Skip to main content

Home/ OARS funding Engineering/ Group items tagged architecture

Rss Feed Group items tagged

MiamiOH OARS

Structural and Architectural Engineering - 0 views

  •  
    PD 15-1637, Structural and Architectural Engineering (SAE) program replaces Hazard Mitigation and Structural Engineering (HMSE) program. The overall goal of the Structural and Architectural Engineering (SAE) program is to evolve sustainable structures, such as buildings, that can be continuously occupied and /or operational during the structure??s useful life. The SAE program supports fundamental research for advancing knowledge and innovation in structural and architectural engineering that enables holistic approach to design, construction, operation, maintenance, retrofit, repair and end-of-life disposal of structures. For buildings, holistic approach incorporates the foundation-structure-envelope-nonstructural system, as well as the facade and roofing. Research topics of interest for sustainable structures include the following: strategies for structures that over their lifecycle are cost-effective, make efficient use of resources and energy, and incorporate sustainable structural and architectural materials; deterioration due to fatigue and corrosion; serviceability concerns due to large deflections and vibrations; and advances in physics-based computational modeling and simulation. Research is encouraged that integrates discoveries from other science and engineering fields, such as materials science, building science, mechanics of materials, dynamic systems and control, reliability, risk analysis, architecture, economics and human factors. The program also supports research in sustainable and holistic foundation-structure-envelope-nonstructural systems and materials as described in the following reports: ?? National Science and Technology Council, High Performance Buildings; Final Report: Federal R & D Agenda for Net Zero Energy, High-Performance Green Buildings. Building Technology Research and Development (BTRD) Subcommittee, OSTP, U.S. Government, September 2008. http://www.whitehouse.gov/files/documents/ostp/NSTC%20Reports/Federal%20RD%20Agenda%20for%20Net%
MiamiOH OARS

NSF/Intel Partnership on Computer Assisted Programming for Heterogeneous Architectures ... - 0 views

  •  
    The NSF/Intel Partnership on Computer Assisted Programming for Heterogeneous Architectures (CAPA) aims to address the problem of effective software development for diverse hardware architectures through groundbreaking university research that will lead to a significant, measurable leap in software development productivity by partially or fully automating software development tasks that are currently performed by humans. The main research objectives for CAPA include programmer effectiveness, performance portability, and performance predictability. In order to address these objectives, CAPA seeks research proposals that explore (1) programming abstractions and/or methodologies that separate performance-related aspects of program design from how they are implemented; (2) program synthesis and machine learning approaches for automatic software construction that are demonstrably correct; (3) advanced hardware-based cost models and abstractions to support multi-target code generation and performance predictability for specified heterogeneous hardware architectures; and (4) integration of research results into principled software development practices.
MiamiOH OARS

Structural and Architectural Engineering and Materials - 0 views

  •  
    The overall goal of the Structural and Architectural Engineering and Materials (SAEM) program is to enable sustainable buildings and other structures that can be continuously occupied and/or operated during the structure's useful life. The SAEM program supports fundamental research for advancing knowledge and innovation in structural and architectural engineering and materials that promotes a holistic approach to analysis and design, construction, operation, maintenance, retrofit, and repair of structures. For buildings, all components including the foundation-structure-envelope (the façade, curtain-wall and roofing) and interior systems, are of interest to the program. Research in new engineering concepts and design paradigms for buildings that have significantly reduced dependence and interdependence on municipal infrastructure through, for example, self-hydrating (closed-loop water system) and self-heating-cooling-ventilating (energy usage) is encouraged. In addition, the program targets research in the building systems that are reconfigurable for rapid construction, disassembly and disposal, are reliable and resilient, and are less complex. Research topics of interest for sustainable structures include the following: strategies for structures that over their lifecycle are cost-effective, make efficient use of resources and energy, and incorporate sustainable structural and architectural materials; mitigation of deterioration due to fatigue and corrosion; serviceability related to large deflections and vibrations; and advances in physics-based computational modeling and simulation.
MiamiOH OARS

Richard Rogers Fellowship - 0 views

  •  
    The Harvard University Graduate School of Design is accepting applications for the 2018 Richard Rogers Fellowship program. Based at Wimbledon House in London, which was designed by Lord Rogers in the late 1960s, the fellowship is intended to encourage in-depth, original forms of investigation as a way to expand architectural practice and scholarship. Open to accomplished practitioners and scholars working in fields related to the built environment, the fellowship supports research projects focused on topics that have been central to Lord Rogers's life and career, including questions of urbanism, sustainability, and how people use cities. Each of the six selected fellows will receive a three-month residency at Wimbledon House in London as well as round-trip travel expenses, a $10,000 cash stipend, and unique access to London's extraordinary institutions, libraries, practices, professionals, and other resources. The fellowship is open to applicants from anywhere in the world. However, applicants must demonstrate professional or research experience in a field related to the built environment and must propose new or ongoing research that would benefit from a residency in London. Applicants must have completed a graduate or professionally accredited degree. Preference will be given to practitioners and researchers with significant academic credentials or experience in architecture, landscape architecture, urban planning or urban design, as well as applicants who propose ambitious research projects with the potential to make a significant impact on relevant fields of research or practice.
MiamiOH OARS

Nuclear Command, Control and Communication - US air force - 0 views

  •  
    The U. S. Air Force is seeking to reinvigorate and expand its NC3 capabilities, updating the capabilities of legacy systems and incorporating new platforms and communication systems. Toward this goal the Information Directorate is working closely with the Air Force Nuclear Weapons Center and the Air Force Global Strike Command to define the art of the possible for future NC3 architectures and survivable and enduring communication systems. Each new NC3 capability also brings with it the potential to introduce new cyber vulnerabilities. Understanding these risks and their potential consequences can help the Air Force shape future operating concepts for the NC3 architecture.
  •  
    The U. S. Air Force is seeking to reinvigorate and expand its NC3 capabilities, updating the capabilities of legacy systems and incorporating new platforms and communication systems. Toward this goal the Information Directorate is working closely with the Air Force Nuclear Weapons Center and the Air Force Global Strike Command to define the art of the possible for future NC3 architectures and survivable and enduring communication systems. Each new NC3 capability also brings with it the potential to introduce new cyber vulnerabilities. Understanding these risks and their potential consequences can help the Air Force shape future operating concepts for the NC3 architecture.
MiamiOH OARS

Electronics Resurgence Initiative: Page 3 Materials and Integration - 0 views

  •  
    The overall goal of the Three Dimensional Monolithic System-on-a-Chip (3DSoC) program is to develop 3D monolithic technology that will enable > 50X improvement in SOC digital performance at power. 3DSOC aims to drive research in process, design tools, and new compute architectures for future designs while utilizing U.S. fabrication capabilities. The goal of the Foundations Required for Novel Compute (FRANC) program is to define the foundations required for assessing and establishing the proof of principle for beyond von Neumann compute architectures. FRANC will seek to demonstrate prototypes that quantify the benefits of such new computing architectures.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Structural and Architectural Engineering and Materials | NSF - National Science Foundation - 0 views

  •  
    The overall goal of the Structural and Architectural Engineering and Materials (SAEM) program is to enable sustainable buildings and other structures that can be continuously occupied and/or operated during the structure's useful life. The SAEM program supports fundamental research for advancing knowledge and innovation in structural and architectural engineering and materials that promotes a holistic approach to analysis and design, construction, operation, maintenance, retrofit, and repair of structures. For buildings, all components including the foundation-structure-envelope (the façade, curtain-wall, windows, and roofing) and interior systems (flooring, ceilings, partitions walls), are of interest to the program. The SAEM program encourages the integration of research with knowledge dissemination and activities that can lead to broader societal benefit for provision of sustainable structures.
MiamiOH OARS

Electronics Resurgence Initiative: Page 3 Investments Architectures Thrust - 0 views

  •  
    The purpose of this amendment is to correct a typographical error in the abstract details on page 41. See the attached conformed BAA with changes highlighted in yellow. Amendment 01: The purpose of this amendment is to make administrative changes as highlighted in yellow in the attached.Original Synopsis Below:DARPA is soliciting innovative research proposals in the area of novel computing architectures. The Page 3 Architectures thrust of the Electronics Resurgence Initiative (ERI) seeks to demonstrate heterogeneous computing systems that provide the performance advantages of specialized processors, while maintaining the programmability of general purpose processors.The goal of the Software Defined Hardware (SDH) program is to build runtime-reconfigurable hardware and software that enables near ASIC performance without sacrificing programmability for data-intensive algorithms. SDH will create a hardware/software system that allows data-intensive algorithms to run at near ASIC efficiency without the cost, development time or single application limitations associated with ASIC development. The overall goal of the Domain-specific System on Chip (DSSoC) program is to develop a heterogeneous SoC comprised of many cores that mix general-purpose processors, special-purpose processors, hardware accelerators, memory, and input/output (I/O). DSSoC seeks to enable rapid development of multi-application systems through a single programmable device.
MiamiOH OARS

Quantum Testbed Pathfinder - 0 views

  •  
    The Department of Energy's (DOE) Office of Advanced Scientific Computing Research (ASCR) announces its interest in receiving applications to explore of the suitability of various implementations of quantum computing hardware for science applications. This foundational research will facilitate the development of device architectures well-suited for scientific applications of quantum computing and improve our understanding of the advantages and limitations of various approaches to quantum computing for science applications. The purpose of this FOA is to invite applications for foundational research in the following two areas: 1. Exploring the relationship between device architecture and application performance 2. Developing meaningful metrics for evaluating the suitability of quantum computing hardware for science applications Applications may address one or both of these themes. Proposed research should focus on devices that are already available or that become available during the term of the award rather than large-scale, high-fidelity, fault-tolerant machines. Funded teams will be expected to collaborate externally with researchers working to develop applications and algorithms that can expand the frontiers of scientific discovery. Funded teams will also be expected to participate in community engagement activities that support the growth of an active, integrated research community committed to the common goal of developing quantum computing resources for advancing scientific discovery. Topics that are out of scope include: development and optimization of quantum algorithms; development of new candidate qubit systems; schemes based on qubits that have not yet demonstrated high-fidelity gates; schemes to improve the performance and functionality of qubits; quantum transduction; quantum communication, networking, and key distribution; cryptography and cryptanalysis; and logical qubits beyond considerations given to scaling to ~10 qubit devices.
MiamiOH OARS

The Fence Authority, Your Outdoor Living Experts - 0 views

  •  
    All applicants must currently be pursuing a Bachelor's (or Baccalaureate) Degree related to a profession that is dedicated to improving the beautification of US communities, such as  Architecture, Landscape Architecture, Civil Engineering, Horticulture, and Environmental and Marine Sciences. Applicants must be currently accepted into a program and must currently hold or anticipate holding a high school diploma or GED within the 2015-2016 school year.  Applicants must be currently involved or recently involved (within one year of date of application) in their community, either through school programs or voluntary programs.
MiamiOH OARS

Engineering for Civil Infrastructure - 0 views

  •  
    The Engineering for Civil Infrastructure (ECI) program supports fundamental research that will shape the future of our nation's constructed civil infrastructure, subjected to and interacting with the natural environment, to meet the needs of humans. In this context, research driven by radical rethinking of traditional civil infrastructure in response to emerging technological innovations, changing population demographics, and evolving societal needs is encouraged. The ECI program focuses on the physical infrastructure, such as the soil-foundation-structure-envelope-nonstructural building system; geostructures; and underground facilities. It seeks proposals that advance knowledge and methodologies within geotechnical, structural, architectural, materials, coastal, and construction engineering, especially that include collaboration with researchers from other fields, including, for example, biomimetics, bioinspired design, advanced computation, data science, materials science, additive manufacturing, robotics, and control theory. Research may explore holistic building systems that view construction, geotechnical, structural, and architectural design as an integrated system; adaptive building envelope systems; nonconventional building materials; breakthroughs in remediated geological materials; and transformational construction processes. Principal investigators are encouraged to consider civil infrastructure subjected to and interacting with the natural environment under “normal” operating conditions; intermediate stress conditions (such as deterioration, and severe locational and climate conditions); and extreme single or multi natural hazard events (including earthquakes, windstorms, tsunamis, storm surges, sinkholes, subsidence, and landslides).
MiamiOH OARS

nsf.gov - Funding - Hazard Mitigation and Structural Engineering - US National Science ... - 0 views

  •  
    The Hazard Mitigation and Structural Engineering (HMSE) program supports fundamental research to mitigate impacts of natural and anthropogenic hazards on civil infrastructure and to advance the reliability, resiliency, and sustainability of buildings and other structures. Hazards considered within the program include earthquake, tsunami, hurricane, tornado and other loads, as well as explosive and impact loading. Resiliency of buildings and other structures include structural and non-structural systems that, in totality, permit continued occupation or operation in case of an impact by a hazard. Research is encouraged that integrates structural and architectural engineering advances with discoveries in other science and engineering fields, such as earth and atmospheric sciences, material science, mechanics of materials, sensor technology, high performance computational modeling and simulation, dynamic system and control, and economics. The program seeks to fund transformative and cost-effective innovations for hazard mitigation of both new and rehabilitated buildings and other structures. Research in structural and architectural engineering is encouraged that extends beyond mature or current construction materials into investigations of smart and sustainable materials and technologies, and considers the structures in their entirety. In addition, the program funds research on structural health monitoring that goes beyond data acquisition to include the holistic system, integrating condition assessment and decision making tools to improve structural performance.
MiamiOH OARS

Algorithms in the Field - 0 views

  •  
    Algorithms in the Field encourages closer collaboration between two groups of researchers: (i) theoretical computer science researchers, who focus on the design and analysis of provably efficient and provably accurate algorithms for various computational models; and (ii) other computing and information researchers including a combination of systems and domain experts (very broadly construed - including but not limited to researchers in computer architecture, programming languages and systems, computer networks, cyber-physical systems, cyber-human systems, machine learning, artificial intelligence and its applications, database and data analytics, etc.) who focus on the particular design constraints of applications and/or computing devices. Each proposal must have at least one co-PI interested in theoretical computer science and one interested in any of the other areas typically supported by CISE. Proposals are expected to address the dissemination of both the algorithmic contributions and the resulting applications, tools, languages, compilers, libraries, architectures, systems, data, etc.
MiamiOH OARS

Scalable Parallelism in the Extreme (SPX) (nsf16605) | NSF - National Science Foundation - 0 views

  •  
    The Scalable Parallelism in the Extreme (SPX) program aims to support research addressing the challenges of increasing performance in this modern era of parallel computing. This will require a collaborative effort among researchers in multiple areas, from services and applications down to micro-architecture. SPX encompasses all five NSCI Strategic Objectives, including supporting foundational research toward architecture and software approaches that drive performance improvements in the post-Moore's Law era; development and deployment of programmable, scalable, and reusable platforms in the national HPC and scientific cyberinfrastructure ecosystem; increased coherence of data analytic computing and modeling and simulation; and capable extreme-scale computing. Coordination with industrial efforts that pursue related goals are encouraged.
MiamiOH OARS

nsf.gov - Funding - Communications, Circuits, and Sensing-Systems - US National Science... - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Hazard Mitigation and Structural Engineering - 0 views

  •  
    The Hazard Mitigation and Structural Engineering (HMSE) program supports fundamental research to mitigate impacts of natural and anthropogenic hazards on civil infrastructure and to advance the reliability, resiliency, and sustainability of buildings and other structures. Hazards considered within the program include earthquake, tsunami, hurricane, tornado and other loads, as well as explosive and impact loading. Resiliency of buildings and other structures include structural and non-structural systems that, in totality, permit continued occupation or operation in case of an impact by a hazard. Research is encouraged that integrates structural and architectural engineering advances with discoveries in other science and engineering fields, such as earth and atmospheric sciences, material science, mechanics of materials, sensor technology, high performance computational modeling and simulation, dynamic system and control, and economics. The program seeks to fund transformative and cost-effective innovations for hazard mitigation of both new and rehabilitated buildings and other structures. Research in structural and architectural engineering is encouraged that extends beyond mature or current construction materials into investigations of smart and sustainable materials and technologies, and considers the structures in their entirety. In addition, the program funds research on structural health monitoring that goes beyond data acquisition to include the holistic system, integrating condition assessment and decision making tools to improve structural performance
MiamiOH OARS

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

National Science Foundation - 0 views

  •  
    The Exploiting Parallelism and Scalability (XPS) program aims to support groundbreaking research leading to a new era of parallel computing. Achieving the needed breakthroughs will require a collaborative effort among researchers representing all areas -- from services and applications down to the micro-architecture - and will be built on new concepts, theories, and foundational principles. New approaches to achieving scalable performance and usability need new abstract models and algorithms, new programming models and languages, and new hardware architectures, compilers, operating systems and run-time systems, and must exploit domain and application-specific knowledge. Research is also needed on energy efficiency, communication efficiency, and on enabling the division of effort between edge devices and clouds.
MiamiOH OARS

NSF/VMware Partnership on Edge Computing Data Infrastructure - 0 views

  •  
    The proliferation of mobile and Internet-of-Things (IoT) devices, and their pervasiveness across nearly every sphere of our society, continues to raise questions about the architectures that organize tomorrow’s compute infrastructure. At the heart of this trend is the data that will be generated as myriad devices and application services operate simultaneously to digitize a complex domain like a smart building or smart industrial facility. A key shift is from edge devices consuming data produced in the cloud to edge devices being a voluminous producer of data. This shift reopens a broad variety of system-level research questions concerning data placement, movement, processing and sharing. Importantly, the shift also opens the door to compelling new applications with significant industrial and societal impact in domains such as healthcare, manufacturing, transportation, public safety, energy, buildings, and telecommunications. Edge computing is broadly defined as a networked systems architectural approach in which compute and storage resources are placed at the network edge, in proximity to the mobile and IoT devices.
1 - 20 of 93 Next › Last »
Showing 20 items per page