enzyme from switching off.
  • And recent research done by evolutionary biologists suggests that differences in regulatory DNA may represent a major part of what separates us from chimpanzees.
Nitchakan Chaiprukmalakan

Hoogsteen base pairs: An alternate structure in DNA - 0 views

  • This discovery, made by a team of researchers from the University of Michigan (USA) and the University of California, Irvine (USA) and published in the journal Nature January 26, 2011 [Transient Hoogsteen base pairs in canonical duplex DNA] involves a new capability of nuclear magnetic resonance (NMR) machines and something most people have never heard of (including me): Hoogsteen base pairs.
  • It was discovered by the biologist Karst Hoogsteen in 1963. In effect, the Hoogsteen base pair is a ‘normal’ Watson-Crick base pair (usually A-T) flipped-over like an upside-down step on a ladder.
  • It changes the geometry and allows for truly exotic formations such as a triple helix or even quadruplex structures.
  • ...4 more annotations...
  • Hoogsteen base pairs were known to exist primarily in RNA and had been observed in DNA only when there was damage to the DNA structure, or something else like a protein or drug was bound to it.
  • In RNA the Hoogsteen base pairs have been studied fairly extensively. They are considered an “excited state” and are useful to observe unusual protein binding. In DNA the Hoogsteen base pairing, which by the way has two forms, normal and reverse, was considered an anomaly.
  • It was discovered that normal DNA undergoes these shifts about 1% of the time and they last only milliseconds.
  • “Together, these data suggest that there are multiple layers of information stored in the genetic code.” Because critical interactions between DNA and proteins are thought to be directed by both the sequence of bases and the flexing of the DNA molecule, these excited states represent a whole new level of information contained in the genetic code.
Nitchakan Chaiprukmalakan

New study: Tracking proteins that repair DNA - 0 views

  • DNA damage could be caused by many things including toxins, radiation, or a failure in molecular chemistry. If it happens in one cell, the damage may do nothing, or at worse cause the cell to die. If damage occurs in a reproductive cell (a zygote) it can be an inherited mutation; the consequences of which can go on for generations
  • The DNA repair workers are (so far as we know) protein molecules.
  • Under microscopic observations it was seen that the UvrA protein randomly jumps from one DNA molecule to the next, staying about 7 seconds before moving on. However, when UvrA formed a complex with two UvrB molecules (UvrAB), the search became more sophisticated and slower. The complex would slide along the DNA strand for as long as 40 seconds before moving to another molecule. Sometimes it was observed that the UvrAB motion would ‘pause,’ apparently checking for structural abnormalities that might indicate DNA damage.
  • ...1 more annotation...
  • It’s assumed the protein complex is analyzing, but the mechanism of analysis is unknown. It’s also unknown if the UvrAB complex (or similar complex) actually does the repair, or if it signals for some other protein complex(es) to make the repair.
Paige Prescott

DNA The Code of Life | The Language of Life | deCODEme - 4 views

  • Genes are especially important segments of DNA that directly influence one or more traits. They are relatively small segments of chromosomes, where the sequence of DNA nucleotides encodes a recipe for making a protein. Small differences in the sequence of DNA nucleotides of a particular gene can lead to differences in the structure and behavior of the proteins they encode. It is these differences, in turn, that account for the variable characteristics of the people around you.
  •  
    deCodeMe is a private company that sells DNA technology
Sasicha Manupipatpong

Identical DNA codes discovered in different plant species - 2 views

  • found identical sequences of DNA located at completely different places on multiple plant genomes
  • Although the scientists found identical sequences between plant species, just as they did between animals, they suggested the sequences evolved differently.
  • find identical sequences in plant DNAs
  • ...9 more annotations...
  • identical sections weren't found at the same points
  • genomes of six animals (dog, chicken, human, mouse, macaque and rat)
  • six plant species (Arabidopsis, soybean, rice, cottonwood, sorghum and grape)
  • found long strings of identical code in different species of animals' DNA
  • expect to see convergent evolution, but we don't
  • Plants and animals are both complex multi-cellular organisms that have to deal with many of the same environmental conditions, like taking in air and water and dealing with weather variations, but their genomes code for solutions to these challenges in different ways
  • could help in the development of new medicines
  • used to find identical sequential patterns in an organism's entire set of proteins
  • lead to finding new targets for existing drugs or studying these drugs' side effects
  •  
    A computer algorithm found identical sequences of DNA in different places of various plant species' genomes. The same has been found in animals. This could prove to be beneficial in the development of new medicines (for testing drug side effects).
wasin kusakabe

Direct transfer of plant genes from chloroplasts into the cell nucleus: Gene function p... - 0 views

  • Chloroplasts, the plant cell's green solar power generators, were once living beings in their own right.
  • This changed about one billion years ago, when they were swallowed up but not digested by larger cells.
  • either direct transport in the form of DNA fragments from the chloroplasts to the nucleus or transport in the form of mRNA, which is then transcribed back into DNA.
  • ...5 more annotations...
  • Genes consist of several modules, separated by non-coding DNA regions (introns).
  • Since the introns obstruct protein synthesis, they need to be removed from the mRNA, a procedure described as splicing.
  • t is thought that the introns even help the splicing enzymes by folding themselves into stable RNA structures, thus directing the enzymes to the right locations.
  • It was found that the transfer takes place without the involvement of RNA and that the DNA apparently jumps directly from the cell's chloroplasts into its nucleus.
    • wasin kusakabe
       
      The Chloroplasts was an different entity before they were swallowed up by larger cells to corporate with each other.
  •  
    The differences between the genes in the chloroplasts and the genes in the nucleus being researched.
wasin kusakabe

Athletic frogs have faster-changing genomes - 0 views

    • wasin kusakabe
       
      Physical activities can change the DNA sequence which can be passed on to later generations. However this has only been tested on frogs and may not apply to mammals like us.
  • athletic frogs tended to have faster-changing genomes.
  • Stretches of DNA accumulate changes over time
  • ...3 more annotations...
  • Physically fit frogs have faster-changing genomes
  • During exercise, the circulatory system provides blood and oxygen to the tissues that are needed most
  • When physical activity has stopped, the rush of blood and oxygen when circulation is restored to those tissues produces a burst of free radicals that can cause wear and tear on DNA, eventually causing genetic changes that -- if they affect the DNA of cells that make eggs or sperm -- can be passed to future generations.
wasin kusakabe

Deep sequencing reveals potentially toxic, trade-restricted ingredients in some traditi... - 1 views

  • DNA sequencing technology to reveal the animal and plant composition
  • of traditional Chinese medicines
  • These plants contain chemicals that can be toxic if the wrong dosage is taken, but none of them actually listed concentrations on the packaging.”
  • ...5 more annotations...
  • estricted animals that are classified as vulnerable, endangered, or critically endangered, including the Asiatic black bear and Saiga antelope.”
  • multiple samples that contained DNA from animals listed as trade-restricted
  • mislabelling of TCMs
  • including animal DNA and potential allergens such as soy or nuts.
    • wasin kusakabe
       
      Traditional Chinese Medicines have incorrect labeling, which may lead to allergic reaction or crossing religious restrictions.
  •  
    Traditional Chinese Medicines' ingredients revealed by DNA sequencing to be potentially toxic.
nidthamsirisup

Epigenetics: DNA Isn't Everything - 0 views

  • Research into epigenetics has shown that environmental factors affect characteristics of organisms. These changes are sometimes passed on to the offspring.
  • A certain laboratory strain of the fruit fly Drosophila melanogaster has white eyes. If the surrounding temperature of the embryos, which are normally nurtured at 25 degrees Celsius, is briefly raised to 37 degrees Celsius, the flies later hatch with red eyes.
  • crossed the flies for six generations. In this experiment, they were able to prove that the temperature treatment changes the eye colour of this specific strain of fly, and that the treated individual flies pass on the change to their offspring over several generations. However, the DNA sequence for the gene responsible for eye colour was proven to remain the same for white-eyed parents and red-eyed offspring.
  • ...7 more annotations...
  • Epigenetics examines the inheritance of characteristics that are not set out in the DNA sequence.
  • important factors are the histones, a kind of packaging material for the DNA, in order to store DNA in an ordered and space-saving way. It is now clear that these proteins have additional roles to play. Depending on the chemical group they carry, if they are acetylated or methylated, they permanently activate or deactivate genes.
  • New methods now allow researchers to sometimes directly show which genes have been activated or deactivated by the histones
  • The genetic information of the DNA is passed on along with the relevant epigenetic information for the respective cell type.
  • A similar question remains for the inheritance of the epigenetic characteristics from parents to offspring. They now know that when the gametes are formed, certain epigenetic markers remain and are passed on to the offspring. The questions, which are currently being researched, are how much and which part of the epigenetic information is preserved and subsequently inherited.
  • Diet and epigenetics appear to be closely linked. The most well known example is that of the Agouti mice: they are yellow, fat and are prone to diabetes and cancer. If Agouti females are fed with a cocktail of vitamin B12, folic acid and cholin, directly prior to and during pregnancy, they give birth to mainly brown, slim and healthy offspring. They in turn mainly have offspring similar to themselves.
  • Environmental factors, which change the characteristics of an individual and are then passed on to its offspring, do not really fit into Darwin’s theory of evolution. According to his theory, evolution is the result of the population and not the single individual. “Passing on the gained characteristics fits more to Lamarck’s theory of evolution”, says Paro.
chanon chiarnpattanodom

Cancer epigenetics takes center stage - 1 views

    • chanon chiarnpattanodom
       
      DNA methylation is a chemical process where a methyl group is added on either the cytosine ring or the adenine ring, used in "higher leveled" organisms. Important in cell differentiation since methylation will cause cells to "remember" and remain differenciated instead of expressing other genes. 
  • Epigenetics is defined as modifications of the genome, heritable during cell division, that do not involve a change in the DNA sequence.
  • Epigenetic alterations in cancer include global hypomethylation
  • ...18 more annotations...
  • the promoters of housekeeping genes that are generally protected from methylation.
  • may lead to aberrant silencing of tumor suppressor genes
  • discovered loss of imprinting (LOI) in cancer
  • Genomic imprinting, the subject of the report by Nakagawa et al. (2), is an epigenetic modification of a specific parental allele of a gene, or the chromosome on which it resides, in the gamete or zygote, leading to differential expression of the two alleles of the gene in somatic cells of the offspring.
  • we found that LOI can occur in the normal colonic mucosa of colorectal cancer patients with LOI in their tumors
  • This LOI was linked to cases showing microsatellite instability (MSI) in the tumors
  • However, these patients do not have mutations in mismatch repair genes
  • One potential cause of MSI in these sporadic cancers is hypermethylation and epigenetic silencing of the hMLH1 mismatch repair gene
  • Nakagawa et al. (2) now confirm the original study of Cui et al. that LOI occurs in both tumor and normal tissue of patients
  • The present study (2) also offers an intriguing mechanistic hypothesis to explain the relationship between H19 DMR methylation and LOI in these patients
  • Nevertheless, the study calls attention to this remarkable highly conserved multifunctional protein,
  • The potential link to CTCF suggested by this study also calls our attention to the link among DNA methylation, epigenetics, and chromatin.
  • A clue to the link between MSI and epigenetics may be provided by another sometimes overlooked common thread in epigenetics, namely DNA replication
  • repeat-induced gene silencing is thought to be propagated through hemimethylated intermediates during DNA replication
  • The studies of Cui et al. (11), Nishihara et al. (20), and Nakagawa et al. (2) suggest a new and provocative view of the timing of epigenetic changes in cancer.
  • Studies of transgenic mice with constitutive biallelic expression of IGF2, comparable to LOI, show reduced apoptosis and increased tumor formation
  • I conclude by noting that the distinction between cancer genetics and epigenetics has blurred considerably in recent years
  • Many conventional “genetic” mechanisms directly affect proteins that regulate chromatin,
Paige Prescott

Old Cancer Drugs Offer New Tricks - Science News - 0 views

  • Drugs that alter some chemical tags on DNA make cancer cells behave more like normal cells
  • And the drugs seem to make cancer cells more susceptible to chemotherapy and attacks from the immune system.
  • drugs called azacitidine and decitabine, when used in low doses, change gene activity in leukemia and breast cancer cells in the lab. If DNA is a cell’s hard drive, then chemical tags attached to the DNA or DNA-packaging proteins called histones serve as software packages to tell the hard drive how to function. This type of chemical programming is called epigenetics.
Sea Maskulrath

The Ice Age Elephant - Mammuthus primigenius | Scitech | The Earth Times - 0 views

  • preserved remains of a shaggy monster that lived in Siberia at -40°C 10,000 years ago have been uncovered;
  • The frozen and p
  • Only microscopic amounts of DNA are left on the skeletons, including all the bacteria that lived on the animals. No usable DNA is therefore often found in bone, but mammoth hair is plentiful. Shampooed and bleached and digested, the hair, even at 18,000 years old, can have 90% of the DNA left. The genome shows 4 different "races" of this species. Research has also shown the recreated blood of mammoth. It doesn't decrease its oxygen capacity at the low temperatures the mammoth had to endure. That increased oxygen-offloading ability was one of the essential physiological changes evolved especially for this species, just like the Yuka kidney.
  • ...2 more annotations...
  • reserved remains of a shaggy monster that lived in Siberia at -40°C 10,000 years ago have been uncovered;
  • Cloning the mammoth has been an aim of Japanese scientists for several years. They discovered almost intact bone marrow from a thigh bone in Yakutsk and hope to use a female elephant for what is obviously more than a simple experiment within the next 5 years.
  •  
    The return of the giant, not a long wait :) 
Paige Prescott

deCODEme - Empowering prevention. Calculate genetic risk for diseases, DNA research for... - 0 views

  •  
    a company that sells DNA technology and genetic screening.
Nitchakan Chaiprukmalakan

Missing Lincs - Science News - 6 views

    • Nitchakan Chaiprukmalakan
       
      Scientists are finding more information about the importance of the non coding RNAs, lincRNAs.
  • Only now have scientists begun identifying the previously invisible contractors who make sure that materials get where they are supposed to be and in the right order to build a human being or any other creature. Some of these little-known workers belong to a class of molecules called long intergenic noncoding RNAs.
  • And the lincRNAs originate in what scientists used to view as barren wastelands between protein-coding genes. But new research is showing that these formerly underappreciated workers have important roles in projects both large and microscopic.
  • ...16 more annotations...
  • In the last few years, scientists have learned that lincRNAs, as well as other RNAs that are long and noncoding but not intergenic, perform a variety of jobs. Some serve as guides showing proteins where to go, while others tether proteins to different types of RNA, or to DNA. Some work as decoys, distracting regulatory molecules from their usual assignments. Some may even have multiple roles, all the while chattering away to other RNA within cells. (It is not idle gossip; RNA communication within cells may ward off diseases such as cancer.) And as the ultimate multitaskers, lincRNAs keep proper cellular development ticking along and help define what makes mice mice and people people.
  • That archive contains about 3 billion genetic letters, far more than the genomes of less complex organisms such as roundworms and fruit flies.
  • In 2005, the research revealed that even though genes that code for proteins make up only 1.5 percent of the mouse genome, more than 63 percent of the genome’s DNA is copied into RNA. In humans the number is even higher, with up to 93 percent of the genome made into RNA, even though protein-coding genes make up less than 2 percent of the genome.
  • At first, many scientists didn’t know what to make of the excess RNA. Some thought it was overexuberance on the part of the DNA-copying machinery. But gradually researchers began to realize that many of those extra RNAs had important jobs to do.
  • Some, though, appear to act like general contractors — not hammering in the nails and pouring the foundations of cells themselves, but dictating how the job should be done.
  • One of the most famous long noncoding RNAs, known as XIST, is also one of the most hands-on. XIST is in charge of shutting down one of the X chromosomes in every single cell of women and girls
  • XIST doesn’t have a long commute to work; it coats whichever X chromosome makes it, preventing other genes on the chromosome from being activated
  • One of the most well-studied linc­RNAs, named HOTAIR, wasn’t lucky enough to get a job close to home. It is copied from DNA on chromosome 12 but has to travel to chromosome 2 to shut down several genes in a group known as the HOXD cluster, genes important for proper development of an organism
  • Not only does HOTAIR help direct development, but it is also important throughout life to help cells pinpoint their location in the body.
  • Whether promoting health or mis­directing cells, lincRNAs don’t necessarily act alone.
  • A lincRNA known as HOTTIP also works with a crew of histone modifiers, but instead of shuttering genes, HOTTIP’s crews hang grand-opening signs to attract gene-activating machinery
  • In the recipe for humans, lincRNAs are in the thick of things from the very beginning. At least 26 different lincRNAs need to be on to keep an embryonic stem cell a stem cell
  • Just how lincRNAs choose which genes to turn on and off isn’t yet known. But Pier Paolo Pandolfi, a geneticist at Beth Israel Deaconess and Harvard Medical School, suspects that the lincRNAs are whispering to each other and to other RNAs, keeping tabs on all a cell’s goings-on. Pandolfi laid out his hypothesis for how this chatter might help control protein production and other processes in the Aug. 5 Cell.
  • The Columbia team and Pandolfi’s team independently found that tweaking levels of a few messenger RNAs that distract microRNAs from PTEN messenger RNA can lead to prostate cancer or a type of brain tumor called glioblastoma. Just messing with levels of a messenger RNA from another gene known as ZEB2 throws off PTEN protein levels and can lead to melanoma in mice, Pandolfi’s group reported in another paper in the Oct. 14 Cell.
  • Losing one noncoding RNA may be disastrous for a cell, but for want of noncoding RNAs whole species may never have evolved, argues Queensland’s Mattick. He and others say the real function of lincRNAs is to give evolution a sort of molecular clay from which to mold new designs.
  • Humans have several lincRNAs that are found in no other species. Many of those RNAs are made in the brain, leading scientists to speculate that the molecules may be at least partially responsible for that important organ’s evolution.
  •  
    Is RNA the most important molecule in the cell? There is a lot of evidence leading to new understandings of RNA and it's role in many different mechanisms within a cell.
Sea Maskulrath

Changes in gene expression causes high BP in pregnancy - 1 views

  • Washington: Researchers have discovered that changes in the gene expression of a key enzyme may contribute to high blood pressure and increase susceptibility to forming blood clots in pregnant women with preeclampsia.
  • Epigenetics refers to changes in gene expression that are mediated through mechanisms other than changes in the DNA sequence.
  • The VCU team reported that thromboxane synthase – an important inflammatory enzyme – is increased in the blood vessels of expectant mothers with preeclampsia.The thromboxane synthase gene codes for this enzyme, which is involved in several processes including cardiovascular disease and stroke. This enzyme results in the synthesis of thromboxane, which increases blood pressure and causes blood clots.
  • ...5 more annotations...
  • According to Walsh, one of the main epigenetic mechanisms is methylation of the DNA, which controls the expression of genes. The increase of
  • his enzyme in the blood vessels is related to reduced DNA methylation and the infiltration of neu
  • enzyme
  • trophils
  • trophils into the blood vessels. Neutrophils are white blood cells that normally help fight infection.
Changul Louis Yeum

Study Says DNA's Power to Predict Illness Is Limited - 0 views

  •  
    The answer, according to a new study of twins, is, for the most part, "no." While sequencing the entire DNA of individuals is proving fantastically useful in understanding diseases and finding new treatments, it is not a method that will, for the most part, predict a person's medical future.
chanon chiarnpattanodom

Parallel Genetic and Phenotypic Evolution of DNA Superhelicity in Experimental Populati... - 0 views

  •  
    Importance of DNA supercoiling affects on E coli's growth, parallel and creating beneficial mutations.
Nickyz P.

It's Alive! Artificial Life Springs From Manmade DNA : Discovery News - 0 views

  • "This is the first synthetic cell that's been made," said Venter. "We call it synthetic because the cell is totally derived from a synthetic chromosome, made with four bottles of chemicals on a chemical synthesizer, starting with information in a computer."
  • Venter and his colleagues created a special code, similar to Morse code, to "write" within the DNA itself. Instead of dots and dashes, they used the sequence of four DNA nucleotides, thymine (T), guanine (G), cytosine (C), and adenine (A), as a code for any letter, number or punctuation mark. Using the code, the team included the names of the study co-authors, a website, and even several philosophical quotes, complete with punctuation.
Sea Maskulrath

Why having sex really IS the best thing to do: Gene mapping finally proves mating is be... - 0 views

  • Why having sex really IS the best thing to do
  • is better for evolution than self-reproduction
  • Having sex allows us to evolve more effectively than species which reproduce without a partner, according to tests that claim to finally prove the long-held theory.
  • ...6 more annotations...
  • cording to the study by the University of Edinburgh.
  • Meanwhile, creatures who reproduce asexually are more likely to be lumbered with disease-causing genes
  • Combining the genes of two parents – rather than one in the case of fruit flies, stick insects and other animals – allows for damaging DNA to be removed within a few generations.
  • h longer, a
  • or muc
  • This is because individuals who inherit healthy genes tend to flourish and pass on their DNA to the next generatio
  •  
    well, I guess SEX is the best way to develop a super human for the future + I know everyone gonna love it :) 
nidthamsirisup

Study suggests why some animals live longer - 1 views

    • nidthamsirisup
       
      A new method to detect proteins associated with longevity which helps further our understanding into why some animals live longer than others.
  • The study, led by Dr. Joao Pedro Magalhaes and postgraduate student, Yang Li, is the first to show evolutionary patterns in biological repair systems in long-lived animals and could, in the future, be used to help develop anti-ageing interventions by identifying proteins in long-lived species that better respond to, for example, DNA damage
  • these species have optimised pathways that repair molecular damage, compared to shorter-lived animals, such as mice
  • ...4 more annotations...
  • found a similar pattern in proteins associated with metabolism, cholesterol and pathways involved in the recycling of proteins
  • Proteins associated with the degradation of damaged proteins, a process that has been connected to ageing, were also linked with the evolution of longevity in mammals.
  • If we can identify the proteins that allow some species to live longer than others we could use this knowledge to improve human health and slow the ageing process.
  • “We developed a method to detect proteins whose molecular evolution correlates with longevity of a species. The proteins we detected changed in a particular pattern, suggesting that evolution of these proteins was not by accident, but rather by design to cope with the biological processes impacted by ageing, such as DNA damage. The results suggest that long-lived animals were able to optimise bodily repair which will help them fend off the ageing process.”
1 - 20 of 56 Next › Last »
Showing 20 items per page