Skip to main content

Home/ OARS funding Engineering/ Group items matching "mechanical" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

DoD Military Burn Clinical Trial Award - 0 views

  •  
    The MBRP Clinical Trial Award mechanism is being offered for the first time in FY17.The objective of this Program Announcement is to explore innovative approaches to accelerate the translation of knowledge advances into new treatments for the Service members who sustain burn injuries. The results of the research funded through the FY17/18 MBRP Clinical Trial Award are expected to increase the body of knowledge and materiel products available to professionals and practitioners in health, medical science, and related fields. The research impact is expected to benefit both civilian and military communities.The FY17/18 MBRP Clinical Trial Award supports clinical research studies with the potential to have a major impact on the prevention, treatment, and mitigation of debilitating burn scars that are relevant to military personnel. The specific intent is to improve functional outcomes and/or assess clinical efficacy and safety of different treatment modalities (e.g., dressing topics, biologics, cell-based therapies, mechanical, photonics).
MiamiOH OARS

Lymphatics in Health and Disease in the Digestive System (R01 - Clinical Trials Not Allowed) - 0 views

  •  
    The purpose of this FOA is to invite applications that investigate aspects of lymphatic vessel physiology, development and pathophysiology related to health and diseases of the digestive system. Studies to understand the factors that control local lymphatic vessel functional anatomy and physiology and development during health or disease in this system and its organs, and the mechanisms by which alterations of lymphatic vessel function affect organ function, are of interest. However, studies with the major focus on immune mechanisms, role of lymphatics in cancer metastasis and study of lymphatic vessels in organs other than those from the digestive system will not be considered responsive.
MiamiOH OARS

Transitions to Excellence in Molecular and Cellular Biosciences Research (Transitions) (nsf20505) | NSF - National Science Foundation - 0 views

  •  
    The Division of Molecular and Cellular Biosciences (MCB) has developed a new opportunity to enable researchers with a strong track record of prior accomplishment to pursue a new avenue of research or inquiry. This funding mechanism is designed to facilitate and promote a PI's ability to effective adopt empowering technologies that might not be readily accessible in the PI's current research environment or collaboration network. Transformative research likely spans disciplines and minimizing the practical barriers to doing so will strengthen research programs poised to make significant contributions. The award is intended to allow mid-career or later-stage researchers (Associate or Full Professor, or equivalent) to expand or make a transition in their research programs via a sabbatical leave or similar mechanism of professional development and then develop that research program in their own lab. This award will also enable the PI to acquire new scientific or technical expertise, facilitate the investigator's competitiveness, and potentially lead to transformational impacts in molecular and cellular bioscience.
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The Understanding the Rules of Life: Microbiome Theory and Mechanisms (URoL:MTM) program is an integrative collaborationacross Directorates and Offices within the National Science Foundation. The objective of URoL:MTM is to understand and establish the theory and mechanisms that govern the structure and function of microbiomes, a collection of microbes in a specific habitat/environment. This may include but is not limited to host-associated microbiomes, such as those with humans and other organisms, where i) the microbiome impacts host physiology, behavior, development, and fitness; ii) the host influences the metabolic activity, dynamics and evolution of the microbiome, and iii) the environment (biological, chemical, physical, and social) influences and is influenced by both the host and the microbiome. Recent progress has transformed our ability to identify and catalogue the microbes present in a given environment and measure multiple aspects ofbiological, chemical, physical, and social environments that affect the interactions among the members of the microbiome, the host, and/or habitat. Much descriptive and correlative work has been performed on many microbiome systems, particularly those in the human, soil, aquatic, and built environments. This research has resulted in new hypotheses about the microbiome's contributions to potential system function or dysfunction. The current challenge is to integrate the wide range of accumulated data and information and build on them to develop new causal/mechanistic models or theories of interactions and interdependencies across scales and systems.
MiamiOH OARS

Nanomanufacturing | NSF - National Science Foundation - 0 views

  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Science Foundation - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
MiamiOH OARS

Chemistry of Life Processes | NSF - National Science Foundation - 0 views

  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Science Foundation - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

Ajinomoto Group | About Us | Research & Development of Ajinomoto Group | AIAP (Ajinomoto Innovation Alliance Program) - 0 views

  •  
    Ajinomoto will accept new research proposals related to its core business and research areas from across the globe. Eligible research includes: research relating to the application of Amino acids / Mechanism of food palatability / Measurement of food palatability / Psychological and ethnological approach to food choice / Technology relating to food texture and mouth feel / Nutritional needs, gustatory preference and activity of the aged / Sports science and nutrition / Improvement of malnutrition in the developing countries / Clinical OMICS and biomarkers for cancer diagnostics, personalized medicine and personalized nutrition / Biopharmaceutical manufacturing technology / Materials for regenerative medicine / Metabolic Engineering, Bioinformatics, Synthetic Biology for the Bio-based Materials / Next generation materials for electronic industry and functional chemicals / Animal nutrition, Plant nutrition, Fish nutrition.
  •  
    Ajinomoto will accept new research proposals related to its core business and research areas from across the globe. Eligible research includes: research relating to the application of Amino acids / Mechanism of food palatability / Measurement of food palatability / Psychological and ethnological approach to food choice / Technology relating to food texture and mouth feel / Nutritional needs, gustatory preference and activity of the aged / Sports science and nutrition / Improvement of malnutrition in the developing countries / Clinical OMICS and biomarkers for cancer diagnostics, personalized medicine and personalized nutrition / Biopharmaceutical manufacturing technology / Materials for regenerative medicine / Metabolic Engineering, Bioinformatics, Synthetic Biology for the Bio-based Materials / Next generation materials for electronic industry and functional chemicals / Animal nutrition, Plant nutrition, Fish nutrition.
MiamiOH OARS

Biological Control - 0 views

  •  
    The objective of the DARPA Biological Control program is to build new capabilities for the control of biological systems across scales - from nanometers to centimeters, seconds to weeks, and biomolecules to populations of organisms - using embedded controllers made of biological parts to program system-level behavior. This program will apply and advance existing control theory to design and implement generalizable biological control strategies analogous to conventional control engineering, for example, for mechanical and electrical systems. The resulting advances in fundamental understanding and capabilities will create new opportunities for engineering biology. Specifically, the Biological Control program will demonstrate tools to rationally design and implement multiscale, closed-loop control of biological systems, through the development of biological controllers, testbeds to evaluate control of system-level behavior, and theory and models to predict and design effective control strategies. The resulting capabilities will be inherently generalizable to a variety of biological systems. Successful teams will integrate and apply these capabilities to demonstrate a practical proof-of-principle biological solution to a proposer-defined application relevant to the U.S. Department of Defense (DoD).
  •  
    The objective of the DARPA Biological Control program is to build new capabilities for the control of biological systems across scales - from nanometers to centimeters, seconds to weeks, and biomolecules to populations of organisms - using embedded controllers made of biological parts to program system-level behavior. This program will apply and advance existing control theory to design and implement generalizable biological control strategies analogous to conventional control engineering, for example, for mechanical and electrical systems. The resulting advances in fundamental understanding and capabilities will create new opportunities for engineering biology. Specifically, the Biological Control program will demonstrate tools to rationally design and implement multiscale, closed-loop control of biological systems, through the development of biological controllers, testbeds to evaluate control of system-level behavior, and theory and models to predict and design effective control strategies. The resulting capabilities will be inherently generalizable to a variety of biological systems. Successful teams will integrate and apply these capabilities to demonstrate a practical proof-of-principle biological solution to a proposer-defined application relevant to the U.S. Department of Defense (DoD).
MiamiOH OARS

NSF Quantum Computing & Information Science Faculty Fellows | NSF - National Science Foundation - 0 views

  •  
    In 2016, the National Science Foundation (NSF) unveiled a set of "Big Ideas," 10 bold, long-term research and process ideas that identify areas for future investment at the frontiers of science and engineering (see https://www.nsf.gov/news/special_reports/big_ideas/index.jsp). One of these ideas, "The Quantum Leap: Leading the Next Quantum Revolution," advances quantum technologies of the future: quantum computing, quantum communication, quantum simulations and quantum sensors. Recent advances in understanding and exploiting quantum mechanics are laying the foundation for generations of new discoveries that can benefit society in unforeseen ways. This "quantum revolution" requires a highly-trained workforce that can advance the envelope of what is possible, through research and development of practical solutions for quantum technologies. Academic faculty serve a vital role in the development of this workforce, by training the next generation of students while performing vital research.
MiamiOH OARS

Multimodal Sensor Systems for Precision Health Enabled by Data Harnessing, Artificial Intelligence, and Learning (SenSE) (nsf20556) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) through its Divisions of Electrical, Communications and Cyber Systems (ECCS); Chemical, Bioengineering, Environmental and Transport Systems (CBET); Civil, Mechanical and Manufacturing Innovation (CMMI); Information and Intelligent Systems (IIS); and Mathematical Sciences (DMS) announces a solicitation on Multimodal Sensor Systems for Precision Health enabled by Data Harnessing, Artificial Intelligence (AI), and Learning. Next-generation multimodal sensor systems for precision health integrated with AI, machine learning (ML), and mathematical and statistical (MS) methods for learning can be envisioned for harnessing a large volume of diverse data in real time with high accuracy, sensitivity and selectivity, and for building predictive models to enable more precise diagnosis and individualized treatments. It is expected that these multimodal sensor systems will have the potential to identify with high confidence combinations of biomarkers, including kinematic and kinetic indicators associated with specific disease and disability. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts, innovative methodologies, theory, algorithms, and enabling technologies that will address the fundamental scientific issues and technological challenges associated with precision health.
MiamiOH OARS

nsf.gov - Funding - Hazard Mitigation and Structural Engineering - US National Science Foundation (NSF) - 0 views

  •  
    The Hazard Mitigation and Structural Engineering (HMSE) program supports fundamental research to mitigate impacts of natural and anthropogenic hazards on civil infrastructure and to advance the reliability, resiliency, and sustainability of buildings and other structures. Hazards considered within the program include earthquake, tsunami, hurricane, tornado and other loads, as well as explosive and impact loading. Resiliency of buildings and other structures include structural and non-structural systems that, in totality, permit continued occupation or operation in case of an impact by a hazard. Research is encouraged that integrates structural and architectural engineering advances with discoveries in other science and engineering fields, such as earth and atmospheric sciences, material science, mechanics of materials, sensor technology, high performance computational modeling and simulation, dynamic system and control, and economics. The program seeks to fund transformative and cost-effective innovations for hazard mitigation of both new and rehabilitated buildings and other structures. Research in structural and architectural engineering is encouraged that extends beyond mature or current construction materials into investigations of smart and sustainable materials and technologies, and considers the structures in their entirety. In addition, the program funds research on structural health monitoring that goes beyond data acquisition to include the holistic system, integrating condition assessment and decision making tools to improve structural performance.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Research Experiences for Undergraduates (REU) program supports active research participation by undergraduate students in any of the areas of research funded by the National Science Foundation. REU projects involve students in meaningful ways in ongoing research programs or in research projects specifically designed for the REU program. This solicitation features two mechanisms for support of student research: (1) REU Sites are based on independent proposals to initiate and conduct projects that engage a number of students in research. REU Sites may be based in a single discipline or academic department or may offer interdisciplinary or multi-department research opportunities with a coherent intellectual theme. Proposals with an international dimension are welcome. (2) REU Supplements may be included as a component of proposals for new or renewal NSF grants or cooperative agreements or may be requested for ongoing NSF-funded research projects.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The National Cancer Institute (NCI) Exploratory/Developmental Grant (R21) funding opportunity supports the development of new research activities in all areas of cancer research. The R21 mechanism is intended to encourage exploratory and developmental research projects by providing support for the early and conceptual stages of these projects. These studies may involve considerable risk but may lead to a breakthrough in a particular area, or to the development of novel techniques, agents, methodologies, models, or applications that could have a major impact on a field of cancer research (biomedical, behavioral, or clinical).
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Fluid Dynamics program supports fundamental research and education on mechanisms and phenomena governing fluid flow. Proposed research should contribute to basic understanding; thus enabling the better design; predictability; efficiency; and control of systems that involve fluids. Encouraged are proposals that address innovative uses of fluids in materials development; manufacturing; biotechnology; nanotechnology; clinical diagnostics and drug delivery; sensor development and integration; energy and the environment. While the research should focus on fundamentals, a clear connection to potential application should be outlined.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) Funding Opportunity Announcement (FOA) that is being issued by the U.S. Department of Energy (DOE) is seeking applications that integrate Thermochemical Energy Storage (TCES) systems with a minimum of 6 hours of thermal storage to be used in ≥1 Megawatt-electric (≥1 MWe) scale CSP electricity generation that have promise to achieve a cost target of ≤$15 per kilowatt-hour-thermal (≤$15/kWhth) are the focus of this FOA. Successful projects will culminate in an on-sun demonstration of the thermochemical reactor along with reliable projections of the full scale performance of the integrated storage system through the utilization of validated performance models developed as part of the research and development effort.
MiamiOH OARS

nsf.gov - Funding - George E. Brown, Jr. Network for Earthquake Engineering Simulation Operations FY 2015-FY 2019 - US National Science Foundation (NSF) - 0 views

  •  
    Through this solicitation, NSF provides the opportunity for the earthquake engineering community to recompete to operate the "second generation" of NEES, hereinafter referred to in this solicitation as "NEES2."  Proposals are solicited by NSF's Division of Civil, Mechanical and Manufacturing Innovation to provide, manage, operate, and maintain NEES2 to support frontier earthquake engineering research, innovation, education, and workforce development for the five-year period from October 1, 2014 to September 30, 2019 [i.e., fiscal year (FY) 2015-FY 2019].  Recompeted through this solicitation for NEES2 are the following components:  (a) a network-wide NEES2 management office (NMO) with the Principal Investigator (PI)/Network Director located at the lead institution, (b) four to six experimental facilities that provide the most critical and technically advanced capabilities and data needed by the earthquake engineering research community for transformative research, plus a post-earthquake, rapid response research (PERRR) facility, (c) community-driven, production-quality cyberinfrastructure, and (d) education and community outreach activities.  This solicitation does not separately compete the components. Instead, it requests proposals to integrate all these components into a cohesive earthquake engineering research infrastructure for FY 2015-FY 2019. 
MiamiOH OARS

nsf.gov - Funding - Research Experiences for Undergraduates - US National Science Foundation (NSF) - 0 views

  •  
    The Research Experiences for Undergraduates (REU) program supports active research participation by undergraduate students in any of the areas of research funded by the National Science Foundation. REU projects involve students in meaningful ways in ongoing research programs or in research projects specifically designed for the REU program. This solicitation features two mechanisms for support of student research: (1) REU Sites are based on independent proposals to initiate and conduct projects that engage a number of students in research. REU Sites may be based in a single discipline or academic department or may offer interdisciplinary or multi-department research opportunities with a coherent intellectual theme. Proposals with an international dimension are welcome. (2) REU Supplements may be included as a component of proposals for new or renewal NSF grants or cooperative agreements or may be requested for ongoing NSF-funded research projects.
MiamiOH OARS

nsf.gov - Funding - Integrated NSF Support Promoting Interdisciplinary Research and Education - US National Science Foundation (NSF) - 0 views

  •  
    The INSPIRE awards program was established to address some of the most complicated and pressing scientific problems that lie at the intersection of traditional disciplines.  It is intended to encourage investigators to submit bold, exceptional proposals that some may consider to be at a disadvantage in a standard NSF review process; it is not intended for proposals that are more appropriate for existing award mechanisms.
‹ Previous 21 - 40 of 156 Next › Last »
Showing 20 items per page