Skip to main content

Home/ RIS IB Biology/ Group items tagged medicine

Rss Feed Group items tagged

wasin kusakabe

Deep sequencing reveals potentially toxic, trade-restricted ingredients in some traditi... - 1 views

  • DNA sequencing technology to reveal the animal and plant composition
  • of traditional Chinese medicines
  • These plants contain chemicals that can be toxic if the wrong dosage is taken, but none of them actually listed concentrations on the packaging.”
  • ...5 more annotations...
  • estricted animals that are classified as vulnerable, endangered, or critically endangered, including the Asiatic black bear and Saiga antelope.”
  • multiple samples that contained DNA from animals listed as trade-restricted
  • mislabelling of TCMs
  • including animal DNA and potential allergens such as soy or nuts.
    • wasin kusakabe
       
      Traditional Chinese Medicines have incorrect labeling, which may lead to allergic reaction or crossing religious restrictions.
  •  
    Traditional Chinese Medicines' ingredients revealed by DNA sequencing to be potentially toxic.
Sasicha Manupipatpong

Identical DNA codes discovered in different plant species - 2 views

  • found identical sequences of DNA located at completely different places on multiple plant genomes
  • Although the scientists found identical sequences between plant species, just as they did between animals, they suggested the sequences evolved differently.
  • find identical sequences in plant DNAs
  • ...9 more annotations...
  • identical sections weren't found at the same points
  • genomes of six animals (dog, chicken, human, mouse, macaque and rat)
  • six plant species (Arabidopsis, soybean, rice, cottonwood, sorghum and grape)
  • found long strings of identical code in different species of animals' DNA
  • expect to see convergent evolution, but we don't
  • Plants and animals are both complex multi-cellular organisms that have to deal with many of the same environmental conditions, like taking in air and water and dealing with weather variations, but their genomes code for solutions to these challenges in different ways
  • could help in the development of new medicines
  • used to find identical sequential patterns in an organism's entire set of proteins
  • lead to finding new targets for existing drugs or studying these drugs' side effects
  •  
    A computer algorithm found identical sequences of DNA in different places of various plant species' genomes. The same has been found in animals. This could prove to be beneficial in the development of new medicines (for testing drug side effects).
Sasicha Manupipatpong

Gene switches do more than flip 'on' or 'off': Can exhibit much more complex binding be... - 1 views

  • right genes for the job are turned on only in the specific cells where they are needed
  • molecular "clutch" that converts treadmilling to a stable bound state, moving the transcription process forward to completion to turn the gene on
  • act like a switch; they are either "on" (bound to DNA) or "off" (not bound)
  • ...12 more annotations...
  • can exhibit much more complex binding behavior
  • transcription factors' binding process is dynamic and involves more than just being bound or unbound
  • In addition to a stable binding state (on or off)
  • "treadmilling," where no forward transcription process is occurring
  • indicator of whether a gene was turned on or off
  • measure and calculate how long a protein is associated with all of the different genes it regulates
  • proteins that bind in the stable state are associated with high levels of gene transcription
  • if we can regulate the transition between treadmilling and stable binding, we can regulate the outcome in terms of gene expression
  • genetic medicine -- a new way to regulate the 'switches' that turn gene expression associated with disease on or off.
  • measured how long it took the competitor transcription factor to replace the resident protein and used this data to calculate the residence time at each location in the genome
  • specific proteins called "transcription factors" that control which genes are turned on or off in cells by binding to nearby DNA
  • new insights on how cells respond to developmental cues and how they adapt to changing environmental conditions
  •  
    Genes have been discovered to be more complex than we previously thought--rather than having only on and off states, there is an intermediate state called "treadmilling".
1 - 3 of 3
Showing 20 items per page