Skip to main content

Home/ RIS IB Biology/ Contents contributed and discussions participated by Nitchakan Chaiprukmalakan

Contents contributed and discussions participated by Nitchakan Chaiprukmalakan

Nitchakan Chaiprukmalakan

How a single gene mutation leads to uncontrolled obesity - 0 views

  • Researchers at Georgetown University Medical Center have revealed how a mutation in a single gene is responsible for the inability of neurons to effectively pass along appetite suppressing signals from the body to the right place in the brain.
  • The research team specifically found that a mutation in the brain-derived neurotrophic factor (Bdnf) gene in mice does not allow brain neurons to effectively pass leptin and insulin chemical signals through the brain. In humans, these hormones, which are released in the body after a person eats, are designed to "tell" the body to stop eating. But if the signals fail to reach correct locations in the hypothalamus, the area in the brain that signals satiety, eating continues.
  • He has found that the gene produces a growth factor that controls communication between neurons.
  • ...5 more annotations...
  • The Bdnf gene generates one short transcript and one long transcript. He discovered that when the long-form Bdnf transcript is absent, the growth factor BDNF is only synthesized in the cell body of a neuron but not in its dendrites. The neuron then produces too many immature synapses, resulting in deficits in learning and memory in mice. Xu also found that the mice with the same Bdnf mutation grew to be severely obese
  • large-scale genome-wide association studies showed Bdnf gene variants are, in fact, linked to obesity.
  • both leptin and insulin stimulate synthesis of BDNF in neuronal dendrites in order to move their chemical message from one neuron to another through synapses. The intent is to keep the leptin and insulin chemical signals moving along the neuronal highway to the correct brain locations, where the hormones will turn on a program that suppresses appetite.
  • "If there is a problem with the Bdnf gene, neurons can't talk to each other, and the leptin and insulin signals are ineffective, and appetite is not modified
  • One possible strategy would be to produce additional long-form Bdnf transcript using adeno-associated virus-based gene therapy, Xu says. But although this kind of gene therapy has proven to be safe, it is difficult to deliver across the brain blood barrier,
Nitchakan Chaiprukmalakan

New study: Tracking proteins that repair DNA - 0 views

  • DNA damage could be caused by many things including toxins, radiation, or a failure in molecular chemistry. If it happens in one cell, the damage may do nothing, or at worse cause the cell to die. If damage occurs in a reproductive cell (a zygote) it can be an inherited mutation; the consequences of which can go on for generations
  • The DNA repair workers are (so far as we know) protein molecules.
  • Under microscopic observations it was seen that the UvrA protein randomly jumps from one DNA molecule to the next, staying about 7 seconds before moving on. However, when UvrA formed a complex with two UvrB molecules (UvrAB), the search became more sophisticated and slower. The complex would slide along the DNA strand for as long as 40 seconds before moving to another molecule. Sometimes it was observed that the UvrAB motion would ‘pause,’ apparently checking for structural abnormalities that might indicate DNA damage.
  • ...1 more annotation...
  • It’s assumed the protein complex is analyzing, but the mechanism of analysis is unknown. It’s also unknown if the UvrAB complex (or similar complex) actually does the repair, or if it signals for some other protein complex(es) to make the repair.
Nitchakan Chaiprukmalakan

Proteins and quantum transition: Instant shape-shifting - 0 views

  • The genetic code in DNA provides the template to manufacture protein into all the cells of an organism.
  • Proteins are made by stringing together amino acids. For general purposes there are twenty amino acids in protein and they can be put together in endless combinations, some in short chains (yeast averages 466 amino acids), some long chains (titins have nearly 27,000 amino acids) and everything in-between. The pattern of amino acids determines much of the functionality of the protein.
  • Proteins are three-dimensional puzzle pieces. They are generally very complicated in shape. Even a small protein of only 100 amino acids can theoretically have 10^100 (ten to the hundredth power) different configurations.
  • ...7 more annotations...
  • most protein reconfigurations occur in nanoseconds
  • In research on proteins, it was assumed (given their chemical composition) proteins would uniformly fold as they cool down and unfold as they heat up. (Think of a balloon expanding and shrinking with the temperature of the air inside.) The experiments didn’t bear this out; the rate of folding or unfolding according to temperature change was unequal (asymmetric) and uneven (nonlinear).
  • In recent biochemistry a great deal of work is done with ‘tagging’ or ‘marking’ molecules with fluorescent and phosphorescent materials. It’s well known that fluorescence and phosphorescence are phenomena closely related to protein folding and they can only be understood in terms of quantum transition between molecules.
  • With a quantum transition, the protein could change configuration by ‘jumping’ – skipping all the transition steps – to the final configuration. They call this quantum folding and they developed a mathematical model that shows how the folding, which is virtually instantaneous, would react to change in temperature.
  • Their quantum transition model matched the folding curves for 15 different proteins and also provides an explanation for the different rates of folding and unfolding among these proteins.
  • Luo and Lu’s paper is short, a mere 16 pdf pages, and the model is unpretentious mathematically. (Luo has several other related papers on arXiv.) It comes from unknown researchers in an unknown corner of the academic world, and it’s published on the open-source arXiv system. The lack of pedigree means that it will take more time than usual for scientists around the world to learn of it, examine it, and possibly test it.
    • Nitchakan Chaiprukmalakan
       
      This is not accepted as a true fact yet and has to be proven.
Nitchakan Chaiprukmalakan

Biotechdaily - Low MicroRNA Activity Characterizes Inflamed Lung Tissues - 0 views

  • A recent study examined the interaction between a specific microRNA (miRNA) and the activity of the inflammatory cytokine interleukin 13 (IL-13).
  • In the current study, investigators at the Cincinnati Children's Hospital Medical Center (Ohio, USA) examined the effect that stimulation of IL-13 activity has on microRNAs, particularly miR-375
  • They reported in the March 28, 2012, online edition of the journal Mucosal Immunology that IL-13 induced changes in epithelial gene and protein expression including the consistent downregulation of miR-375 in IL-13 stimulated human esophageal squamous and bronchial epithelial cells.
  • ...3 more annotations...
  • Analysis of miR-375 levels in a human disease characterized by IL-13 overproduction - the allergic disorder eosinophilic esophagitis (EE) - revealed downregulation of miR-375 in EE patient samples compared with control patients. Low levels of miR-375 expression levels indicated disease activity.
  • “MiR-375 is proof of principle that microRNAs are involved in fine-tuning IL-13-mediated responses, which opens up a set of new possibilities for novel therapeutic targets for treatment of allergic disease.”
  • “The identification of a microRNA that regulates IL-13-induced changes and inflammatory pathways is a significant advancement for the understanding and future treatment of allergic disease,
Nitchakan Chaiprukmalakan

Hoogsteen base pairs: An alternate structure in DNA - 0 views

  • This discovery, made by a team of researchers from the University of Michigan (USA) and the University of California, Irvine (USA) and published in the journal Nature January 26, 2011 [Transient Hoogsteen base pairs in canonical duplex DNA] involves a new capability of nuclear magnetic resonance (NMR) machines and something most people have never heard of (including me): Hoogsteen base pairs.
  • It was discovered by the biologist Karst Hoogsteen in 1963. In effect, the Hoogsteen base pair is a ‘normal’ Watson-Crick base pair (usually A-T) flipped-over like an upside-down step on a ladder.
  • It changes the geometry and allows for truly exotic formations such as a triple helix or even quadruplex structures.
  • ...4 more annotations...
  • Hoogsteen base pairs were known to exist primarily in RNA and had been observed in DNA only when there was damage to the DNA structure, or something else like a protein or drug was bound to it.
  • In RNA the Hoogsteen base pairs have been studied fairly extensively. They are considered an “excited state” and are useful to observe unusual protein binding. In DNA the Hoogsteen base pairing, which by the way has two forms, normal and reverse, was considered an anomaly.
  • It was discovered that normal DNA undergoes these shifts about 1% of the time and they last only milliseconds.
  • “Together, these data suggest that there are multiple layers of information stored in the genetic code.” Because critical interactions between DNA and proteins are thought to be directed by both the sequence of bases and the flexing of the DNA molecule, these excited states represent a whole new level of information contained in the genetic code.
Nitchakan Chaiprukmalakan

Biotechdaily - Human Mitochondrial Mutations Repaired by New Technique - 2 views

  • researchers have identified a generic approach to correct mutations in human mitochondrial DNA by targeting corrective RNAs,
  • In adults, many aging disorders have been associated with defects of mitochondrial function, including diabetes, Parkinson’s disease, cancer, heart disease, stroke, and Alzheimer’s disease.
  • The introduction of nucleus-encoded small RNAs into mitochondria is critical for the replication, transcription, and translation of the mitochondrial genome,
  • ...4 more annotations...
  • The study defined a new role for a protein called polynucleotide phosphorylase (PNPASE) in regulating the import of RNA into mitochondria. Reducing the expression--or output--of PNPASE decreased RNA import, which impaired the processing of mitochondrial genome-encoded RNAs. Reduced RNA processing inhibited the translation of proteins required to maintain the mitochondrial electron transport chain that consumes oxygen during cell respiration to produce energy. With reduced PNPASE, unprocessed mitochondrial-encoded RNAs accumulated, protein translation was inhibited, and energy production was compromised, leading to stalled cell growth.
  • Geng Wang developed a strategy to target and import specific RNA molecules encoded in the nucleus into the mitochondria and, once there, to express proteins needed to repair mitochondrial gene mutations.
  • First, the researchers had to find a way to stabilize the reparative RNA so that it was moved out of the nucleus and then localized to the mitochondrial outer membrane. This was accomplished by modifying an export sequence to direct the RNA to the mitochondrion. Once the RNA was in the area of the transport machinery on the mitochondrial surface, then a second transport sequence was required to direct the RNA into the targeted organelle. With these two modifications, a wide range of RNAs were targeted to and imported into the mitochondria, where they worked to repair defects in mitochondrial respiration and energy production in two different cell line models of human mitochondrial disease.
    • Nitchakan Chaiprukmalakan
       
      This article shows the importance of the RNAs in making proteins for the mitochondria to work efficiently.  The article summarizes a method in repairing the mitochondria that is still being worked on.
Nitchakan Chaiprukmalakan

Missing Lincs - Science News - 6 views

    • Nitchakan Chaiprukmalakan
       
      Scientists are finding more information about the importance of the non coding RNAs, lincRNAs.
  • Only now have scientists begun identifying the previously invisible contractors who make sure that materials get where they are supposed to be and in the right order to build a human being or any other creature. Some of these little-known workers belong to a class of molecules called long intergenic noncoding RNAs.
  • And the lincRNAs originate in what scientists used to view as barren wastelands between protein-coding genes. But new research is showing that these formerly underappreciated workers have important roles in projects both large and microscopic.
  • ...16 more annotations...
  • In the last few years, scientists have learned that lincRNAs, as well as other RNAs that are long and noncoding but not intergenic, perform a variety of jobs. Some serve as guides showing proteins where to go, while others tether proteins to different types of RNA, or to DNA. Some work as decoys, distracting regulatory molecules from their usual assignments. Some may even have multiple roles, all the while chattering away to other RNA within cells. (It is not idle gossip; RNA communication within cells may ward off diseases such as cancer.) And as the ultimate multitaskers, lincRNAs keep proper cellular development ticking along and help define what makes mice mice and people people.
  • That archive contains about 3 billion genetic letters, far more than the genomes of less complex organisms such as roundworms and fruit flies.
  • In 2005, the research revealed that even though genes that code for proteins make up only 1.5 percent of the mouse genome, more than 63 percent of the genome’s DNA is copied into RNA. In humans the number is even higher, with up to 93 percent of the genome made into RNA, even though protein-coding genes make up less than 2 percent of the genome.
  • At first, many scientists didn’t know what to make of the excess RNA. Some thought it was overexuberance on the part of the DNA-copying machinery. But gradually researchers began to realize that many of those extra RNAs had important jobs to do.
  • Some, though, appear to act like general contractors — not hammering in the nails and pouring the foundations of cells themselves, but dictating how the job should be done.
  • One of the most famous long noncoding RNAs, known as XIST, is also one of the most hands-on. XIST is in charge of shutting down one of the X chromosomes in every single cell of women and girls
  • XIST doesn’t have a long commute to work; it coats whichever X chromosome makes it, preventing other genes on the chromosome from being activated
  • One of the most well-studied linc­RNAs, named HOTAIR, wasn’t lucky enough to get a job close to home. It is copied from DNA on chromosome 12 but has to travel to chromosome 2 to shut down several genes in a group known as the HOXD cluster, genes important for proper development of an organism
  • Not only does HOTAIR help direct development, but it is also important throughout life to help cells pinpoint their location in the body.
  • Whether promoting health or mis­directing cells, lincRNAs don’t necessarily act alone.
  • A lincRNA known as HOTTIP also works with a crew of histone modifiers, but instead of shuttering genes, HOTTIP’s crews hang grand-opening signs to attract gene-activating machinery
  • In the recipe for humans, lincRNAs are in the thick of things from the very beginning. At least 26 different lincRNAs need to be on to keep an embryonic stem cell a stem cell
  • Just how lincRNAs choose which genes to turn on and off isn’t yet known. But Pier Paolo Pandolfi, a geneticist at Beth Israel Deaconess and Harvard Medical School, suspects that the lincRNAs are whispering to each other and to other RNAs, keeping tabs on all a cell’s goings-on. Pandolfi laid out his hypothesis for how this chatter might help control protein production and other processes in the Aug. 5 Cell.
  • The Columbia team and Pandolfi’s team independently found that tweaking levels of a few messenger RNAs that distract microRNAs from PTEN messenger RNA can lead to prostate cancer or a type of brain tumor called glioblastoma. Just messing with levels of a messenger RNA from another gene known as ZEB2 throws off PTEN protein levels and can lead to melanoma in mice, Pandolfi’s group reported in another paper in the Oct. 14 Cell.
  • Losing one noncoding RNA may be disastrous for a cell, but for want of noncoding RNAs whole species may never have evolved, argues Queensland’s Mattick. He and others say the real function of lincRNAs is to give evolution a sort of molecular clay from which to mold new designs.
  • Humans have several lincRNAs that are found in no other species. Many of those RNAs are made in the brain, leading scientists to speculate that the molecules may be at least partially responsible for that important organ’s evolution.
1 - 8 of 8
Showing 20 items per page