Skip to main content

Home/ OARS funding Engineering/ Group items matching "structures" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

nsf.gov - Funding - Materials Engineering and Processing - US National Science Foundation (NSF) - 0 views

  •  
    The Materials Engineering and Processing (MEP) program supports fundamental research addressing the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Research proposals should be driven by the performance or output of the material system relative to the targeted application(s). Research plans driven by scientific hypotheses are encouraged when suitable. Materials in bulk form or focus on special zones such as surfaces or interfaces that are to be used in structural and/or functional applications are appropriate. All material systems are of interest including polymers, metals, ceramics, semiconductors, composites and hybrids thereof. Analytical, experimental, and numerical studies are supported and collaborative proposals with industry (GOALI) are encouraged.
MiamiOH OARS

Materials Research and Survivability Studies - Federal Business Opportunities: Opportunities - 0 views

  •  
    The objective of this program is to conduct research and advance the current state-of-the-art in photonic materials technologies, interactions, and applications using unique and innovative solutions for improved hardened materials and increased survivability of sensors, structures, systems, and aircrew members. Separate Task Orders will contain specific requirements relative to a particular program's technical objectives. Some of the key technical areas of interest include Optical Materials and Processing, Hardening Materials and Processing, Electro-Optic/Infrared (EO/IR) Sensor Protection, Warfighter Protection, Structural Protection, Optical Technology, Computational and Theoretical Studies on Functional Materials, Proactive Threat Defeat, and High Energy Laser Source Materials. The following initial Task Orders are anticipated:
MiamiOH OARS

nsf.gov - Funding - Electronic and Photonic Materials - US National Science Foundation (NSF) - 0 views

  •  
    The goal of this program is to advance the field of electronics and photonics through basic, potentially transformative materials science research. The scope of the program encompasses the discovery and understanding of materials and material combinations with potential for major technological advantages. Program focus is on identification and understanding of fundamental atomic and molecular level mechanisms and phenomena associated with synthesis and processing of electronic and photonic materials. High risk, high payoff research is encouraged. For example, novel materials are sought that may offer new paradigms in critical computing and communications components, or enable low cost, highly efficient, and stable photovoltaics, solid state lighting, and displays. Research topics include, but are not limited to, nucleation and growth of thin films and nanostructures; self-assembly; nanostructure definition and etching processes; interface bonding and structure; crystal and interface defects; doping; bulk crystal growth; and interrelationships between synthesis/processing, structure, and properties.
MiamiOH OARS

Northern Ghana Governance Activity - 0 views

  •  
    The USAID/Ghana Democracy Rights and Governance (DRG) and Economic Growth Offices' new cross sectoral governance project seeks to accelerate governance improvements and manage conflict in support of enhanced agricultural development in Ghana's Northern, Upper East and Upper West Regions. The purpose of the activity is to increase the capacity of Ghana's decentralized agricultural structures at the regional and district levels, improve accountability and performance efficiency of these decentralized agricultural structures, build community consensus, and strengthen civil society's demand for better service delivery in agriculture in partnership with the private sector.
MiamiOH OARS

Infrastructure Support to the Mozambican Health System to Scale-Up HIV/AIDS and TB Services on Behalf of the President's Emergency Plan for AIDS Relief (PEPFAR) - 0 views

  •  
    This NOFO seeks to provide infrastructure support and technical assistance to Mozambican Ministry of Health (MOH) health clinics and facilities in order to scale-up HIV and TB services through PEPFAR. This NOFO will provide technical assistance to help address MOH infrastructure needs as well as providing overall alternative solutions to improving the health infrastructure either through renovations, pre-fabricated (pre-fab) structures, or equipment necessary for the improvement of HIV/AIDS and TB services across the clinical cascade. Sites for infrastructure support will be selected based on MOH and PEPFAR priorities. Health centers may require different infrastructure solutions which may include pre-fab structures for warehouses, pharmacies, laboratories, and medium-sized health units. Supported health facilities may be geographically dispersed throughout Mozambique and involve rural and urban areas. The accomplishment of these objectives will support the Government of Mozambique’s goal of promoting epidemic control through an increased facility maximum HIV patient capacity and will in turn facilitate the country’s HIV strategic goals.
MiamiOH OARS

Engineering for Civil Infrastructure - 0 views

  •  
    The Engineering for Civil Infrastructure (ECI) program supports fundamental research that will shape the future of our nation's constructed civil infrastructure, subjected to and interacting with the natural environment, to meet the needs of humans. In this context, research driven by radical rethinking of traditional civil infrastructure in response to emerging technological innovations, changing population demographics, and evolving societal needs is encouraged. The ECI program focuses on the physical infrastructure, such as the soil-foundation-structure-envelope-nonstructural building system; geostructures; and underground facilities. It seeks proposals that advance knowledge and methodologies within geotechnical, structural, architectural, materials, coastal, and construction engineering, especially that include collaboration with researchers from other fields, including, for example, biomimetics, bioinspired design, advanced computation, data science, materials science, additive manufacturing, robotics, and control theory.
MiamiOH OARS

D.2 Transformational Tools and Technologies (TTT) Project - 0 views

  •  
    The Transformational Tools and Technologies (TTT) Project advances state-of-the-art computational and experimental tools and technologies that are vital to aviation applications in the six strategic thrusts. The project develops new computer-based tools, computational fluid dynamics models, and associated scientific knowledge that will provide first-of-a-kind capabilities to analyze, understand, and predict aviation concept performance. These revolutionary tools will be applied to accelerate NASA's research and the community's design and introduction of advanced concepts. The Project also explores technologies that are broadly critical to advancing ARMD strategic outcomes. Such technologies include the understanding of new types of strong and lightweight materials, innovative controls techniques, and experimental methods. The TTT Materials and Structures Discipline emphasizes improved multifunctional and high temperature materials for airframe and engine application, as well as integrated multiscale modeling and simulation tool development to improve validated first-principles materials and structural modeling.
MiamiOH OARS

ACI Foundation > Research - 0 views

  •  
    The ACI Foundation is a nonprofit organization established by the American Concrete Institute to promote progress, innovation, and collaboration by supporting research and scholarships, while also serving as an independent resource to provide thought leadership and strategic direction for the concrete industry. The foundation advances this mission through its Concrete Research Council, which seeks to advance the concrete industry through the funding of concrete research projects that further the knowledge and sustainability of concrete materials, construction, and structures. To that end, the council will award grants of up to $50,000 for research projects that further the knowledge and sustainability of concrete materials, construction, and structures. Industry partnering and project cost sharing are encouraged. To be eligible, applicants must be considered tax exempt under Section 501(c)(3) of the Internal Revenue Code. In addition, a letter of support of the research concept by an ACI Technical Committee.
MiamiOH OARS

Proposed Enhancements to Pavement ME Design: Improved Consideration of the Influence of Subgrade Soils Susceptible to Shrink/Swell and/or Frost Heave on Pavement Performance - 0 views

  •  
    Expansive clay soils that are susceptible to shrink and swell, and silty soils that are susceptible to frost heave are found in many parts of the United States. At these locations, these soils serve as the subgrade of the pavement structure. The AASHTOWare Pavement ME Design (formerly DARWin-ME) and the AASHTO Mechanistic-Empirical Pavement Design Guide Manual of Practice (MEPDG) (see Special Note A) provide a methodology for the analysis and performance prediction of new and rehabilitated pavements. Although the performance of these pavements is known to be closely related to properties of the subgrade, the performance predicted by this methodology does not adequately consider the influence of subgrade soils susceptible to shrink/swell and/or frost heave on pavement performance. There is a need to evaluate the procedures contained in the Pavement ME Design and identify or develop enhancements (in the form of modified or new models) to ensure that the procedures appropriately account for the influence of these types of subgrade soils on the performance of new and rehabilitated pavements. Incorporating these enhancements into the Pavement ME Design procedures will allow an improved analysis and design of pavement structures.
MiamiOH OARS

Bioimaging Research and Approaches for Bioenergy - 0 views

  •  
    The Biological and Environmental Research (BER) of the SC, U.S. Department of Energy (DOE) hereby announces its interest in receiving applications to support fundamental research towards enabling new bioimaging capabilities for the study of plant and microbial systems relevant to bioenergy research. New imaging instrumentation is needed to observe and characterize multiple metabolic processes occurring within the living plant and microbial systems relevant to bioenergy and bioproduct production from renewable biomass. These processes include, but are not limited to real-time dynamic imaging of metabolic pathways, the transport of materials within and among cellular organelles including plant-root and organismal interactions, enzyme function and cellular structures. Of interest is the development of multimodal imaging devices constructed by merging new, innovative and/or transformational improvements to existing capabilities which will enable simultaneous observations in synergistic combination with correlated structural and/or chemical imaging to interpret biological function in and among whole microbial or plant cells.
MiamiOH OARS

Biomedical Engineering (BME) - 0 views

  •  
    The goal of theBiomedical Engineering(BME)program is to provide research opportunities to develop novel ideas into discovery-level and transformative projects that integrate engineering and life sciences in solving biomedical problems that serve humanity in the long-term. BME projects must be at the interface of engineering and life sciences, and advance both engineering and life sciences. The projects should focus on high impact transformative methods and technologies. Projects should include methods, models and enabling tools of understanding and controlling living systems; fundamental improvements in deriving information from cells, tissues, organs, and organ systems; new approaches to the design of structures and materials for eventual medical use in the long-term; and novel methods for reducing health care costs through new technologies. The long-term impact of the projects can be related to fundamental understanding of cell and tissue function, effective disease diagnosis and/or treatment, improved health care delivery, or product development.
  •  
    The goal of theBiomedical Engineering(BME)program is to provide research opportunities to develop novel ideas into discovery-level and transformative projects that integrate engineering and life sciences in solving biomedical problems that serve humanity in the long-term. BME projects must be at the interface of engineering and life sciences, and advance both engineering and life sciences. The projects should focus on high impact transformative methods and technologies. Projects should include methods, models and enabling tools of understanding and controlling living systems; fundamental improvements in deriving information from cells, tissues, organs, and organ systems; new approaches to the design of structures and materials for eventual medical use in the long-term; and novel methods for reducing health care costs through new technologies. The long-term impact of the projects can be related to fundamental understanding of cell and tissue function, effective disease diagnosis and/or treatment, improved health care delivery, or product development.
MiamiOH OARS

Smart and Connected Communities | NSF - National Science Foundation - 0 views

  •  
    Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The goal of this Smart & Connected Communities (S&CC) solicitation is to support strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. Unless stated otherwise, for the purposes of this year's solicitation, communities are physical, geographically-defined entities, such as towns, cities, or incorporated rural areas, consisting of various populations, with a governance structure and the ability to engage in meaningful ways with the proposed research.
  •  
    Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The goal of this Smart & Connected Communities (S&CC) solicitation is to support strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. Unless stated otherwise, for the purposes of this year's solicitation, communities are physical, geographically-defined entities, such as towns, cities, or incorporated rural areas, consisting of various populations, with a governance structure and the ability to engage in meaningful ways with the proposed research.
MiamiOH OARS

Nanomanufacturing | NSF - National Science Foundation - 0 views

  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
MiamiOH OARS

Chemistry of Life Processes | NSF - National Science Foundation - 0 views

  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
MiamiOH OARS

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

Hardening of Air to Ground Munitions Structures (HAMS) - BAA-RQKM-2014-0017 - Federal Business Opportunities: Opportunities - 0 views

  •  
    The Air Force Research Laboratory, Materials and Manufacturing Directorate, Photonic Materials Branch (AFRL/RXAP), has a long history of developing advanced materials and techniques for hardening appliations. This program is interested in developing advanced hardening solutions for structural components and systems. The resulting program will seek to mature previously developed concepts for application to component, subsystem, or system level platforms
MiamiOH OARS

2aOptimised 3D Mold Surface Texture 2c - 0 views

  •  
    NineSigma, representing a global metal engineering company invites responses from experts, SMEs or organisations for technologies or materials to provide an Open 3D Surface Structure for a (coated) Copper Mold.
MiamiOH OARS

Innovative Approaches or Technologies to Investigate Regional, Structural and Functional Heterogeneity of CNS Small Blood and Lymphatic Vessels (R01) - 0 views

  •  
    The NIH Blueprint for Neuroscience Research is a collaborative framework through which 14 NIH Institutes, Centers and Offices jointly support neuroscience-related research, with the aim of accelerating discoveries and reducing the burden of nervous system disorders. This Funding Opportunity Announcement (FOA) will solicit research projects focused on the development of new technology and tools, or novel mechanistic studies, or a combination of mechanistic and technology development studies specific to central nervous system (CNS, which includes retina) small blood and lymphatic vessels in health and disease, across the life span. The program aims at facilitating the development of tools and technology to image, profile and map CNS small blood and lymphatic vessels. Additional goals are to elucidate the mechanisms underlying CNS small blood and lymphatic vessels structural and functional heterogeneity, differential susceptibility to injury, role in disease and repair processes, and their responses to therapies. Preclinical studies using in vitro and/or animal models specific to CNS small blood and lymphatic vessels alone or in combination with pilot human studies are appropriate for this FOA.
MiamiOH OARS

nsf.gov - Funding - Civil Infrastructure Systems - US National Science Foundation (NSF) - 0 views

  •  
    The Civil Infrastructure Systems (CIS) program supports research leading to the engineering of infrastructure systems for resilience and sustainability without excluding other key performance issues.  Areas of interest include intra- and inter-physical, information and behavioral dependencies of infrastructure systems, infrastructure management, construction engineering, and transportation systems.  Special emphasis is on the design, construction, operation, and improvement of infrastructure networks with a focus on systems engineering and design, performance management, risk analysis, life-cycle analysis, modeling and simulation, behavioral and social considerations not excluding other methodological areas or the integration of methods. This program does not encourage research proposals primarily focused on structural engineering, materials or sensors that support infrastructure system design, extreme event modeling, hydrological engineering, and climate modeling, since they do not fall within the scope of the CIS program.
‹ Previous 21 - 40 of 124 Next › Last »
Showing 20 items per page