Skip to main content

Home/ Groups/ OARS funding Engineering
MiamiOH OARS

nsf.gov - Funding - Computational and Data-Enabled Science and Engineering - US Nationa... - 0 views

  •  
    Advanced computational infrastructure and the ability to perform large-scale simulations and accumulate massive amounts of data have revolutionized scientific and engineering disciplines.  The goal of the CDS&E program is to identify and capitalize on opportunities for major scientific and engineering breakthroughs through new computational and data analysis approaches.  The intellectual drivers may be in an individual discipline or they may cut across more than one discipline in various Directorates.  The key identifying factor is that the outcome relies on the development, adaptation, and utilization of one or more of the capabilities offered by advancement of both research and infrastructure in computation and data, either through cross-cutting or disciplinary programs. 
MiamiOH OARS

nsf.gov - Funding - Control Systems - US National Science Foundation (NSF) - 0 views

  •  
    The Control Systems (CS) program supports fundamental research on control theory and control technology driven by real life applications.  The program emphasis is on paradigm-shifting ideas for control strategies that are inspired by nature, unconventional applications, and the combined roles of feedback, feedforward and uncertainty in systems.  The program supports research that advances fundamental understanding, analysis and synthesis of control strategies and tools based on system formulation, assumptions and constraints that are motivated and derived from real-life applications and/or industry needs.  Integration of novel sensing and actuation concepts that combine feedback, communication and signal processing and analysis to achieve a sensing or actuation objectives are also supported.
MiamiOH OARS

http://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=386972/solicita... - 0 views

  •  
    This call for graduate student fellowship applications, entitled NASA Space Technology Research Fellowships (NSTRF) - Fall 2014 (NSTRF14), solicits applications from individuals pursuing or planning to pursue master's (e.g., M.S.) or doctoral (e.g., Ph.D.) degrees in relevant space technology disciplines at accredited U.S. universities. NASA Space Technology Fellows will perform innovative space technology research and will improve America's technological competitiveness by providing the Nation with a pipeline of innovative space technologies.
MiamiOH OARS

nsf.gov - Funding - Research on Education and Learning - US National Science Foundation... - 0 views

  •  
    The Research on Education and Learning (REAL) program represents the substantive foci of three previous EHR programs: Research and Evaluation on Education in Science and Engineering (REESE), Research in Disabilities Education (RDE), and Research on Gender in Science and Engineering (GSE). What is distinctive about the new REAL program is the emphasis placed on the accumulation of robust evidence to inform efforts to (a) understand, (b) build theory to explain, and (c) suggest interventions (and innovations) to address persistent challenges in STEM interest, education, learning, and participation. The program supports advances in research on STEM (science, technology, engineering, and mathematics) learning and education by fostering efforts to explore all aspects of education research from foundational knowledge to improvements in STEM learning and learning contexts, both formal and informal, from childhood through adulthood, for all groups, and from the earliest developmental stages of life through participation in the workforce, resulting in increased public understanding of science and engineering. The REAL program will fund research on, human learning in STEM; learning in STEM learning environments, and broadening participation research.
MiamiOH OARS

https://www.ohiohighered.org/sites/ohiohighered.org/files/uploads/rfp/OMIC_RFP_091813.pdf - 0 views

  •  
    The Board of Regents is seeking high quality, focused cooperative education and internship program proposals from Ohio institutions of higher education and their partners. This program has been funded  through one-time casino licensing fees; it is expected that the funds will be awarded to build systems to sustain co-ops and internships beyond the direct investment from the State and to ensure these workbased learning opportunities are relevant to the needs of students and businesses. Funds will be awarded to build the capability and capacity of programs to engage more students, more businesses,  and more faculty members in co-op and internship programs. The programs should address the talent needs of JobsOhio key industries.
MiamiOH OARS

ASMCUE-LINK Travel Award - 0 views

  •  
    The ASM-NSF Leaders Inspiring Networks and Knowledge (LINK) Program seeks to connect active research investigators and undergraduate educators interested in broadening participation in science and building interdisciplinary collaborations that benefit all partners and contribute to discovery and understanding while promoting teaching and learning. The LINK program is specifically interested in supporting collaborations involving trainees and early-career scientists underrepresented nationally in science, technology, engineering and math (STEM) to succeed in bioscience education, research and careers.
MiamiOH OARS

nsf.gov - Funding - Nano-Biosensing - US National Science Foundation (NSF) - 0 views

  •  
    The Nano-Biosensing Program supports innovative, transformative, and insightful fundamental investigations of original technologies with broad long-term impact.  The program also supports fundamental development of applications that require novel use of nano-scale bio-inspired engineering principles and approaches that will meet the engineering and technology needs of the nation.  The program is targeting research in the area of the monitoring, identification and/or quantification of biological signals and is particularly interested in projects at the intersection of engineering, life sciences, and information technology.  Projects submitted to the Program must advance both engineering and life sciences.    Proposals outside of these specific interest areas are welcome.  In particular, the Interfacial Processing and Thermodynamics Program and the Nano-Biosensing Program may jointly support novel projects related to surface functionalization at the molecular level.
MiamiOH OARS

nsf.gov - Funding - General & Age-Related Disabilities Engineering (GARDE) - US Nationa... - 0 views

  •  
    The General & Age Related Disabilities Engineering (GARDE) program supports research that will lead to the development of new technologies, devices, or software for persons with disabilities.  Research may be supported that is directed to the characterization, restoration, and/or substitution of human functional ability or cognition, or to the interaction of persons with disabilities and their environment.  Areas of particular recent interest are disability-related research in neuroscience/neuroengineering and rehabilitation robotics.  Emphasis is placed on significant advancement of fundamental engineering and scientific knowledge and not on incremental improvements.  Proposals should advance discovery or innovation beyond the frontiers of current knowledge in disability-related research.  Applicants are encouraged to contact the Program Director prior to submitting a proposal.
MiamiOH OARS

nsf.gov - Funding - Biomedical Engineering - US National Science Foundation (NSF) - 0 views

  •  
    The mission of the Biomedical Engineering (BME) program is to provide opportunities to develop novel ideas into discovery-level and transformative projects that integrate engineering and life science principles in solving biomedical problems that serve humanity in the long-term.  The Biomedical Engineering (BME) program supports fundamental research in the following BME themes: Neural engineering (brain science, computational neuroscience, brain-computer interface, neurotech, cognitive engineering) Cellular biomechanics (motion, deformation, and forces in biological systems; how mechanical forces alter cell growth, differentiation, movement, signal transduction, transport, cell adhesion, cell cytoskeleton dynamics, cell-cell and cell-ECM interactions; genetically engineered stem cell differentiation with long-term impact in tissue repair and regenerative medicine) The BME projects must be at the interface of engineering and life sciences, and advance both engineering and life sciences.  The projects should focus on high impact transforming methods and technologies. The project should include methods, models and tools of understanding and controlling of living systems; fundamental improvements in deriving information from cells, tissues, organs, and organ systems; new approaches to the design of structures and materials for eventual medical use in the long-term; and new novel methods of reducing health care costs through new technologies.
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The Directorate for Engineering at the National Science Foundation has established the Office of Emerging Frontiers in Research and Innovation (EFRI) to serve a critical role in focusing on important emerging areas in a timely manner. This solicitation is a funding opportunity for interdisciplinary teams of researchers to embark on rapidly advancing frontiers of fundamental engineering research. For this solicitation, we will consider proposals that aim to investigate emerging frontiers in the following research area: Two-Dimensional Atomic-layer Research and Engineering (2-DARE)
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The MME program supports fundamental research leading to improved manufacturing machines and equipment, and their application in manufacturing processes. Key goals of the program are to advance the transition of manufacturing from skill-based to knowledge-based activities, and to advance technologies that will enable the manufacturing sector to reduce its environmental impacts. A focus is on the advancement of manufacturing machines and related systems engineering that will enable energy manufacturing, namely the manufacture of facilities and equipment that will enable the conversion of renewable resources into energy products such as electricity and liquid fuels, on a large scale. The program also supports research on laser processing, joining processes and additive manufacturing machines and processes encompassing feature scales from microns to meters 
MiamiOH OARS

US NSF - Dear Colleague Letter: Information on the Materials Engineering & Processing P... - 0 views

  •  
    Effective September 1, 2013, the Materials Engineering and Processing Program (MEP) (PD 13-8092) will be accepting proposals that address engineering principles as they relate to material processing and performance. This program replaces the Materials Processing and Manufacturing (MPM), Materials and Surface Engineering (MSE), and Structural Mechanics and Materials (SMM) programs. This new MEP program is effectively a merger and evolutionary advance of these three programs. The MPM, MSE and SMM programs will no longer be accepting new proposals1. The Division of Civil, Mechanical, and Manufacturing Innovation (CMM) in Directorate for Engineering (ENG) of the National Science Foundation (NSF) created the Materials Engineering and Processing (MEP) program to support fundamental research addressing the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Processing and performance of all material systems are of interest. These include polymers, metals, ceramics, semiconductors, composites, and hybrids thereof. Research driven by scientific hypotheses are encouraged when suitable, and materials in bulk form or focus on special zones such as surfaces or interfaces that are to be used in structural and/or functional applications are appropriate for this program. Analytical, experimental, and numerical studies are supported and collaborative proposals with industry (i.e. Grant Opportunities for Academic Liaison with Industry (GOALI)) are encouraged.
MiamiOH OARS

NSF/DOE Partnership in Basic Plasma Science and Engineering (nsf13596) - 0 views

  •  
    The Directorates for Engineering (Division of Chemical, Bioengineering, Environmental & Transport Systems), Geosciences (Division of Atmospheric and Geospace Sciences) and Mathematical and Physical Sciences (Divisions of Astronomical Sciences and Physics) of the National Science Foundation (NSF) and the Office of Science/Office of Fusion Energy Sciences (SC/FES) of the Department of Energy (DOE) are continuing in FY2014 the joint Partnership in Basic Plasma Science and Engineering begun in FY1997 and continued in FY2000, FY2003, FY2006 and FY2009. As stated in the original solicitations (NSF 97-39, NSF 99-159, NSF 02-84, NSF 05-619, NSF 09-596), which are superseded by the present solicitation, the goal of the initiative is to enhance plasma research and education in this broad, multidisciplinary field by coordinating efforts and combining resources of the two agencies. The current solicitation also encourages submission of proposals to perform basic plasma experiments on the Large Aperture Plasma Device (LAPD) at the University of California, Los Angeles (UCLA), a unique user facility designed to serve the needs of the broader plasma community.
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The Directorates for Engineering (Division of Chemical, Bioengineering, Environmental & Transport Systems), Geosciences (Division of Atmospheric and Geospace Sciences) and Mathematical and Physical Sciences (Divisions of Astronomical Sciences and Physics) of the National Science Foundation (NSF) and the Office of Science/Office of Fusion Energy Sciences (SC/FES) of the Department of Energy (DOE) are continuing in FY2014 the joint Partnership in Basic Plasma Science and Engineering begun in FY1997 and continued in FY2000, FY2003, FY2006 and FY2009. As stated in the original solicitations (NSF 97-39, NSF 99-159, NSF 02-84, NSF 05-619, NSF 09-596), which are superseded by the present solicitation, the goal of the initiative is to enhance plasma research and education in this broad, multidisciplinary field by coordinating efforts and combining resources of the two agencies. The current solicitation also encourages submission of proposals to perform basic plasma experiments on the Large Aperture Plasma Device (LAPD) at the University of California, Los Angeles (UCLA), a unique user facility designed to serve the needs of the broader plasma community.
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The MES program supports research on design, planning, and control of operations in manufacturing enterprises. Research is supported that is both grounded in an interesting and relevant application and requires the development of novel analytical and computational methodologies that may be of broader interest. Topics of interest include supply chain optimization and management; production planning and scheduling; monitoring and control of manufacturing processes; and maintenance and repair. Of particular interest are methods that incorporate increasingly rich enterprise process and product information and models, methods that address sustainability, and methods that incorporate characteristic uncertainty and risk.
MiamiOH OARS

nsf.gov - Funding - Biomedical Engineering - US National Science Foundation (NSF) - 0 views

  •  
    The mission of the Biomedical Engineering (BME) program is to provide opportunities to develop novel ideas into discovery-level and transformative projects that integrate engineering and life science principles in solving biomedical problems that serve humanity in the long-term.  The Biomedical Engineering (BME) program supports fundamental research in the following BME themes: Neural engineering (brain science, computational neuroscience, brain-computer interface, neurotech, cognitive engineering) Cellular biomechanics (motion, deformation, and forces in biological systems; how mechanical forces alter cell growth, differentiation, movement, signal transduction, transport, cell adhesion, cell cytoskeleton dynamics, cell-cell and cell-ECM interactions; genetically engineered stem cell differentiation with long-term impact in tissue repair and regenerative medicine) The BME projects must be at the interface of engineering and life sciences, and advance both engineering and life sciences.  The projects should focus on high impact transforming methods and technologies. The project should include methods, models and tools of understanding and controlling of living systems; fundamental improvements in deriving information from cells, tissues, organs, and organ systems; new approaches to the design of structures and materials for eventual medical use in the long-term; and new novel methods of reducing health care costs through new technologies. The projects should emphasize the advancement of fundamental engineering knowledge, possibly leading to the development of new methods and technologies in the long-term; and highlight multi-disciplinary nature, integrating engineering and the sciences. The long-term impact of the projects can be related to disease diagnosis and/or treatment, improved health care delivery, or product development.
MiamiOH OARS

nsf.gov - Funding - Manufacturing Machines and Equipment - US National Science Foundati... - 0 views

  •  
    The MME program supports fundamental research leading to improved manufacturing machines and equipment, and their application in manufacturing processes.  Key goals of the program are to advance the transition of manufacturing from skill-based to knowledge-based activities, and to advance technologies that will enable the manufacturing sector to reduce its environmental impacts.  A focus is on the advancement of manufacturing machines and related systems engineering that will enable energy manufacturing, namely the manufacture of facilities and equipment that will enable the conversion of renewable resources into energy products such as electricity and liquid fuels, on a large scale.  The program also supports research on laser processing, joining processes and additive manufacturing machines and processes encompassing feature scales from microns to meters (nanometer scale additive manufacturing is supported under the Nanomanufacturing program).
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The MURI program supports basic research in science and engineering at U.S. institutions of higher education that is of potential interest to DoD. The program is focused on multidisciplinary research efforts where more than one traditional discipline interacts to provide rapid advances in scientific areas of interest to the DoD. As defined by the DoD, "basic research is systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and of observable facts without specific applications towards processes or products in mind. It includes all scientific study and experimentation directed toward increasing fundamental knowledge and understanding in those fields of the physical, engineering, environmental, and life sciences related to long-term national security needs. It is farsighted high payoff research that provides the basis for technological progress." (DoD 7000.14.R, vol. 2B, chap.5). DoD's basic research program invests broadly in many specific fields to ensure that it has early cognizance of new scientific knowledge. 
MiamiOH OARS

nsf.gov - Funding - Biophotonics - US National Science Foundation (NSF) - 0 views

  •  
    Biophotonics applies photonics technology to the fields of medicine, biology and biotechnology.  Basic research and innovation in photonics that is very fundamental in science and engineering is needed to lay the foundation for new technologies beyond those that are mature and ready for application in medical diagnostics and therapies.  Advances are needed in nanophotonics, optogenetics, contrast and targeting agents, ultra-thin probes, wide field imaging, and rapid biomarker screening.  Low cost and minimally invasive medical diagnostics and therapies are key goals. Examples of topics are: Macromolecule Markers - Innovative methods for labeling of macromolecules, new compositions of matter/methods of fabrication of multi-color probes such as might be used for marking and detection of specific pathological cells and push the envelope of optical sensing to the limits of detection, resolution, and identification Low Coherence Sensing at the Nanoscale - Low coherence enhanced backscattering (LEBS), n-dimensional elastic light scattering, and angle-resolved low coherence interferometry for early cancer detection (dysplasia) Neurophotonics - Studies of photon activation of neurons at the interface of nanomaterials attached to cells.  Development and application of biocompatible photonic tools such as parallel interfaces and interconnects for communicating and control of neural networks Micro- and Nano-photonic - Development and application of nanoparticle fluorescent quantum-dots; sensitive, multiplexed, high-throughput characterization of macromolecular properties of cells; nanomaterials and nanodevices for biomedicine Optogenetics - Employing light-activated channels and enzymes for manipulation of neural activity with temporal precision. 
« First ‹ Previous 1821 - 1840 of 1989 Next › Last »
Showing 20 items per page