Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Experiment

Rss Feed Group items tagged

Weiye Loh

Science, Strong Inference -- Proper Scientific Method - 0 views

  • Scientists these days tend to keep up a polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist's field and methods of study are as good as every other scientist's and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants.
  • Why should there be such rapid advances in some fields and not in others? I think the usual explanations that we tend to think of - such as the tractability of the subject, or the quality or education of the men drawn into it, or the size of research contracts - are important but inadequate. I have begun to believe that the primary factor in scientific advance is an intellectual one. These rapidly moving fields are fields where a particular method of doing scientific research is systematically used and taught, an accumulative method of inductive inference that is so effective that I think it should be given the name of "strong inference." I believe it is important to examine this method, its use and history and rationale, and to see whether other groups and individuals might learn to adopt it profitably in their own scientific and intellectual work. In its separate elements, strong inference is just the simple and old-fashioned method of inductive inference that goes back to Francis Bacon. The steps are familiar to every college student and are practiced, off and on, by every scientist. The difference comes in their systematic application. Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly: Devising alternative hypotheses; Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly is possible, exclude one or more of the hypotheses; Carrying out the experiment so as to get a clean result; Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.
  • On any new problem, of course, inductive inference is not as simple and certain as deduction, because it involves reaching out into the unknown. Steps 1 and 2 require intellectual inventions, which must be cleverly chosen so that hypothesis, experiment, outcome, and exclusion will be related in a rigorous syllogism; and the question of how to generate such inventions is one which has been extensively discussed elsewhere (2, 3). What the formal schema reminds us to do is to try to make these inventions, to take the next step, to proceed to the next fork, without dawdling or getting tied up in irrelevancies.
  • ...28 more annotations...
  • It is clear why this makes for rapid and powerful progress. For exploring the unknown, there is no faster method; this is the minimum sequence of steps. Any conclusion that is not an exclusion is insecure and must be rechecked. Any delay in recycling to the next set of hypotheses is only a delay. Strong inference, and the logical tree it generates, are to inductive reasoning what the syllogism is to deductive reasoning in that it offers a regular method for reaching firm inductive conclusions one after the other as rapidly as possible.
  • "But what is so novel about this?" someone will say. This is the method of science and always has been, why give it a special name? The reason is that many of us have almost forgotten it. Science is now an everyday business. Equipment, calculations, lectures become ends in themselves. How many of us write down our alternatives and crucial experiments every day, focusing on the exclusion of a hypothesis? We may write our scientific papers so that it looks as if we had steps 1, 2, and 3 in mind all along. But in between, we do busywork. We become "method- oriented" rather than "problem-oriented." We say we prefer to "feel our way" toward generalizations. We fail to teach our students how to sharpen up their inductive inferences. And we do not realize the added power that the regular and explicit use of alternative hypothesis and sharp exclusion could give us at every step of our research.
  • A distinguished cell biologist rose and said, "No two cells give the same properties. Biology is the science of heterogeneous systems." And he added privately. "You know there are scientists, and there are people in science who are just working with these over-simplified model systems - DNA chains and in vitro systems - who are not doing science at all. We need their auxiliary work: they build apparatus, they make minor studies, but they are not scientists." To which Cy Levinthal replied: "Well, there are two kinds of biologists, those who are looking to see if there is one thing that can be understood and those who keep saying it is very complicated and that nothing can be understood. . . . You must study the simplest system you think has the properties you are interested in."
  • At the 1958 Conference on Biophysics, at Boulder, there was a dramatic confrontation between the two points of view. Leo Szilard said: "The problems of how enzymes are induced, of how proteins are synthesized, of how antibodies are formed, are closer to solution than is generally believed. If you do stupid experiments, and finish one a year, it can take 50 years. But if you stop doing experiments for a little while and think how proteins can possibly be synthesized, there are only about 5 different ways, not 50! And it will take only a few experiments to distinguish these." One of the young men added: "It is essentially the old question: How small and elegant an experiment can you perform?" These comments upset a number of those present. An electron microscopist said. "Gentlemen, this is off the track. This is philosophy of science." Szilard retorted. "I was not quarreling with third-rate scientists: I was quarreling with first-rate scientists."
  • Any criticism or challenge to consider changing our methods strikes of course at all our ego-defenses. But in this case the analytical method offers the possibility of such great increases in effectiveness that it is unfortunate that it cannot be regarded more often as a challenge to learning rather than as challenge to combat. Many of the recent triumphs in molecular biology have in fact been achieved on just such "oversimplified model systems," very much along the analytical lines laid down in the 1958 discussion. They have not fallen to the kind of men who justify themselves by saying "No two cells are alike," regardless of how true that may ultimately be. The triumphs are in fact triumphs of a new way of thinking.
  • the emphasis on strong inference
  • is also partly due to the nature of the fields themselves. Biology, with its vast informational detail and complexity, is a "high-information" field, where years and decades can easily be wasted on the usual type of "low-information" observations or experiments if one does not think carefully in advance about what the most important and conclusive experiments would be. And in high-energy physics, both the "information flux" of particles from the new accelerators and the million-dollar costs of operation have forced a similar analytical approach. It pays to have a top-notch group debate every experiment ahead of time; and the habit spreads throughout the field.
  • Historically, I think, there have been two main contributions to the development of a satisfactory strong-inference method. The first is that of Francis Bacon (13). He wanted a "surer method" of "finding out nature" than either the logic-chopping or all-inclusive theories of the time or the laudable but crude attempts to make inductions "by simple enumeration." He did not merely urge experiments as some suppose, he showed the fruitfulness of interconnecting theory and experiment so that the one checked the other. Of the many inductive procedures he suggested, the most important, I think, was the conditional inductive tree, which proceeded from alternative hypothesis (possible "causes," as he calls them), through crucial experiments ("Instances of the Fingerpost"), to exclusion of some alternatives and adoption of what is left ("establishing axioms"). His Instances of the Fingerpost are explicitly at the forks in the logical tree, the term being borrowed "from the fingerposts which are set up where roads part, to indicate the several directions."
  • ere was a method that could separate off the empty theories! Bacon, said the inductive method could be learned by anybody, just like learning to "draw a straighter line or more perfect circle . . . with the help of a ruler or a pair of compasses." "My way of discovering sciences goes far to level men's wit and leaves but little to individual excellence, because it performs everything by the surest rules and demonstrations." Even occasional mistakes would not be fatal. "Truth will sooner come out from error than from confusion."
  • Nevertheless there is a difficulty with this method. As Bacon emphasizes, it is necessary to make "exclusions." He says, "The induction which is to be available for the discovery and demonstration of sciences and arts, must analyze nature by proper rejections and exclusions, and then, after a sufficient number of negatives come to a conclusion on the affirmative instances." "[To man] it is granted only to proceed at first by negatives, and at last to end in affirmatives after exclusion has been exhausted." Or, as the philosopher Karl Popper says today there is no such thing as proof in science - because some later alternative explanation may be as good or better - so that science advances only by disproofs. There is no point in making hypotheses that are not falsifiable because such hypotheses do not say anything, "it must be possible for all empirical scientific system to be refuted by experience" (14).
  • The difficulty is that disproof is a hard doctrine. If you have a hypothesis and I have another hypothesis, evidently one of them must be eliminated. The scientist seems to have no choice but to be either soft-headed or disputatious. Perhaps this is why so many tend to resist the strong analytical approach and why some great scientists are so disputatious.
  • Fortunately, it seems to me, this difficulty can be removed by the use of a second great intellectual invention, the "method of multiple hypotheses," which is what was needed to round out the Baconian scheme. This is a method that was put forward by T.C. Chamberlin (15), a geologist at Chicago at the turn of the century, who is best known for his contribution to the Chamberlain-Moulton hypothesis of the origin of the solar system.
  • Chamberlin says our trouble is that when we make a single hypothesis, we become attached to it. "The moment one has offered an original explanation for a phenomenon which seems satisfactory, that moment affection for his intellectual child springs into existence, and as the explanation grows into a definite theory his parental affections cluster about his offspring and it grows more and more dear to him. . . . There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory..." "To avoid this grave danger, the method of multiple working hypotheses is urged. It differs from the simple working hypothesis in that it distributes the effort and divides the affections. . . . Each hypothesis suggests its own criteria, its own method of proof, its own method of developing the truth, and if a group of hypotheses encompass the subject on all sides, the total outcome of means and of methods is full and rich."
  • The conflict and exclusion of alternatives that is necessary to sharp inductive inference has been all too often a conflict between men, each with his single Ruling Theory. But whenever each man begins to have multiple working hypotheses, it becomes purely a conflict between ideas. It becomes much easier then for each of us to aim every day at conclusive disproofs - at strong inference - without either reluctance or combativeness. In fact, when there are multiple hypotheses, which are not anyone's "personal property," and when there are crucial experiments to test them, the daily life in the laboratory takes on an interest and excitement it never had, and the students can hardly wait to get to work to see how the detective story will come out. It seems to me that this is the reason for the development of those distinctive habits of mind and the "complex thought" that Chamberlin described, the reason for the sharpness, the excitement, the zeal, the teamwork - yes, even international teamwork - in molecular biology and high- energy physics today. What else could be so effective?
  • Unfortunately, I think, there are other other areas of science today that are sick by comparison, because they have forgotten the necessity for alternative hypotheses and disproof. Each man has only one branch - or none - on the logical tree, and it twists at random without ever coming to the need for a crucial decision at any point. We can see from the external symptoms that there is something scientifically wrong. The Frozen Method, The Eternal Surveyor, The Never Finished, The Great Man With a Single Hypothcsis, The Little Club of Dependents, The Vendetta, The All-Encompassing Theory Which Can Never Be Falsified.
  • a "theory" of this sort is not a theory at all, because it does not exclude anything. It predicts everything, and therefore does not predict anything. It becomes simply a verbal formula which the graduate student repeats and believes because the professor has said it so often. This is not science, but faith; not theory, but theology. Whether it is hand-waving or number-waving, or equation-waving, a theory is not a theory unless it can be disproved. That is, unless it can be falsified by some possible experimental outcome.
  • the work methods of a number of scientists have been testimony to the power of strong inference. Is success not due in many cases to systematic use of Bacon's "surest rules and demonstrations" as much as to rare and unattainable intellectual power? Faraday's famous diary (16), or Fermi's notebooks (3, 17), show how these men believed in the effectiveness of daily steps in applying formal inductive methods to one problem after another.
  • Surveys, taxonomy, design of equipment, systematic measurements and tables, theoretical computations - all have their proper and honored place, provided they are parts of a chain of precise induction of how nature works. Unfortunately, all too often they become ends in themselves, mere time-serving from the point of view of real scientific advance, a hypertrophied methodology that justifies itself as a lore of respectability.
  • We speak piously of taking measurements and making small studies that will "add another brick to the temple of science." Most such bricks just lie around the brickyard (20). Tables of constraints have their place and value, but the study of one spectrum after another, if not frequently re-evaluated, may become a substitute for thinking, a sad waste of intelligence in a research laboratory, and a mistraining whose crippling effects may last a lifetime.
  • Beware of the man of one method or one instrument, either experimental or theoretical. He tends to become method-oriented rather than problem-oriented. The method-oriented man is shackled; the problem-oriented man is at least reaching freely toward that is most important. Strong inference redirects a man to problem-orientation, but it requires him to be willing repeatedly to put aside his last methods and teach himself new ones.
  • anyone who asks the question about scientific effectiveness will also conclude that much of the mathematizing in physics and chemistry today is irrelevant if not misleading. The great value of mathematical formulation is that when an experiment agrees with a calculation to five decimal places, a great many alternative hypotheses are pretty well excluded (though the Bohr theory and the Schrödinger theory both predict exactly the same Rydberg constant!). But when the fit is only to two decimal places, or one, it may be a trap for the unwary; it may be no better than any rule-of-thumb extrapolation, and some other kind of qualitative exclusion might be more rigorous for testing the assumptions and more important to scientific understanding than the quantitative fit.
  • Today we preach that science is not science unless it is quantitative. We substitute correlations for causal studies, and physical equations for organic reasoning. Measurements and equations are supposed to sharpen thinking, but, in my observation, they more often tend to make the thinking noncausal and fuzzy. They tend to become the object of scientific manipulation instead of auxiliary tests of crucial inferences.
  • Many - perhaps most - of the great issues of science are qualitative, not quantitative, even in physics and chemistry. Equations and measurements are useful when and only when they are related to proof; but proof or disproof comes first and is in fact strongest when it is absolutely convincing without any quantitative measurement.
  • you can catch phenomena in a logical box or in a mathematical box. The logical box is coarse but strong. The mathematical box is fine-grained but flimsy. The mathematical box is a beautiful way of wrapping up a problem, but it will not hold the phenomena unless they have been caught in a logical box to begin with.
  • Of course it is easy - and all too common - for one scientist to call the others unscientific. My point is not that my particular conclusions here are necessarily correct, but that we have long needed some absolute standard of possible scientific effectiveness by which to measure how well we are succeeding in various areas - a standard that many could agree on and one that would be undistorted by the scientific pressures and fashions of the times and the vested interests and busywork that they develop. It is not public evaluation I am interested in so much as a private measure by which to compare one's own scientific performance with what it might be. I believe that strong inference provides this kind of standard of what the maximum possible scientific effectiveness could be - as well as a recipe for reaching it.
  • The strong-inference point of view is so resolutely critical of methods of work and values in science that any attempt to compare specific cases is likely to sound but smug and destructive. Mainly one should try to teach it by example and by exhorting to self-analysis and self-improvement only in general terms
  • one severe but useful private test - a touchstone of strong inference - that removes the necessity for third-person criticism, because it is a test that anyone can learn to carry with him for use as needed. It is our old friend the Baconian "exclusion," but I call it "The Question." Obviously it should be applied as much to one's own thinking as to others'. It consists of asking in your own mind, on hearing any scientific explanation or theory put forward, "But sir, what experiment could disprove your hypothesis?"; or, on hearing a scientific experiment described, "But sir, what hypothesis does your experiment disprove?"
  • It is not true that all science is equal; or that we cannot justly compare the effectiveness of scientists by any method other than a mutual-recommendation system. The man to watch, the man to put your money on, is not the man who wants to make "a survey" or a "more detailed study" but the man with the notebook, the man with the alternative hypotheses and the crucial experiments, the man who knows how to answer your Question of disproof and is already working on it.
  •  
    There is so much bad science and bad statistics information in media reports, publications, and shared between conversants that I think it is important to understand about facts and proofs and the associated pitfalls.
Weiye Loh

The Decline Effect and the Scientific Method : The New Yorker - 0 views

  • On September 18, 2007, a few dozen neuroscientists, psychiatrists, and drug-company executives gathered in a hotel conference room in Brussels to hear some startling news. It had to do with a class of drugs known as atypical or second-generation antipsychotics, which came on the market in the early nineties.
  • the therapeutic power of the drugs appeared to be steadily waning. A recent study showed an effect that was less than half of that documented in the first trials, in the early nineteen-nineties. Many researchers began to argue that the expensive pharmaceuticals weren’t any better than first-generation antipsychotics, which have been in use since the fifties. “In fact, sometimes they now look even worse,” John Davis, a professor of psychiatry at the University of Illinois at Chicago, told me.
  • Before the effectiveness of a drug can be confirmed, it must be tested and tested again. Different scientists in different labs need to repeat the protocols and publish their results. The test of replicability, as it’s known, is the foundation of modern research. Replicability is how the community enforces itself. It’s a safeguard for the creep of subjectivity. Most of the time, scientists know what results they want, and that can influence the results they get. The premise of replicability is that the scientific community can correct for these flaws.
  • ...30 more annotations...
  • But now all sorts of well-established, multiply confirmed findings have started to look increasingly uncertain. It’s as if our facts were losing their truth: claims that have been enshrined in textbooks are suddenly unprovable. This phenomenon doesn’t yet have an official name, but it’s occurring across a wide range of fields, from psychology to ecology. In the field of medicine, the phenomenon seems extremely widespread, affecting not only antipsychotics but also therapies ranging from cardiac stents to Vitamin E and antidepressants: Davis has a forthcoming analysis demonstrating that the efficacy of antidepressants has gone down as much as threefold in recent decades.
  • In private, Schooler began referring to the problem as “cosmic habituation,” by analogy to the decrease in response that occurs when individuals habituate to particular stimuli. “Habituation is why you don’t notice the stuff that’s always there,” Schooler says. “It’s an inevitable process of adjustment, a ratcheting down of excitement. I started joking that it was like the cosmos was habituating to my ideas. I took it very personally.”
  • At first, he assumed that he’d made an error in experimental design or a statistical miscalculation. But he couldn’t find anything wrong with his research. He then concluded that his initial batch of research subjects must have been unusually susceptible to verbal overshadowing. (John Davis, similarly, has speculated that part of the drop-off in the effectiveness of antipsychotics can be attributed to using subjects who suffer from milder forms of psychosis which are less likely to show dramatic improvement.) “It wasn’t a very satisfying explanation,” Schooler says. “One of my mentors told me that my real mistake was trying to replicate my work. He told me doing that was just setting myself up for disappointment.”
  • the effect is especially troubling because of what it exposes about the scientific process. If replication is what separates the rigor of science from the squishiness of pseudoscience, where do we put all these rigorously validated findings that can no longer be proved? Which results should we believe? Francis Bacon, the early-modern philosopher and pioneer of the scientific method, once declared that experiments were essential, because they allowed us to “put nature to the question.” But it appears that nature often gives us different answers.
  • The most likely explanation for the decline is an obvious one: regression to the mean. As the experiment is repeated, that is, an early statistical fluke gets cancelled out. The extrasensory powers of Schooler’s subjects didn’t decline—they were simply an illusion that vanished over time. And yet Schooler has noticed that many of the data sets that end up declining seem statistically solid—that is, they contain enough data that any regression to the mean shouldn’t be dramatic. “These are the results that pass all the tests,” he says. “The odds of them being random are typically quite remote, like one in a million. This means that the decline effect should almost never happen. But it happens all the time!
  • this is why Schooler believes that the decline effect deserves more attention: its ubiquity seems to violate the laws of statistics. “Whenever I start talking about this, scientists get very nervous,” he says. “But I still want to know what happened to my results. Like most scientists, I assumed that it would get easier to document my effect over time. I’d get better at doing the experiments, at zeroing in on the conditions that produce verbal overshadowing. So why did the opposite happen? I’m convinced that we can use the tools of science to figure this out. First, though, we have to admit that we’ve got a problem.”
  • In 2001, Michael Jennions, a biologist at the Australian National University, set out to analyze “temporal trends” across a wide range of subjects in ecology and evolutionary biology. He looked at hundreds of papers and forty-four meta-analyses (that is, statistical syntheses of related studies), and discovered a consistent decline effect over time, as many of the theories seemed to fade into irrelevance. In fact, even when numerous variables were controlled for—Jennions knew, for instance, that the same author might publish several critical papers, which could distort his analysis—there was still a significant decrease in the validity of the hypothesis, often within a year of publication. Jennions admits that his findings are troubling, but expresses a reluctance to talk about them publicly. “This is a very sensitive issue for scientists,” he says. “You know, we’re supposed to be dealing with hard facts, the stuff that’s supposed to stand the test of time. But when you see these trends you become a little more skeptical of things.”
  • the worst part was that when I submitted these null results I had difficulty getting them published. The journals only wanted confirming data. It was too exciting an idea to disprove, at least back then.
  • the steep rise and slow fall of fluctuating asymmetry is a clear example of a scientific paradigm, one of those intellectual fads that both guide and constrain research: after a new paradigm is proposed, the peer-review process is tilted toward positive results. But then, after a few years, the academic incentives shift—the paradigm has become entrenched—so that the most notable results are now those that disprove the theory.
  • Jennions, similarly, argues that the decline effect is largely a product of publication bias, or the tendency of scientists and scientific journals to prefer positive data over null results, which is what happens when no effect is found. The bias was first identified by the statistician Theodore Sterling, in 1959, after he noticed that ninety-seven per cent of all published psychological studies with statistically significant data found the effect they were looking for. A “significant” result is defined as any data point that would be produced by chance less than five per cent of the time. This ubiquitous test was invented in 1922 by the English mathematician Ronald Fisher, who picked five per cent as the boundary line, somewhat arbitrarily, because it made pencil and slide-rule calculations easier. Sterling saw that if ninety-seven per cent of psychology studies were proving their hypotheses, either psychologists were extraordinarily lucky or they published only the outcomes of successful experiments. In recent years, publication bias has mostly been seen as a problem for clinical trials, since pharmaceutical companies are less interested in publishing results that aren’t favorable. But it’s becoming increasingly clear that publication bias also produces major distortions in fields without large corporate incentives, such as psychology and ecology.
  • While publication bias almost certainly plays a role in the decline effect, it remains an incomplete explanation. For one thing, it fails to account for the initial prevalence of positive results among studies that never even get submitted to journals. It also fails to explain the experience of people like Schooler, who have been unable to replicate their initial data despite their best efforts
  • an equally significant issue is the selective reporting of results—the data that scientists choose to document in the first place. Palmer’s most convincing evidence relies on a statistical tool known as a funnel graph. When a large number of studies have been done on a single subject, the data should follow a pattern: studies with a large sample size should all cluster around a common value—the true result—whereas those with a smaller sample size should exhibit a random scattering, since they’re subject to greater sampling error. This pattern gives the graph its name, since the distribution resembles a funnel.
  • The funnel graph visually captures the distortions of selective reporting. For instance, after Palmer plotted every study of fluctuating asymmetry, he noticed that the distribution of results with smaller sample sizes wasn’t random at all but instead skewed heavily toward positive results.
  • Palmer has since documented a similar problem in several other contested subject areas. “Once I realized that selective reporting is everywhere in science, I got quite depressed,” Palmer told me. “As a researcher, you’re always aware that there might be some nonrandom patterns, but I had no idea how widespread it is.” In a recent review article, Palmer summarized the impact of selective reporting on his field: “We cannot escape the troubling conclusion that some—perhaps many—cherished generalities are at best exaggerated in their biological significance and at worst a collective illusion nurtured by strong a-priori beliefs often repeated.”
  • Palmer emphasizes that selective reporting is not the same as scientific fraud. Rather, the problem seems to be one of subtle omissions and unconscious misperceptions, as researchers struggle to make sense of their results. Stephen Jay Gould referred to this as the “shoehorning” process. “A lot of scientific measurement is really hard,” Simmons told me. “If you’re talking about fluctuating asymmetry, then it’s a matter of minuscule differences between the right and left sides of an animal. It’s millimetres of a tail feather. And so maybe a researcher knows that he’s measuring a good male”—an animal that has successfully mated—“and he knows that it’s supposed to be symmetrical. Well, that act of measurement is going to be vulnerable to all sorts of perception biases. That’s not a cynical statement. That’s just the way human beings work.”
  • One of the classic examples of selective reporting concerns the testing of acupuncture in different countries. While acupuncture is widely accepted as a medical treatment in various Asian countries, its use is much more contested in the West. These cultural differences have profoundly influenced the results of clinical trials. Between 1966 and 1995, there were forty-seven studies of acupuncture in China, Taiwan, and Japan, and every single trial concluded that acupuncture was an effective treatment. During the same period, there were ninety-four clinical trials of acupuncture in the United States, Sweden, and the U.K., and only fifty-six per cent of these studies found any therapeutic benefits. As Palmer notes, this wide discrepancy suggests that scientists find ways to confirm their preferred hypothesis, disregarding what they don’t want to see. Our beliefs are a form of blindness.
  • John Ioannidis, an epidemiologist at Stanford University, argues that such distortions are a serious issue in biomedical research. “These exaggerations are why the decline has become so common,” he says. “It’d be really great if the initial studies gave us an accurate summary of things. But they don’t. And so what happens is we waste a lot of money treating millions of patients and doing lots of follow-up studies on other themes based on results that are misleading.”
  • In 2005, Ioannidis published an article in the Journal of the American Medical Association that looked at the forty-nine most cited clinical-research studies in three major medical journals. Forty-five of these studies reported positive results, suggesting that the intervention being tested was effective. Because most of these studies were randomized controlled trials—the “gold standard” of medical evidence—they tended to have a significant impact on clinical practice, and led to the spread of treatments such as hormone replacement therapy for menopausal women and daily low-dose aspirin to prevent heart attacks and strokes. Nevertheless, the data Ioannidis found were disturbing: of the thirty-four claims that had been subject to replication, forty-one per cent had either been directly contradicted or had their effect sizes significantly downgraded.
  • The situation is even worse when a subject is fashionable. In recent years, for instance, there have been hundreds of studies on the various genes that control the differences in disease risk between men and women. These findings have included everything from the mutations responsible for the increased risk of schizophrenia to the genes underlying hypertension. Ioannidis and his colleagues looked at four hundred and thirty-two of these claims. They quickly discovered that the vast majority had serious flaws. But the most troubling fact emerged when he looked at the test of replication: out of four hundred and thirty-two claims, only a single one was consistently replicable. “This doesn’t mean that none of these claims will turn out to be true,” he says. “But, given that most of them were done badly, I wouldn’t hold my breath.”
  • the main problem is that too many researchers engage in what he calls “significance chasing,” or finding ways to interpret the data so that it passes the statistical test of significance—the ninety-five-per-cent boundary invented by Ronald Fisher. “The scientists are so eager to pass this magical test that they start playing around with the numbers, trying to find anything that seems worthy,” Ioannidis says. In recent years, Ioannidis has become increasingly blunt about the pervasiveness of the problem. One of his most cited papers has a deliberately provocative title: “Why Most Published Research Findings Are False.”
  • The problem of selective reporting is rooted in a fundamental cognitive flaw, which is that we like proving ourselves right and hate being wrong. “It feels good to validate a hypothesis,” Ioannidis said. “It feels even better when you’ve got a financial interest in the idea or your career depends upon it. And that’s why, even after a claim has been systematically disproven”—he cites, for instance, the early work on hormone replacement therapy, or claims involving various vitamins—“you still see some stubborn researchers citing the first few studies that show a strong effect. They really want to believe that it’s true.”
  • scientists need to become more rigorous about data collection before they publish. “We’re wasting too much time chasing after bad studies and underpowered experiments,” he says. The current “obsession” with replicability distracts from the real problem, which is faulty design. He notes that nobody even tries to replicate most science papers—there are simply too many. (According to Nature, a third of all studies never even get cited, let alone repeated.)
  • Schooler recommends the establishment of an open-source database, in which researchers are required to outline their planned investigations and document all their results. “I think this would provide a huge increase in access to scientific work and give us a much better way to judge the quality of an experiment,” Schooler says. “It would help us finally deal with all these issues that the decline effect is exposing.”
  • Although such reforms would mitigate the dangers of publication bias and selective reporting, they still wouldn’t erase the decline effect. This is largely because scientific research will always be shadowed by a force that can’t be curbed, only contained: sheer randomness. Although little research has been done on the experimental dangers of chance and happenstance, the research that exists isn’t encouraging
  • John Crabbe, a neuroscientist at the Oregon Health and Science University, conducted an experiment that showed how unknowable chance events can skew tests of replicability. He performed a series of experiments on mouse behavior in three different science labs: in Albany, New York; Edmonton, Alberta; and Portland, Oregon. Before he conducted the experiments, he tried to standardize every variable he could think of. The same strains of mice were used in each lab, shipped on the same day from the same supplier. The animals were raised in the same kind of enclosure, with the same brand of sawdust bedding. They had been exposed to the same amount of incandescent light, were living with the same number of littermates, and were fed the exact same type of chow pellets. When the mice were handled, it was with the same kind of surgical glove, and when they were tested it was on the same equipment, at the same time in the morning.
  • The premise of this test of replicability, of course, is that each of the labs should have generated the same pattern of results. “If any set of experiments should have passed the test, it should have been ours,” Crabbe says. “But that’s not the way it turned out.” In one experiment, Crabbe injected a particular strain of mouse with cocaine. In Portland the mice given the drug moved, on average, six hundred centimetres more than they normally did; in Albany they moved seven hundred and one additional centimetres. But in the Edmonton lab they moved more than five thousand additional centimetres. Similar deviations were observed in a test of anxiety. Furthermore, these inconsistencies didn’t follow any detectable pattern. In Portland one strain of mouse proved most anxious, while in Albany another strain won that distinction.
  • The disturbing implication of the Crabbe study is that a lot of extraordinary scientific data are nothing but noise. The hyperactivity of those coked-up Edmonton mice wasn’t an interesting new fact—it was a meaningless outlier, a by-product of invisible variables we don’t understand. The problem, of course, is that such dramatic findings are also the most likely to get published in prestigious journals, since the data are both statistically significant and entirely unexpected. Grants get written, follow-up studies are conducted. The end result is a scientific accident that can take years to unravel.
  • This suggests that the decline effect is actually a decline of illusion.
  • While Karl Popper imagined falsification occurring with a single, definitive experiment—Galileo refuted Aristotelian mechanics in an afternoon—the process turns out to be much messier than that. Many scientific theories continue to be considered true even after failing numerous experimental tests. Verbal overshadowing might exhibit the decline effect, but it remains extensively relied upon within the field. The same holds for any number of phenomena, from the disappearing benefits of second-generation antipsychotics to the weak coupling ratio exhibited by decaying neutrons, which appears to have fallen by more than ten standard deviations between 1969 and 2001. Even the law of gravity hasn’t always been perfect at predicting real-world phenomena. (In one test, physicists measuring gravity by means of deep boreholes in the Nevada desert found a two-and-a-half-per-cent discrepancy between the theoretical predictions and the actual data.) Despite these findings, second-generation antipsychotics are still widely prescribed, and our model of the neutron hasn’t changed. The law of gravity remains the same.
  • Such anomalies demonstrate the slipperiness of empiricism. Although many scientific ideas generate conflicting results and suffer from falling effect sizes, they continue to get cited in the textbooks and drive standard medical practice. Why? Because these ideas seem true. Because they make sense. Because we can’t bear to let them go. And this is why the decline effect is so troubling. Not because it reveals the human fallibility of science, in which data are tweaked and beliefs shape perceptions. (Such shortcomings aren’t surprising, at least for scientists.) And not because it reveals that many of our most exciting theories are fleeting fads and will soon be rejected. (That idea has been around since Thomas Kuhn.) The decline effect is troubling because it reminds us how difficult it is to prove anything. We like to pretend that our experiments define the truth for us. But that’s often not the case. Just because an idea is true doesn’t mean it can be proved. And just because an idea can be proved doesn’t mean it’s true. When the experiments are done, we still have to choose what to believe.
Weiye Loh

Editorial Policies - 0 views

  • More than 60% of the experiments fail to produce results or expected discoveries. From an objective point of view, this high percentage of “failed “ research generates high level pieces of knowledge. Generally, all these experiments have not been published anywhere as they have been considered useless for our research target. The objective of “The All Results Journals: Biology” focuses on recovering and publishing these valuable pieces of information in Biology. These key experiments must be considered vital for the development of science. They  are the catalyst for a real science-based empirical knowledge.
  • The All Results Journals: Biology is an online journal that publishes research articles after a controlled peer review. All articles will be published, without any barriers to access, immediately upon acceptance.
  • Every single contribution submitted to The All Results Journals and selected for a peer-review will be sent to, at least, one reviewer, though usually could be sent to two or more independent reviewers, selected by the editors and sometimes by more if further advice is required (e.g., on statistics or on a particular technique). Authors are welcome to suggest suitable independent reviewers and may also request the journal to exclude certain individuals or laboratories.
  • ...1 more annotation...
  • The journal will cover negative (or “secondary”) experiments coming from all disciplines of Biology (Botany, Cell Biology, Genetics, Ecology, Microbiology, etc). An article in The All Results Journals should be created to show the failed experiments tuning methods or reactions. Articles should present experimental discoveries, interpret their significance and establish perspective with respect to earlier work of the author. It is also advisable to cite the work where the experiments has already been tuned and published.
  •  
    More than 60% of the experiments fail to produce results or expected discoveries. From an objective point of view, this high percentage of "failed " research generates high level pieces of knowledge. Generally, all these experiment
Weiye Loh

Learn to love uncertainty and failure, say leading thinkers | Edge question | Science |... - 0 views

  • Being comfortable with uncertainty, knowing the limits of what science can tell us, and understanding the worth of failure are all valuable tools that would improve people's lives, according to some of the world's leading thinkers.
  • he ideas were submitted as part of an annual exercise by the web magazine Edge, which invites scientists, philosophers and artists to opine on a major question of the moment. This year it was, "What scientific concept would improve everybody's cognitive toolkit?"
  • the public often misunderstands the scientific process and the nature of scientific doubt. This can fuel public rows over the significance of disagreements between scientists about controversial issues such as climate change and vaccine safety.
  • ...13 more annotations...
  • Carlo Rovelli, a physicist at the University of Aix-Marseille, emphasised the uselessness of certainty. He said that the idea of something being "scientifically proven" was practically an oxymoron and that the very foundation of science is to keep the door open to doubt.
  • "A good scientist is never 'certain'. Lack of certainty is precisely what makes conclusions more reliable than the conclusions of those who are certain: because the good scientist will be ready to shift to a different point of view if better elements of evidence, or novel arguments emerge. Therefore certainty is not only something of no use, but is in fact damaging, if we value reliability."
  • physicist Lawrence Krauss of Arizona State University agreed. "In the public parlance, uncertainty is a bad thing, implying a lack of rigour and predictability. The fact that global warming estimates are uncertain, for example, has been used by many to argue against any action at the present time," he said.
  • however, uncertainty is a central component of what makes science successful. Being able to quantify uncertainty, and incorporate it into models, is what makes science quantitative, rather than qualitative. Indeed, no number, no measurement, no observable in science is exact. Quoting numbers without attaching an uncertainty to them implies they have, in essence, no meaning."
  • Neil Gershenfeld, director of the Massachusetts Institute of Technology's Centre for Bits and Atoms wants everyone to know that "truth" is just a model. "The most common misunderstanding about science is that scientists seek and find truth. They don't – they make and test models," he said.
  • Building models is very different from proclaiming truths. It's a never-ending process of discovery and refinement, not a war to win or destination to reach. Uncertainty is intrinsic to the process of finding out what you don't know, not a weakness to avoid. Bugs are features – violations of expectations are opportunities to refine them. And decisions are made by evaluating what works better, not by invoking received wisdom."
  • writer and web commentator Clay Shirky suggested that people should think more carefully about how they see the world. His suggestion was the Pareto principle, a pattern whereby the top 1% of the population control 35% of the wealth or, on Twitter, the top 2% of users send 60% of the messages. Sometimes known as the "80/20 rule", the Pareto principle means that the average is far from the middle.It is applicable to many complex systems, "And yet, despite a century of scientific familiarity, samples drawn from Pareto distributions are routinely presented to the public as anomalies, which prevents us from thinking clearly about the world," said Shirky. "We should stop thinking that average family income and the income of the median family have anything to do with one another, or that enthusiastic and normal users of communications tools are doing similar things, or that extroverts should be only moderately more connected than normal people. We should stop thinking that the largest future earthquake or market panic will be as large as the largest historical one; the longer a system persists, the likelier it is that an event twice as large as all previous ones is coming."
  • Kevin Kelly, editor-at-large of Wired, pointed to the value of negative results. "We can learn nearly as much from an experiment that does not work as from one that does. Failure is not something to be avoided but rather something to be cultivated. That's a lesson from science that benefits not only laboratory research, but design, sport, engineering, art, entrepreneurship, and even daily life itself. All creative avenues yield the maximum when failures are embraced."
  • Michael Shermer, publisher of the Skeptic Magazine, wrote about the importance of thinking "bottom up not top down", since almost everything in nature and society happens this way.
  • But most people don't see things that way, said Shermer. "Bottom up reasoning is counterintuitive. This is why so many people believe that life was designed from the top down, and why so many think that economies must be designed and that countries should be ruled from the top down."
  • Roger Schank, a psychologist and computer scientist, proposed that we should all know the true meaning of "experimentation", which he said had been ruined by bad schooling, where pupils learn that scientists conduct experiments and if we copy exactly what they did in our high school labs we will get the results they got. "In effect we learn that experimentation is boring, is something done by scientists and has nothing to do with our daily lives."Instead, he said, proper experiments are all about assessing and gathering evidence. "In other words, the scientific activity that surrounds experimentation is about thinking clearly in the face of evidence obtained as the result of an experiment. But people who don't see their actions as experiments, and those who don't know how to reason carefully from data, will continue to learn less well from their own experiences than those who do
  • Lisa Randall, a physicist at Harvard University, argued that perhaps "science" itself would be a useful concept for wider appreciation. "The idea that we can systematically understand certain aspects of the world and make predictions based on what we've learned – while appreciating and categorising the extent and limitations of what we know – plays a big role in how we think.
  • "Many words that summarise the nature of science such as 'cause and effect', 'predictions', and 'experiments', as well as words that describe probabilistic results such as 'mean', 'median', 'standard deviation', and the notion of 'probability' itself help us understand more specifically what this means and how to interpret the world and behaviour within it."
Weiye Loh

Freakonomics » How Advancements in Neuroscience Will Influence the Law - 0 views

  • as new technologies emerge to better reveal people’s experiences, the law ought to do more to take these experiences into account. In tort and criminal law, we often ignore or downplay the importance of subjective experience. This is no surprise. During the hundreds of years in which these bodies of law developed, we had very poor methods of making inferences about the experiences of others. As we get better at measuring experiences, however, I make the normative claim that we ought to change fundamental aspects of the law to take better account of people’s experiences.
  • Researchers are trying to develop more accurate methods of detecting deception using brain imaging.    While many in the scientific community doubt that current brain-based methods of lie detection are sufficiently accurate and reliable to use in forensic contexts, that has stopped neither companies from marketing fMRI lie detection services to the public, nor litigants from trying to introduce such evidence in court.
  • Given the substantial possibility that we will develop reasonably accurate lie detectors within the next thirty years, our current secretive behaviors have already become harder to hide.
  •  
    A new article published in the Emory Law Journal (full version here) entitled "The Experiential Future of the Law," by Brooklyn Law School professor Adam Kolber, looks at how these advancements will continue over the next 30 years (to the point of near mind-reading), and how they'll inevitably lead to changes in the law.
Jude John

What's so Original in Academic Research? - 26 views

Thanks for your comments. I may have appeared to be contradictory, but what I really meant was that ownership of IP should not be a motivating factor to innovate. I realise that in our capitalistic...

Weiye Loh

Research integrity: Sabotage! : Nature News - 0 views

  • University of Michigan in Ann Arbor
  • Vipul Bhrigu, a former postdoc at the university's Comprehensive Cancer Center, wears a dark-blue three-buttoned suit and a pinched expression as he cups his pregnant wife's hand in both of his. When Pollard Hines calls Bhrigu's case to order, she has stern words for him: "I was inclined to send you to jail when I came out here this morning."
  • Bhrigu, over the course of several months at Michigan, had meticulously and systematically sabotaged the work of Heather Ames, a graduate student in his lab, by tampering with her experiments and poisoning her cell-culture media. Captured on hidden camera, Bhrigu confessed to university police in April and pleaded guilty to malicious destruction of personal property, a misdemeanour that apparently usually involves cars: in the spaces for make and model on the police report, the arresting officer wrote "lab research" and "cells". Bhrigu has said on multiple occasions that he was compelled by "internal pressure" and had hoped to slow down Ames's work. Speaking earlier this month, he was contrite. "It was a complete lack of moral judgement on my part," he said.
  • ...16 more annotations...
  • Bhrigu's actions are surprising, but probably not unique. There are few firm numbers showing the prevalence of research sabotage, but conversations with graduate students, postdocs and research-misconduct experts suggest that such misdeeds occur elsewhere, and that most go unreported or unpoliced. In this case, the episode set back research, wasted potentially tens of thousands of dollars and terrorized a young student. More broadly, acts such as Bhrigu's — along with more subtle actions to hold back or derail colleagues' work — have a toxic effect on science and scientists. They are an affront to the implicit trust between scientists that is necessary for research endeavours to exist and thrive.
  • Despite all this, there is little to prevent perpetrators re-entering science.
  • federal bodies that provide research funding have limited ability and inclination to take action in sabotage cases because they aren't interpreted as fitting the federal definition of research misconduct, which is limited to plagiarism, fabrication and falsification of research data.
  • In Bhrigu's case, administrators at the University of Michigan worked with police to investigate, thanks in part to the persistence of Ames and her supervisor, Theo Ross. "The question is, how many universities have such procedures in place that scientists can go and get that kind of support?" says Christine Boesz, former inspector-general for the US National Science Foundation in Arlington, Virginia, and now a consultant on scientific accountability. "Most universities I was familiar with would not necessarily be so responsive."
  • Some labs are known to be hyper-competitive, with principal investigators pitting postdocs against each other. But Ross's lab is a small, collegial place. At the time that Ames was noticing problems, it housed just one other graduate student, a few undergraduates doing projects, and the lab manager, Katherine Oravecz-Wilson, a nine-year veteran of the lab whom Ross calls her "eyes and ears". And then there was Bhrigu, an amiable postdoc who had joined the lab in April 2009.
  • Some people whom Ross consulted with tried to convince her that Ames was hitting a rough patch in her work and looking for someone else to blame. But Ames was persistent, so Ross took the matter to the university's office of regulatory affairs, which advises on a wide variety of rules and regulations pertaining to research and clinical care. Ray Hutchinson, associate dean of the office, and Patricia Ward, its director, had never dealt with anything like it before. After several meetings and two more instances of alcohol in the media, Ward contacted the department of public safety — the university's police force — on 9 March. They immediately launched an investigation — into Ames herself. She endured two interrogations and a lie-detector test before investigators decided to look elsewhere.
  • At 4:00 a.m. on Sunday 18 April, officers installed two cameras in the lab: one in the cold room where Ames's blots had been contaminated, and one above the refrigerator where she stored her media. Ames came in that day and worked until 5:00 p.m. On Monday morning at around 10:15, she found that her medium had been spiked again. When Ross reviewed the tapes of the intervening hours with Richard Zavala, the officer assigned to the case, she says that her heart sank. Bhrigu entered the lab at 9:00 a.m. on Monday and pulled out the culture media that he would use for the day. He then returned to the fridge with a spray bottle of ethanol, usually used to sterilize lab benches. With his back to the camera, he rummaged through the fridge for 46 seconds. Ross couldn't be sure what he was doing, but it didn't look good. Zavala escorted Bhrigu to the campus police department for questioning. When he told Bhrigu about the cameras in the lab, the postdoc asked for a drink of water and then confessed. He said that he had been sabotaging Ames's work since February. (He denies involvement in the December and January incidents.)
  • Misbehaviour in science is nothing new — but its frequency is difficult to measure. Daniele Fanelli at the University of Edinburgh, UK, who studies research misconduct, says that overtly malicious offences such as Bhrigu's are probably infrequent, but other forms of indecency and sabotage are likely to be more common. "A lot more would be the kind of thing you couldn't capture on camera," he says. Vindictive peer review, dishonest reference letters and withholding key aspects of protocols from colleagues or competitors can do just as much to derail a career or a research project as vandalizing experiments. These are just a few of the questionable practices that seem quite widespread in science, but are not technically considered misconduct. In a meta-analysis of misconduct surveys, published last year (D. Fanelli PLoS ONE 4, e5738; 2009), Fanelli found that up to one-third of scientists admit to offences that fall into this grey area, and up to 70% say that they have observed them.
  • Some say that the structure of the scientific enterprise is to blame. The big rewards — tenured positions, grants, papers in stellar journals — are won through competition. To get ahead, researchers need only be better than those they are competing with. That ethos, says Brian Martinson, a sociologist at HealthPartners Research Foundation in Minneapolis, Minnesota, can lead to sabotage. He and others have suggested that universities and funders need to acknowledge the pressures in the research system and try to ease them by means of education and rehabilitation, rather than simply punishing perpetrators after the fact.
  • Bhrigu says that he felt pressure in moving from the small college at Toledo to the much bigger one in Michigan. He says that some criticisms he received from Ross about his incomplete training and his work habits frustrated him, but he doesn't blame his actions on that. "In any kind of workplace there is bound to be some pressure," he says. "I just got jealous of others moving ahead and I wanted to slow them down."
  • At Washtenaw County Courthouse in July, having reviewed the case files, Pollard Hines delivered Bhrigu's sentence. She ordered him to pay around US$8,800 for reagents and experimental materials, plus $600 in court fees and fines — and to serve six months' probation, perform 40 hours of community service and undergo a psychiatric evaluation.
  • But the threat of a worse sentence hung over Bhrigu's head. At the request of the prosecutor, Ross had prepared a more detailed list of damages, including Bhrigu's entire salary, half of Ames's, six months' salary for a technician to help Ames get back up to speed, and a quarter of the lab's reagents. The court arrived at a possible figure of $72,000, with the final amount to be decided upon at a restitution hearing in September.
  • Ross, though, is happy that the ordeal is largely over. For the month-and-a-half of the investigation, she became reluctant to take on new students or to hire personnel. She says she considered packing up her research programme. She even questioned her own sanity, worrying that she was the one sabotaging Ames's work via "an alternate personality". Ross now wonders if she was too trusting, and urges other lab heads to "realize that the whole spectrum of humanity is in your lab. So, when someone complains to you, take it seriously."
  • She also urges others to speak up when wrongdoing is discovered. After Bhrigu pleaded guilty in June, Ross called Trempe at the University of Toledo. He was shocked, of course, and for more than one reason. His department at Toledo had actually re-hired Bhrigu. Bhrigu says that he lied about the reason he left Michigan, blaming it on disagreements with Ross. Toledo let Bhrigu go in July, not long after Ross's call.
  • Now that Bhrigu is in India, there is little to prevent him from getting back into science. And even if he were in the United States, there wouldn't be much to stop him. The National Institutes of Health in Bethesda, Maryland, through its Office of Research Integrity, will sometimes bar an individual from receiving federal research funds for a time if they are found guilty of misconduct. But Bhigru probably won't face that prospect because his actions don't fit the federal definition of misconduct, a situation Ross finds strange. "All scientists will tell you that it's scientific misconduct because it's tampering with data," she says.
  • Ames says that the experience shook her trust in her chosen profession. "I did have doubts about continuing with science. It hurt my idea of science as a community that works together, builds upon each other's work and collaborates."
  •  
    Research integrity: Sabotage! Postdoc Vipul Bhrigu destroyed the experiments of a colleague in order to get ahead.
Weiye Loh

Sociologist Harry Collins poses as a physicist. - By Jon Lackman - Slate Magazine - 0 views

  • British sociologist Harry Collins asked a scientist who specializes in gravitational waves to answer seven questions about the physics of these waves. Collins, who has made an amateur study of this field for more than 30 years but has never actually practiced it, also answered the questions himself. Then he submitted both sets of answers to a panel of judges who are themselves gravitational-wave researchers. The judges couldn't tell the impostor from one of their own. Collins argues that he is therefore as qualified as anyone to discuss this field, even though he can't conduct experiments in it.
  • The journal Nature predicted that the experiment would have a broad impact, writing that Collins could help settle the "science wars of the 1990s," "when sociologists launched what scientists saw as attacks on the very nature of science, and scientists responded in kind," accusing the sociologists of misunderstanding science. More generally, it could affect "the argument about whether an outsider, such as an anthropologist, can properly understand another group, such as a remote rural community." With this comment, Nature seemed to be saying that if a sociologist can understand physics, then anyone can understand anything.
  • It will be interesting to see if Collins' results can indeed be repeated in different situations. Meanwhile, his experiment is plenty interesting in itself. Just one of the judges succeeded in distinguishing Collins' answers from those of the trained experts. One threw up his hands. And the other seven declared Collins the physicist. He didn't simply do as well as the trained specialist—he did better, even though the test questions demanded technical answers. One sample answer from Collins gives you the flavor: "Since gravitational waves change the shape of spacetime and radio waves do not, the effect on an interferometer of radio waves can only be to mimic the effects of a gravitational wave, not reproduce them." (More details can be found in this paper Collins wrote with his collaborators.)
  • ...5 more annotations...
  • To be sure, a differently designed experiment would have presented more difficulty for Collins. If he'd chosen questions that involved math, they would have done him in
  • But many scientists consider themselves perfectly qualified to discuss topics for which they lack the underlying mathematical skills, as Collins noted when I talked to him. "You can be a great physicist and not know any mathematics," he said.
  • So, if Collins can talk gravitational waves as well as an insider, who cares if he doesn't know how to crunch the numbers? Alan Sokal does. The New York University physicist is famous for an experiment a decade ago that seemed to demonstrate the futility of laymen discussing science. In 1996, he tricked the top humanities journal Social Text into publishing as genuine scholarship a totally nonsensical paper that celebrated fashionable literary theory and then applied it to all manner of scientific questions. ("As Lacan suspected, there is an intimate connection between the external structure of the physical world and its inner psychological representation qua knot theory.") Sokal showed that, with a little flattery, laymen could be induced to swallow the most ridiculous of scientific canards—so why should we value their opinions on science as highly as scientists'?
  • Sokal doesn't think Collins has proved otherwise. When I reached him this week, he acknowledged that you don't need to practice science in order to understand it. But he maintains, as he put it to Nature, that in many science debates, "you need a knowledge of the field that is virtually, if not fully, at the level of researchers in the field," in order to participate. He elaborated: Say there are two scientists, X and Y. If you want to argue that X's theory was embraced over Y's, even though Y's is better, because the science community is biased against Y, then you had better be able to read and evaluate their theories yourself, mathematics included (or collaborate with someone who can). He has a point. Just because mathematics features little in the work of some gravitational-wave physicists doesn't mean it's a trivial part of the subject.
  • Even if Collins didn't demonstrate that he is qualified to pronounce on all of gravitational-wave physics, he did learn more of the subject than anyone may have thought possible. Sokal says he was shocked by Collins' store of knowledge: "He knows more about gravitational waves than I do!" Sokal admitted that Collins was already qualified to pronounce on a lot, and that with a bit more study, he would be the equal of a professional.
Weiye Loh

TPM: The Philosophers' Magazine | Is morality relative? Depends on your personality - 0 views

  • no real evidence is ever offered for the original assumption that ordinary moral thought and talk has this objective character. Instead, philosophers tend simply to assert that people’s ordinary practice is objectivist and then begin arguing from there.
  • If we really want to go after these issues in a rigorous way, it seems that we should adopt a different approach. The first step is to engage in systematic empirical research to figure out how the ordinary practice actually works. Then, once we have the relevant data in hand, we can begin looking more deeply into the philosophical implications – secure in the knowledge that we are not just engaging in a philosophical fiction but rather looking into the philosophical implications of people’s actual practices.
  • in the past few years, experimental philosophers have been gathering a wealth of new data on these issues, and we now have at least the first glimmerings of a real empirical research program here
  • ...8 more annotations...
  • when researchers took up these questions experimentally, they did not end up confirming the traditional view. They did not find that people overwhelmingly favoured objectivism. Instead, the results consistently point to a more complex picture. There seems to be a striking degree of conflict even in the intuitions of ordinary folks, with some people under some circumstances offering objectivist answers, while other people under other circumstances offer more relativist views. And that is not all. The experimental results seem to be giving us an ever deeper understanding of why it is that people are drawn in these different directions, what it is that makes some people move toward objectivism and others toward more relativist views.
  • consider a study by Adam Feltz and Edward Cokely. They were interested in the relationship between belief in moral relativism and the personality trait openness to experience. Accordingly, they conducted a study in which they measured both openness to experience and belief in moral relativism. To get at people’s degree of openness to experience, they used a standard measure designed by researchers in personality psychology. To get at people’s agreement with moral relativism, they told participants about two characters – John and Fred – who held opposite opinions about whether some given act was morally bad. Participants were then asked whether one of these two characters had to be wrong (the objectivist answer) or whether it could be that neither of them was wrong (the relativist answer). What they found was a quite surprising result. It just wasn’t the case that participants overwhelmingly favoured the objectivist answer. Instead, people’s answers were correlated with their personality traits. The higher a participant was in openness to experience, the more likely that participant was to give a relativist answer.
  • Geoffrey Goodwin and John Darley pursued a similar approach, this time looking at the relationship between people’s belief in moral relativism and their tendency to approach questions by considering a whole variety of possibilities. They proceeded by giving participants mathematical puzzles that could only be solved by looking at multiple different possibilities. Thus, participants who considered all these possibilities would tend to get these problems right, whereas those who failed to consider all the possibilities would tend to get the problems wrong. Now comes the surprising result: those participants who got these problems right were significantly more inclined to offer relativist answers than were those participants who got the problems wrong.
  • Shaun Nichols and Tricia Folds-Bennett looked at how people’s moral conceptions develop as they grow older. Research in developmental psychology has shown that as children grow up, they develop different understandings of the physical world, of numbers, of other people’s minds. So what about morality? Do people have a different understanding of morality when they are twenty years old than they do when they are only four years old? What the results revealed was a systematic developmental difference. Young children show a strong preference for objectivism, but as they grow older, they become more inclined to adopt relativist views. In other words, there appears to be a developmental shift toward increasing relativism as children mature. (In an exciting new twist on this approach, James Beebe and David Sackris have shown that this pattern eventually reverses, with middle-aged people showing less inclination toward relativism than college students do.)
  • People are more inclined to be relativists when they score highly in openness to experience, when they have an especially good ability to consider multiple possibilities, when they have matured past childhood (but not when they get to be middle-aged). Looking at these various effects, my collaborators and I thought that it might be possible to offer a single unifying account that explained them all. Specifically, our thought was that people might be drawn to relativism to the extent that they open their minds to alternative perspectives. There could be all sorts of different factors that lead people to open their minds in this way (personality traits, cognitive dispositions, age), but regardless of the instigating factor, researchers seemed always to be finding the same basic effect. The more people have a capacity to truly engage with other perspectives, the more they seem to turn toward moral relativism.
  • To really put this hypothesis to the test, Hagop Sarkissian, Jennifer Wright, John Park, David Tien and I teamed up to run a series of new studies. Our aim was to actually manipulate the degree to which people considered alternative perspectives. That is, we wanted to randomly assign people to different conditions in which they would end up thinking in different ways, so that we could then examine the impact of these different conditions on their intuitions about moral relativism.
  • The results of the study showed a systematic difference between conditions. In particular, as we moved toward more distant cultures, we found a steady shift toward more relativist answers – with people in the first condition tending to agree with the statement that at least one of them had to be wrong, people in the second being pretty evenly split between the two answers, and people in the third tending to reject the statement quite decisively.
  • If we learn that people’s ordinary practice is not an objectivist one – that it actually varies depending on the degree to which people take other perspectives into account – how can we then use this information to address the deeper philosophical issues about the true nature of morality? The answer here is in one way very complex and in another very simple. It is complex in that one can answer such questions only by making use of very sophisticated and subtle philosophical methods. Yet, at the same time, it is simple in that such methods have already been developed and are being continually refined and elaborated within the literature in analytic philosophy. The trick now is just to take these methods and apply them to working out the implications of an ordinary practice that actually exists.
Weiye Loh

Edge: HOW DOES OUR LANGUAGE SHAPE THE WAY WE THINK? By Lera Boroditsky - 0 views

  • Do the languages we speak shape the way we see the world, the way we think, and the way we live our lives? Do people who speak different languages think differently simply because they speak different languages? Does learning new languages change the way you think? Do polyglots think differently when speaking different languages?
  • For a long time, the idea that language might shape thought was considered at best untestable and more often simply wrong. Research in my labs at Stanford University and at MIT has helped reopen this question. We have collected data around the world: from China, Greece, Chile, Indonesia, Russia, and Aboriginal Australia.
  • What we have learned is that people who speak different languages do indeed think differently and that even flukes of grammar can profoundly affect how we see the world.
  • ...15 more annotations...
  • Suppose you want to say, "Bush read Chomsky's latest book." Let's focus on just the verb, "read." To say this sentence in English, we have to mark the verb for tense; in this case, we have to pronounce it like "red" and not like "reed." In Indonesian you need not (in fact, you can't) alter the verb to mark tense. In Russian you would have to alter the verb to indicate tense and gender. So if it was Laura Bush who did the reading, you'd use a different form of the verb than if it was George. In Russian you'd also have to include in the verb information about completion. If George read only part of the book, you'd use a different form of the verb than if he'd diligently plowed through the whole thing. In Turkish you'd have to include in the verb how you acquired this information: if you had witnessed this unlikely event with your own two eyes, you'd use one verb form, but if you had simply read or heard about it, or inferred it from something Bush said, you'd use a different verb form.
  • Clearly, languages require different things of their speakers. Does this mean that the speakers think differently about the world? Do English, Indonesian, Russian, and Turkish speakers end up attending to, partitioning, and remembering their experiences differently just because they speak different languages?
  • For some scholars, the answer to these questions has been an obvious yes. Just look at the way people talk, they might say. Certainly, speakers of different languages must attend to and encode strikingly different aspects of the world just so they can use their language properly. Scholars on the other side of the debate don't find the differences in how people talk convincing. All our linguistic utterances are sparse, encoding only a small part of the information we have available. Just because English speakers don't include the same information in their verbs that Russian and Turkish speakers do doesn't mean that English speakers aren't paying attention to the same things; all it means is that they're not talking about them. It's possible that everyone thinks the same way, notices the same things, but just talks differently.
  • Believers in cross-linguistic differences counter that everyone does not pay attention to the same things: if everyone did, one might think it would be easy to learn to speak other languages. Unfortunately, learning a new language (especially one not closely related to those you know) is never easy; it seems to require paying attention to a new set of distinctions. Whether it's distinguishing modes of being in Spanish, evidentiality in Turkish, or aspect in Russian, learning to speak these languages requires something more than just learning vocabulary: it requires paying attention to the right things in the world so that you have the correct information to include in what you say.
  • Follow me to Pormpuraaw, a small Aboriginal community on the western edge of Cape York, in northern Australia. I came here because of the way the locals, the Kuuk Thaayorre, talk about space. Instead of words like "right," "left," "forward," and "back," which, as commonly used in English, define space relative to an observer, the Kuuk Thaayorre, like many other Aboriginal groups, use cardinal-direction terms — north, south, east, and west — to define space.1 This is done at all scales, which means you have to say things like "There's an ant on your southeast leg" or "Move the cup to the north northwest a little bit." One obvious consequence of speaking such a language is that you have to stay oriented at all times, or else you cannot speak properly. The normal greeting in Kuuk Thaayorre is "Where are you going?" and the answer should be something like " Southsoutheast, in the middle distance." If you don't know which way you're facing, you can't even get past "Hello."
  • The result is a profound difference in navigational ability and spatial knowledge between speakers of languages that rely primarily on absolute reference frames (like Kuuk Thaayorre) and languages that rely on relative reference frames (like English).2 Simply put, speakers of languages like Kuuk Thaayorre are much better than English speakers at staying oriented and keeping track of where they are, even in unfamiliar landscapes or inside unfamiliar buildings. What enables them — in fact, forces them — to do this is their language. Having their attention trained in this way equips them to perform navigational feats once thought beyond human capabilities. Because space is such a fundamental domain of thought, differences in how people think about space don't end there. People rely on their spatial knowledge to build other, more complex, more abstract representations. Representations of such things as time, number, musical pitch, kinship relations, morality, and emotions have been shown to depend on how we think about space. So if the Kuuk Thaayorre think differently about space, do they also think differently about other things, like time? This is what my collaborator Alice Gaby and I came to Pormpuraaw to find out.
  • To test this idea, we gave people sets of pictures that showed some kind of temporal progression (e.g., pictures of a man aging, or a crocodile growing, or a banana being eaten). Their job was to arrange the shuffled photos on the ground to show the correct temporal order. We tested each person in two separate sittings, each time facing in a different cardinal direction. If you ask English speakers to do this, they'll arrange the cards so that time proceeds from left to right. Hebrew speakers will tend to lay out the cards from right to left, showing that writing direction in a language plays a role.3 So what about folks like the Kuuk Thaayorre, who don't use words like "left" and "right"? What will they do? The Kuuk Thaayorre did not arrange the cards more often from left to right than from right to left, nor more toward or away from the body. But their arrangements were not random: there was a pattern, just a different one from that of English speakers. Instead of arranging time from left to right, they arranged it from east to west. That is, when they were seated facing south, the cards went left to right. When they faced north, the cards went from right to left. When they faced east, the cards came toward the body and so on. This was true even though we never told any of our subjects which direction they faced. The Kuuk Thaayorre not only knew that already (usually much better than I did), but they also spontaneously used this spatial orientation to construct their representations of time.
  • I have described how languages shape the way we think about space, time, colors, and objects. Other studies have found effects of language on how people construe events, reason about causality, keep track of number, understand material substance, perceive and experience emotion, reason about other people's minds, choose to take risks, and even in the way they choose professions and spouses.8 Taken together, these results show that linguistic processes are pervasive in most fundamental domains of thought, unconsciously shaping us from the nuts and bolts of cognition and perception to our loftiest abstract notions and major life decisions. Language is central to our experience of being human, and the languages we speak profoundly shape the way we think, the way we see the world, the way we live our lives.
  • The fact that even quirks of grammar, such as grammatical gender, can affect our thinking is profound. Such quirks are pervasive in language; gender, for example, applies to all nouns, which means that it is affecting how people think about anything that can be designated by a noun.
  • How does an artist decide whether death, say, or time should be painted as a man or a woman? It turns out that in 85 percent of such personifications, whether a male or female figure is chosen is predicted by the grammatical gender of the word in the artist's native language. So, for example, German painters are more likely to paint death as a man, whereas Russian painters are more likely to paint death as a woman.
  • Does treating chairs as masculine and beds as feminine in the grammar make Russian speakers think of chairs as being more like men and beds as more like women in some way? It turns out that it does. In one study, we asked German and Spanish speakers to describe objects having opposite gender assignment in those two languages. The descriptions they gave differed in a way predicted by grammatical gender. For example, when asked to describe a "key" — a word that is masculine in German and feminine in Spanish — the German speakers were more likely to use words like "hard," "heavy," "jagged," "metal," "serrated," and "useful," whereas Spanish speakers were more likely to say "golden," "intricate," "little," "lovely," "shiny," and "tiny." To describe a "bridge," which is feminine in German and masculine in Spanish, the German speakers said "beautiful," "elegant," "fragile," "peaceful," "pretty," and "slender," and the Spanish speakers said "big," "dangerous," "long," "strong," "sturdy," and "towering." This was true even though all testing was done in English, a language without grammatical gender. The same pattern of results also emerged in entirely nonlinguistic tasks (e.g., rating similarity between pictures). And we can also show that it is aspects of language per se that shape how people think: teaching English speakers new grammatical gender systems influences mental representations of objects in the same way it does with German and Spanish speakers. Apparently even small flukes of grammar, like the seemingly arbitrary assignment of gender to a noun, can have an effect on people's ideas of concrete objects in the world.
  • Even basic aspects of time perception can be affected by language. For example, English speakers prefer to talk about duration in terms of length (e.g., "That was a short talk," "The meeting didn't take long"), while Spanish and Greek speakers prefer to talk about time in terms of amount, relying more on words like "much" "big", and "little" rather than "short" and "long" Our research into such basic cognitive abilities as estimating duration shows that speakers of different languages differ in ways predicted by the patterns of metaphors in their language. (For example, when asked to estimate duration, English speakers are more likely to be confused by distance information, estimating that a line of greater length remains on the test screen for a longer period of time, whereas Greek speakers are more likely to be confused by amount, estimating that a container that is fuller remains longer on the screen.)
  • An important question at this point is: Are these differences caused by language per se or by some other aspect of culture? Of course, the lives of English, Mandarin, Greek, Spanish, and Kuuk Thaayorre speakers differ in a myriad of ways. How do we know that it is language itself that creates these differences in thought and not some other aspect of their respective cultures? One way to answer this question is to teach people new ways of talking and see if that changes the way they think. In our lab, we've taught English speakers different ways of talking about time. In one such study, English speakers were taught to use size metaphors (as in Greek) to describe duration (e.g., a movie is larger than a sneeze), or vertical metaphors (as in Mandarin) to describe event order. Once the English speakers had learned to talk about time in these new ways, their cognitive performance began to resemble that of Greek or Mandarin speakers. This suggests that patterns in a language can indeed play a causal role in constructing how we think.6 In practical terms, it means that when you're learning a new language, you're not simply learning a new way of talking, you are also inadvertently learning a new way of thinking. Beyond abstract or complex domains of thought like space and time, languages also meddle in basic aspects of visual perception — our ability to distinguish colors, for example. Different languages divide up the color continuum differently: some make many more distinctions between colors than others, and the boundaries often don't line up across languages.
  • To test whether differences in color language lead to differences in color perception, we compared Russian and English speakers' ability to discriminate shades of blue. In Russian there is no single word that covers all the colors that English speakers call "blue." Russian makes an obligatory distinction between light blue (goluboy) and dark blue (siniy). Does this distinction mean that siniy blues look more different from goluboy blues to Russian speakers? Indeed, the data say yes. Russian speakers are quicker to distinguish two shades of blue that are called by the different names in Russian (i.e., one being siniy and the other being goluboy) than if the two fall into the same category. For English speakers, all these shades are still designated by the same word, "blue," and there are no comparable differences in reaction time. Further, the Russian advantage disappears when subjects are asked to perform a verbal interference task (reciting a string of digits) while making color judgments but not when they're asked to perform an equally difficult spatial interference task (keeping a novel visual pattern in memory). The disappearance of the advantage when performing a verbal task shows that language is normally involved in even surprisingly basic perceptual judgments — and that it is language per se that creates this difference in perception between Russian and English speakers.
  • What it means for a language to have grammatical gender is that words belonging to different genders get treated differently grammatically and words belonging to the same grammatical gender get treated the same grammatically. Languages can require speakers to change pronouns, adjective and verb endings, possessives, numerals, and so on, depending on the noun's gender. For example, to say something like "my chair was old" in Russian (moy stul bil' stariy), you'd need to make every word in the sentence agree in gender with "chair" (stul), which is masculine in Russian. So you'd use the masculine form of "my," "was," and "old." These are the same forms you'd use in speaking of a biological male, as in "my grandfather was old." If, instead of speaking of a chair, you were speaking of a bed (krovat'), which is feminine in Russian, or about your grandmother, you would use the feminine form of "my," "was," and "old."
  •  
    For a long time, the idea that language might shape thought was considered at best untestable and more often simply wrong. Research in my labs at Stanford University and at MIT has helped reopen this question. We have collected data around the world: from China, Greece, Chile, Indonesia, Russia, and Aboriginal Australia. What we have learned is that people who speak different languages do indeed think differently and that even flukes of grammar can profoundly affect how we see the world. Language is a uniquely human gift, central to our experience of being human. Appreciating its role in constructing our mental lives brings us one step closer to understanding the very nature of humanity.
Weiye Loh

Skepticblog » The Reasonableness of Weird Things - 0 views

  • people have been talking about Phil Plait’s powerful talk, now known to the blogosphere as the “Don’t be a dick” speech (after Wheaton’s Law, an internet maxim that provided the theme of Phil’s presentation). In his talk, Phil argued that skeptics who have outreach goals should get serious about communication: In times of war, we need warriors. But this isn’t a war. You might try to say it is, but it’s not a war. We aren’t trying to kill an enemy. We’re trying to persuade other humans. And at times like that, we don’t need warriors. What we need are diplomats.
  • there many excellent reasons to tend toward treating people with respect and courtesy. It’s morally bad to be cruel (and usually unnecessary); it’s contrary to scientific and journalistic ethics (and the search for truth) to shout down legitimate alternate views; it blinds us to flaws in our own reasoning if we fail to seriously consider viewpoints we don’t like. Most importantly (this was the theme of Phil’s talk) science communication is more effective when it starts with warmth and respect.
  • a few skeptics are tempted to think there must be something special about those who don’t believe. That conceit hardly seems worthy of dwelling upon, and yet people have actually tried to convince me on this basis that it’s not worth teaching critical thinking. “The smart people already get it,” I’ve been told, “and the stupid people never will. Don’t waste your time.” I suppose it’s human to want to draw these lines through the world: on this side, the good smart people; on the other side, the bad dumb people. But the world is not nearly so simple.
  • ...6 more annotations...
  • One of the interesting things Phil Plait did during his challenging TAM8 speech was to ask the 1300 skeptics in the room this question: How many of you here today used to believe in something — used to, past tense — whether it was flying saucers, psychic powers, religion, anything like that? You can raise your hand if you want to.
  • most pseudoscientific beliefs are not stupid. They’re just wrong.
  • the top reasons people believe weird things are not only understandable, but identical to the reasons most skeptics believe things: they are persuaded by personal experiences (or by the experiences of a loved one); or, they are persuaded by the sources they have consulted.
  • reasoning from visceral experience is a recipe for false belief.
  • I’m not suggesting that personal experience is an adequate basis for accepting paranormal claims (it isn’t) or that these claims are true (so far as science can tell, they’re not). I’m saying that, given their information and tools, many paranormalists have understandable reasons for belief.
  • However we label ourselves or others, we come up against the fact that people are complicated. Generalizations are doomed to inadequacy. But, I will suggest that the differences between skeptics and paranormal believers have less to do with innate credulity, and more to do with training and resources.
  •  
    THE REASONABLENESS OF WEIRD THINGS by DANIEL LOXTON, Jul 26 2010
Weiye Loh

It's Only A Theory: From the 2010 APA in Boston: Neuropsychology and ethics - 0 views

  • Joshua Greene from Harvard, known for his research on "neuroethics," the neurological underpinnings of ethical decision making in humans. The title of Greene's talk was "Beyond point-and-shoot morality: why cognitive neuroscience matters for ethics."
  • What Greene is interested in is to find out to what factors moral judgment is sensitive to, and whether it is sensitive to the relevant factors. He presented his dual process theory of morality. In this respect, he proposed an analogy with a camera. Cameras have automatic (point and shoot) settings as well as manual controls. The first mode is good enough for most purposes, the second allows the user to fine tune the settings more carefully. The two modes allow for a nice combination of efficiency and flexibility.
  • The idea is that the human brain also has two modes, a set of efficient automatic responses and a manual mode that makes us more flexible in response to non standard situations. The non moral example is our response to potential threats. Here the amygdala is very fast and efficient at focusing on potential threats (e.g., the outline of eyes in the dark), even when there actually is no threat (it's a controlled experiment in a lab, no lurking predator around).
  • ...12 more annotations...
  • Delayed gratification illustrates the interaction between the two modes. The brain is attracted by immediate rewards, no matter what kind. However, when larger rewards are eventually going to become available, other parts of the brain come into play to override (sometimes) the immediate urge.
  • Greene's research shows that our automatic setting is "Kantian," meaning that our intuitive responses are deontological, rule driven. The manual setting, on the other hand, tends to be more utilitarian / consequentialist. Accordingly, the first mode involves emotional areas of the brain, the second one involves more cognitive areas.
  • The evidence comes from the (in)famous trolley dilemma and it's many variations.
  • when people refuse to intervene in the footbridge (as opposed to the lever) version of the dilemma, they do so because of a strong emotional response, which contradicts the otherwise utilitarian calculus they make when considering the lever version.
  • psychopaths turn out to be more utilitarian than normal subjects - presumably not because consequentialism is inherently pathological, but because their emotional responses are stunted. Mood also affects the results, with people exposed to comedy (to enhance mood), for instance, more likely to say that it is okay to push the guy off the footbridge.
  • In a more recent experiment, subjects were asked to say which action carried the better consequences, which made them feel worse, and which was overall morally acceptable. The idea was to separate the cognitive, emotional and integrative aspects of moral decision making. Predictably, activity in the amygdala correlated with deontological judgment, activity in more cognitive areas was associated with utilitarianism, and different brain regions became involved in integrating the two.
  • Another recent experiment used visual vs. verbal descriptions of moral dilemmas. Turns out that more visual people tend to behave emotionally / deontologically, while more verbal people are more utilitarian.
  • studies show that interfering with moral judgment by engaging subjects with a cognitive task slows down (though it does not reverse) utilitarian judgment, but has no effect on deontological judgment. Again, in agreement with the conclusion that the first type of modality is the result of cognition, the latter of emotion.
  • Nice to know, by the way, that when experimenters controlled for "real world expectations" that people have about trolleys, or when they used more realistic scenarios than trolleys and bridges, the results don't vary. In other words, trolley thought experiments are actually informative, contrary to popular criticisms.
  • What factors affect people's decision making in moral judgment? The main one is proximity, with people feeling much stronger obligations if they are present to the event posing the dilemma, or even relatively near (a disaster happens in a nearby country), as opposed to when they are far (a country on the other side of the world).
  • Greene's general conclusion is that neuroscience matters to ethics because it reveals the hidden mechanisms of human moral decision making. However, he says this is interesting to philosophers because it may lead to question ethical theories that are implicitly or explicitly based on such judgments. But neither philosophical deontology nor consequentialism are in fact based on common moral judgments, seems to me. They are the result of explicit analysis. (Though Greene raises the possibility that some philosophers engage in rationalizing, rather than reason, as in Kant's famously convoluted idea that masturbation is wrong because one is using oneself as a mean to an end...)
  • this is not to say that understanding moral decision making in humans isn't interesting or in fact even helpful in real life cases. An example of the latter is the common moral condemnation of incest, which is an emotional reaction that probably evolved to avoid genetically diseased offspring. It follows that science can tell us that three is nothing morally wrong in cases of incest when precautions have been taken to avoid pregnancy (and assuming psychological reactions are also accounted for). Greene puts this in terms of science helping us to transform difficult ought questions into easier ought questions.
Weiye Loh

LRB · Jim Holt · Smarter, Happier, More Productive - 0 views

  • There are two ways that computers might add to our wellbeing. First, they could do so indirectly, by increasing our ability to produce other goods and services. In this they have proved something of a disappointment. In the early 1970s, American businesses began to invest heavily in computer hardware and software, but for decades this enormous investment seemed to pay no dividends. As the economist Robert Solow put it in 1987, ‘You can see the computer age everywhere but in the productivity statistics.’ Perhaps too much time was wasted in training employees to use computers; perhaps the sorts of activity that computers make more efficient, like word processing, don’t really add all that much to productivity; perhaps information becomes less valuable when it’s more widely available. Whatever the case, it wasn’t until the late 1990s that some of the productivity gains promised by the computer-driven ‘new economy’ began to show up – in the United States, at any rate. So far, Europe appears to have missed out on them.
  • The other way computers could benefit us is more direct. They might make us smarter, or even happier. They promise to bring us such primary goods as pleasure, friendship, sex and knowledge. If some lotus-eating visionaries are to be believed, computers may even have a spiritual dimension: as they grow ever more powerful, they have the potential to become our ‘mind children’. At some point – the ‘singularity’ – in the not-so-distant future, we humans will merge with these silicon creatures, thereby transcending our biology and achieving immortality. It is all of this that Woody Allen is missing out on.
  • But there are also sceptics who maintain that computers are having the opposite effect on us: they are making us less happy, and perhaps even stupider. Among the first to raise this possibility was the American literary critic Sven Birkerts. In his book The Gutenberg Elegies (1994), Birkerts argued that the computer and other electronic media were destroying our capacity for ‘deep reading’. His writing students, thanks to their digital devices, had become mere skimmers and scanners and scrollers. They couldn’t lose themselves in a novel the way he could. This didn’t bode well, Birkerts thought, for the future of literary culture.
  • ...6 more annotations...
  • Suppose we found that computers are diminishing our capacity for certain pleasures, or making us worse off in other ways. Why couldn’t we simply spend less time in front of the screen and more time doing the things we used to do before computers came along – like burying our noses in novels? Well, it may be that computers are affecting us in a more insidious fashion than we realise. They may be reshaping our brains – and not for the better. That was the drift of ‘Is Google Making Us Stupid?’, a 2008 cover story by Nicholas Carr in the Atlantic.
  • Carr thinks that he was himself an unwitting victim of the computer’s mind-altering powers. Now in his early fifties, he describes his life as a ‘two-act play’, ‘Analogue Youth’ followed by ‘Digital Adulthood’. In 1986, five years out of college, he dismayed his wife by spending nearly all their savings on an early version of the Apple Mac. Soon afterwards, he says, he lost the ability to edit or revise on paper. Around 1990, he acquired a modem and an AOL subscription, which entitled him to spend five hours a week online sending email, visiting ‘chat rooms’ and reading old newspaper articles. It was around this time that the programmer Tim Berners-Lee wrote the code for the World Wide Web, which, in due course, Carr would be restlessly exploring with the aid of his new Netscape browser.
  • Carr launches into a brief history of brain science, which culminates in a discussion of ‘neuroplasticity’: the idea that experience affects the structure of the brain. Scientific orthodoxy used to hold that the adult brain was fixed and immutable: experience could alter the strengths of the connections among its neurons, it was believed, but not its overall architecture. By the late 1960s, however, striking evidence of brain plasticity began to emerge. In one series of experiments, researchers cut nerves in the hands of monkeys, and then, using microelectrode probes, observed that the monkeys’ brains reorganised themselves to compensate for the peripheral damage. Later, tests on people who had lost an arm or a leg revealed something similar: the brain areas that used to receive sensory input from the lost limbs seemed to get taken over by circuits that register sensations from other parts of the body (which may account for the ‘phantom limb’ phenomenon). Signs of brain plasticity have been observed in healthy people, too. Violinists, for instance, tend to have larger cortical areas devoted to processing signals from their fingering hands than do non-violinists. And brain scans of London cab drivers taken in the 1990s revealed that they had larger than normal posterior hippocampuses – a part of the brain that stores spatial representations – and that the increase in size was proportional to the number of years they had been in the job.
  • The brain’s ability to change its own structure, as Carr sees it, is nothing less than ‘a loophole for free thought and free will’. But, he hastens to add, ‘bad habits can be ingrained in our neurons as easily as good ones.’ Indeed, neuroplasticity has been invoked to explain depression, tinnitus, pornography addiction and masochistic self-mutilation (this last is supposedly a result of pain pathways getting rewired to the brain’s pleasure centres). Once new neural circuits become established in our brains, they demand to be fed, and they can hijack brain areas devoted to valuable mental skills. Thus, Carr writes: ‘The possibility of intellectual decay is inherent in the malleability of our brains.’ And the internet ‘delivers precisely the kind of sensory and cognitive stimuli – repetitive, intensive, interactive, addictive – that have been shown to result in strong and rapid alterations in brain circuits and functions’. He quotes the brain scientist Michael Merzenich, a pioneer of neuroplasticity and the man behind the monkey experiments in the 1960s, to the effect that the brain can be ‘massively remodelled’ by exposure to the internet and online tools like Google. ‘THEIR HEAVY USE HAS NEUROLOGICAL CONSEQUENCES,’ Merzenich warns in caps – in a blog post, no less.
  • It’s not that the web is making us less intelligent; if anything, the evidence suggests it sharpens more cognitive skills than it dulls. It’s not that the web is making us less happy, although there are certainly those who, like Carr, feel enslaved by its rhythms and cheated by the quality of its pleasures. It’s that the web may be an enemy of creativity. Which is why Woody Allen might be wise in avoiding it altogether.
  • empirical support for Carr’s conclusion is both slim and equivocal. To begin with, there is evidence that web surfing can increase the capacity of working memory. And while some studies have indeed shown that ‘hypertexts’ impede retention – in a 2001 Canadian study, for instance, people who read a version of Elizabeth Bowen’s story ‘The Demon Lover’ festooned with clickable links took longer and reported more confusion about the plot than did those who read it in an old-fashioned ‘linear’ text – others have failed to substantiate this claim. No study has shown that internet use degrades the ability to learn from a book, though that doesn’t stop people feeling that this is so – one medical blogger quoted by Carr laments, ‘I can’t read War and Peace any more.’
Weiye Loh

McKinsey & Company - Clouds, big data, and smart assets: Ten tech-enabled business tren... - 0 views

  • 1. Distributed cocreation moves into the mainstreamIn the past few years, the ability to organise communities of Web participants to develop, market, and support products and services has moved from the margins of business practice to the mainstream. Wikipedia and a handful of open-source software developers were the pioneers. But in signs of the steady march forward, 70 per cent of the executives we recently surveyed said that their companies regularly created value through Web communities. Similarly, more than 68m bloggers post reviews and recommendations about products and services.
  • for every success in tapping communities to create value, there are still many failures. Some companies neglect the up-front research needed to identify potential participants who have the right skill sets and will be motivated to participate over the longer term. Since cocreation is a two-way process, companies must also provide feedback to stimulate continuing participation and commitment. Getting incentives right is important as well: cocreators often value reputation more than money. Finally, an organisation must gain a high level of trust within a Web community to earn the engagement of top participants.
  • 2. Making the network the organisation In earlier research, we noted that the Web was starting to force open the boundaries of organisations, allowing nonemployees to offer their expertise in novel ways. We called this phenomenon "tapping into a world of talent." Now many companies are pushing substantially beyond that starting point, building and managing flexible networks that extend across internal and often even external borders. The recession underscored the value of such flexibility in managing volatility. We believe that the more porous, networked organisations of the future will need to organise work around critical tasks rather than molding it to constraints imposed by corporate structures.
  • ...10 more annotations...
  • 3. Collaboration at scale Across many economies, the number of people who undertake knowledge work has grown much more quickly than the number of production or transactions workers. Knowledge workers typically are paid more than others, so increasing their productivity is critical. As a result, there is broad interest in collaboration technologies that promise to improve these workers' efficiency and effectiveness. While the body of knowledge around the best use of such technologies is still developing, a number of companies have conducted experiments, as we see in the rapid growth rates of video and Web conferencing, expected to top 20 per cent annually during the next few years.
  • 4. The growing ‘Internet of Things' The adoption of RFID (radio-frequency identification) and related technologies was the basis of a trend we first recognised as "expanding the frontiers of automation." But these methods are rudimentary compared with what emerges when assets themselves become elements of an information system, with the ability to capture, compute, communicate, and collaborate around information—something that has come to be known as the "Internet of Things." Embedded with sensors, actuators, and communications capabilities, such objects will soon be able to absorb and transmit information on a massive scale and, in some cases, to adapt and react to changes in the environment automatically. These "smart" assets can make processes more efficient, give products new capabilities, and spark novel business models. Auto insurers in Europe and the United States are testing these waters with offers to install sensors in customers' vehicles. The result is new pricing models that base charges for risk on driving behavior rather than on a driver's demographic characteristics. Luxury-auto manufacturers are equipping vehicles with networked sensors that can automatically take evasive action when accidents are about to happen. In medicine, sensors embedded in or worn by patients continuously report changes in health conditions to physicians, who can adjust treatments when necessary. Sensors in manufacturing lines for products as diverse as computer chips and pulp and paper take detailed readings on process conditions and automatically make adjustments to reduce waste, downtime, and costly human interventions.
  • 5. Experimentation and big data Could the enterprise become a full-time laboratory? What if you could analyse every transaction, capture insights from every customer interaction, and didn't have to wait for months to get data from the field? What if…? Data are flooding in at rates never seen before—doubling every 18 months—as a result of greater access to customer data from public, proprietary, and purchased sources, as well as new information gathered from Web communities and newly deployed smart assets. These trends are broadly known as "big data." Technology for capturing and analysing information is widely available at ever-lower price points. But many companies are taking data use to new levels, using IT to support rigorous, constant business experimentation that guides decisions and to test new products, business models, and innovations in customer experience. In some cases, the new approaches help companies make decisions in real time. This trend has the potential to drive a radical transformation in research, innovation, and marketing.
  • Using experimentation and big data as essential components of management decision making requires new capabilities, as well as organisational and cultural change. Most companies are far from accessing all the available data. Some haven't even mastered the technologies needed to capture and analyse the valuable information they can access. More commonly, they don't have the right talent and processes to design experiments and extract business value from big data, which require changes in the way many executives now make decisions: trusting instincts and experience over experimentation and rigorous analysis. To get managers at all echelons to accept the value of experimentation, senior leaders must buy into a "test and learn" mind-set and then serve as role models for their teams.
  • 6. Wiring for a sustainable world Even as regulatory frameworks continue to evolve, environmental stewardship and sustainability clearly are C-level agenda topics. What's more, sustainability is fast becoming an important corporate-performance metric—one that stakeholders, outside influencers, and even financial markets have begun to track. Information technology plays a dual role in this debate: it is both a significant source of environmental emissions and a key enabler of many strategies to mitigate environmental damage. At present, information technology's share of the world's environmental footprint is growing because of the ever-increasing demand for IT capacity and services. Electricity produced to power the world's data centers generates greenhouse gases on the scale of countries such as Argentina or the Netherlands, and these emissions could increase fourfold by 2020. McKinsey research has shown, however, that the use of IT in areas such as smart power grids, efficient buildings, and better logistics planning could eliminate five times the carbon emissions that the IT industry produces.
  • 7. Imagining anything as a service Technology now enables companies to monitor, measure, customise, and bill for asset use at a much more fine-grained level than ever before. Asset owners can therefore create services around what have traditionally been sold as products. Business-to-business (B2B) customers like these service offerings because they allow companies to purchase units of a service and to account for them as a variable cost rather than undertake large capital investments. Consumers also like this "paying only for what you use" model, which helps them avoid large expenditures, as well as the hassles of buying and maintaining a product.
  • In the IT industry, the growth of "cloud computing" (accessing computer resources provided through networks rather than running software or storing data on a local computer) exemplifies this shift. Consumer acceptance of Web-based cloud services for everything from e-mail to video is of course becoming universal, and companies are following suit. Software as a service (SaaS), which enables organisations to access services such as customer relationship management, is growing at a 17 per cent annual rate. The biotechnology company Genentech, for example, uses Google Apps for e-mail and to create documents and spreadsheets, bypassing capital investments in servers and software licenses. This development has created a wave of computing capabilities delivered as a service, including infrastructure, platform, applications, and content. And vendors are competing, with innovation and new business models, to match the needs of different customers.
  • 8. The age of the multisided business model Multisided business models create value through interactions among multiple players rather than traditional one-on-one transactions or information exchanges. In the media industry, advertising is a classic example of how these models work. Newspapers, magasines, and television stations offer content to their audiences while generating a significant portion of their revenues from third parties: advertisers. Other revenue, often through subscriptions, comes directly from consumers. More recently, this advertising-supported model has proliferated on the Internet, underwriting Web content sites, as well as services such as search and e-mail (see trend number seven, "Imagining anything as a service," earlier in this article). It is now spreading to new markets, such as enterprise software: Spiceworks offers IT-management applications to 950,000 users at no cost, while it collects advertising from B2B companies that want access to IT professionals.
  • 9. Innovating from the bottom of the pyramid The adoption of technology is a global phenomenon, and the intensity of its usage is particularly impressive in emerging markets. Our research has shown that disruptive business models arise when technology combines with extreme market conditions, such as customer demand for very low price points, poor infrastructure, hard-to-access suppliers, and low cost curves for talent. With an economic recovery beginning to take hold in some parts of the world, high rates of growth have resumed in many developing nations, and we're seeing companies built around the new models emerging as global players. Many multinationals, meanwhile, are only starting to think about developing markets as wellsprings of technology-enabled innovation rather than as traditional manufacturing hubs.
  • 10. Producing public good on the grid The role of governments in shaping global economic policy will expand in coming years. Technology will be an important factor in this evolution by facilitating the creation of new types of public goods while helping to manage them more effectively. This last trend is broad in scope and draws upon many of the other trends described above.
Weiye Loh

Do peer reviewers get worse with experience? Plus a poll « Retraction Watch - 0 views

  • We’re not here to defend peer review against its many critics. We have the same feelings about it that Churchill did about democracy, aka the worst form of government except for all those others that have been tried. Of course, a good number of the retractions we write about are due to misconduct, and it’s not clear how peer review, no matter how good, would detect out-and-out fraud.
  • With that in mind, a paper published last week in the Annals of Emergency Medicine caught our eye. Over 14 years, 84 editors at the journal rated close to 15,000 reviews by about 1,500 reviewers. Highlights of their findings: …92% of peer reviewers deteriorated during 14 years of study in the quality and usefulness of their reviews (as judged by editors at the time of decision), at rates unrelated to the length of their service (but moderately correlated with their mean quality score, with better-than average reviewers decreasing at about half the rate of those below average). Only 8% improved, and those by very small amount.
  • The average reviewer in our study would have taken 12.5 years to reach this threshold; only 3% of reviewers whose quality decreased would have reached it in less than 5 years, and even the worst would take 3.2 years. Another 35% of all reviewers would reach the threshold in 5 to 10 years, 28% in 10 to 15 years, 12% in 15 to 20 years, and 22% in 20 years or more. So the decline was slow. Still, the results, note the authors, were surprising: Such a negative overall trend is contrary to most editors’ and reviewers’ intuitive expectations and beliefs about reviewer skills and the benefits of experience.
  • ...4 more annotations...
  • What could account for this decline? The study’s authors say it might be the same sort of decline you generally see as people get older. This is well-documented in doctors, so why shouldn’t it be true of doctors — and others — who peer review?
  • Other than the well-documented cognitive decline of humans as they age, there are other important possible causes of deterioration of performance that may play a role among scientific reviewers. Examples include premature closure of decisionmaking, less compliance with formal structural review requirements, and decay of knowledge base with time (ie, with aging more of the original knowledge base acquired in training becomes out of date). Most peer reviewers say their reviews have changed with experience, becoming shorter and focusing more on methods and larger issues; only 25% think they have improved.
  • Decreased cognitive performance capability may not be the only or even chief explanation. Competing career activities and loss of motivation as tasks become too familiar may contribute as well, by decreasing the time and effort spent on the task. Some research has concluded that the decreased productivity of scientists as they age is due not to different attributes or access to resources but to “investment motivation.” This is another way of saying that competition for the reviewer’s time (which is usually uncompensated) increases with seniority, as they develop (more enticing) opportunities for additional peer review, research, administrative, and leadership responsibilities and rewards. However, from the standpoint of editors and authors (or patients), whether the cause of the decrease is decreasing intrinsic cognitive ability or diminished motivation and effort does not matter. The result is the same: a less rigorous review by which to judge articles
  • What can be done? The authors recommend “deliberate practice,” which involves assessing one’s skills, accurately identifying areas of relative weakness, performing specific exercises designed to improve and extend those weaker skills, and investing high levels of concentration and hundreds or thousands of hours in the process. A key component of deliberate practice is immediate feedback on one’s performance. There’s a problem: But acting on prompt feedback (to guide deliberate practice) would be almost impossible for peer reviewers, who typically get no feedback (and qualitative research reveals this is one of their chief complaints).
  •  
    92% of peer reviewers deteriorated during 14 years of study in the quality and usefulness of their reviews (as judged by editors at the time of decision), at rates unrelated to the length of their service (but moderately corre
Weiye Loh

Arsenic bacteria - a post-mortem, a review, and some navel-gazing | Not Exactly Rocket ... - 0 views

  • t was the big news that wasn’t. Hyperbolic claims about the possible discovery of alien life, or a second branch of life on Earth, turned out to be nothing more than bacteria that can thrive on arsenic, using it in place of phosphorus in their DNA and other molecules. But after the initial layers of hype were peeled away, even this extraordinar
  • This is a chronological roundup of the criticism against the science in the paper itself, ending with some personal reflections on my own handling of the story (skip to Friday, December 10th for that bit).
  • Thursday, December 2nd: Felisa Wolfe-Simon published a paper in Science, claiming to have found bacteria in California’s Mono Lake that can grow using arsenic instead of phosphorus. Given that phosphorus is meant to be one of six irreplaceable elements, this would have been a big deal, not least because the bacteria apparently used arsenic to build the backbones of their DNA molecules.
  • ...14 more annotations...
  • In my post, I mentioned some caveats. Wolfe-Simon isolated the arsenic-loving strain, known as GFAJ-1, by growing Mono Lake bacteria in ever-increasing concentrations of arsenic while diluting out the phosphorus. It is possible that the bacteria’s arsenic molecules were an adaptation to the harsh environments within the experiment, rather than Mono Lake itself. More importantly, there were still detectable levels of phosphorus left in the cells at the end of the experiment, although Wolfe-Simon claimed that the bacteria shouldn’t have been able to grow on such small amounts.
  • signs emerged that NASA weren’t going to engage with the criticisms. Dwayne Brown, their senior public affairs officer, highlighted the fact that the paper was published in one of the “most prestigious scientific journals” and deemed it inappropriate to debate the science using the same media and bloggers who they relied on for press coverage of the science. Wolfe-Simon herself tweeted that “discussion about scientific details MUST be within a scientific venue so that we can come back to the public with a unified understanding.”
  • Jonathan Eisen says that “they carried out science by press release and press conference” and “are now hypocritical if they say that the only response should be in the scientific literature.” David Dobbs calls the attitude “a return to pre-Enlightenment thinking”, and rightly noted that “Rosie Redfield is a peer, and her blog is peer review”.
  • Chris Rowan agreed, saying that what happens after publication is what he considers to be “real peer review”. Rowan said, “The pre-publication stuff is just a quality filter, a check that the paper is not obviously wrong – and an imperfect filter at that. The real test is what happens in the months and years after publication.”Grant Jacobs and others post similar thoughts, while Nature and the Columbia Journalism Review both cover the fracas.
  • Jack Gilbert at the University of Chicago said that impatient though he is, peer-reviewed journals are the proper forum for criticism. Others were not so kind. At the Guardian, Martin Robbins says that “at almost every stage of this story the actors involved were collapsing under the weight of their own slavish obedience to a fundamentally broken… well… ’system’” And Ivan Oransky noted that NASA failed to follow its own code of conduct when announcing the study.
  • Dr Isis said, “If question remains about the voracity of these authors findings, then the only thing that is going to answer that doubt is data.  Data cannot be generated by blog discussion… Talking about digging a ditch never got it dug.”
  • it is astonishing how quickly these events unfolded and the sheer number of bloggers and media outlets that became involved in the criticism. This is indeed a brave new world, and one in which we are all the infamous Third Reviewer.
  • I tried to quell the hype around the study as best I could. I had the paper and I think that what I wrote was a fair representation of it. But, of course, that’s not necessarily enough. I’ve argued before that journalists should not be merely messengers – we should make the best possible efforts to cut through what’s being said in an attempt to uncover what’s actually true. Arguably, that didn’t happen although to clarify, I am not saying that the paper is rubbish or untrue. Despite the criticisms, I want to see the authors respond in a thorough way or to see another lab attempt replicate the experiments before jumping to conclusions.
  • the sheer amount of negative comment indicates that I could have been more critical of the paper in my piece. Others have been supportive in suggesting that this was more egg on the face of the peer reviewers and indeed, several practicing scientists took the findings on face value, speculating about everything from the implications for chemotherapy to whether the bacteria have special viruses. The counter-argument, which I have no good retort to, is that peer review is no guarantee of quality, and that writers should be able to see through the fog of whatever topic they write about.
  • my response was that we should expect people to make reasonable efforts to uncover truth and be skeptical, while appreciating that people can and will make mistakes.
  • it comes down to this: did I do enough? I was certainly cautious. I said that “there is room for doubt” and I brought up the fact that the arsenic-loving bacteria still contain measurable levels of phosphorus. But I didn’t run the paper past other sources for comment, which I typically do it for stories that contain extraordinary claims. There was certainly plenty of time to do so here and while there were various reasons that I didn’t, the bottom line is that I could have done more. That doesn’t always help, of course, but it was an important missed step. A lesson for next time.
  • I do believe that it you’re going to try to hold your profession to a higher standard, you have to be honest and open when you’ve made mistakes yourself. I also think that if you cover a story that turns out to be a bit dodgy, you have a certain responsibility in covering the follow-up
  • A basic problem with is the embargo. Specifically that journalists get early access, while peers – other specialists in the field – do not. It means that the journalist, like yourself, can rely only on the original authors, with no way of getting other views on the findings. And it means that peers can’t write about the paper when the journalists (who, inevitably, do a positive-only coverage due to the lack of other viewpoints) do, but will be able to voice only after they’ve been able to digest the paper and formulate a response.
  • No, that’s not true. The embargo doens’t preclude journalists from sending papers out to other authors for review and comment. I do this a lot and I have been critical about new papers as a result, but that’s the step that I missed for this story.
Weiye Loh

Skepticblog » The Decline Effect - 0 views

  • The first group are those with an overly simplistic or naive sense of how science functions. This is a view of science similar to those films created in the 1950s and meant to be watched by students, with the jaunty music playing in the background. This view generally respects science, but has a significant underappreciation for the flaws and complexity of science as a human endeavor. Those with this view are easily scandalized by revelations of the messiness of science.
  • The second cluster is what I would call scientific skepticism – which combines a respect for science and empiricism as a method (really “the” method) for understanding the natural world, with a deep appreciation for all the myriad ways in which the endeavor of science can go wrong. Scientific skeptics, in fact, seek to formally understand the process of science as a human endeavor with all its flaws. It is therefore often skeptics pointing out phenomena such as publication bias, the placebo effect, the need for rigorous controls and blinding, and the many vagaries of statistical analysis. But at the end of the day, as complex and messy the process of science is, a reliable picture of reality is slowly ground out.
  • The third group, often frustrating to scientific skeptics, are the science-deniers (for lack of a better term). They may take a postmodernist approach to science – science is just one narrative with no special relationship to the truth. Whatever you call it, what the science-deniers in essence do is describe all of the features of science that the skeptics do (sometimes annoyingly pretending that they are pointing these features out to skeptics) but then come to a different conclusion at the end – that science (essentially) does not work.
  • ...13 more annotations...
  • this third group – the science deniers – started out in the naive group, and then were so scandalized by the realization that science is a messy human endeavor that the leap right to the nihilistic conclusion that science must therefore be bunk.
  • The article by Lehrer falls generally into this third category. He is discussing what has been called “the decline effect” – the fact that effect sizes in scientific studies tend to decrease over time, sometime to nothing.
  • This term was first applied to the parapsychological literature, and was in fact proposed as a real phenomena of ESP – that ESP effects literally decline over time. Skeptics have criticized this view as magical thinking and hopelessly naive – Occam’s razor favors the conclusion that it is the flawed measurement of ESP, not ESP itself, that is declining over time. 
  • Lehrer, however, applies this idea to all of science, not just parapsychology. He writes: And this is why the decline effect is so troubling. Not because it reveals the human fallibility of science, in which data are tweaked and beliefs shape perceptions. (Such shortcomings aren’t surprising, at least for scientists.) And not because it reveals that many of our most exciting theories are fleeting fads and will soon be rejected. (That idea has been around since Thomas Kuhn.) The decline effect is troubling because it reminds us how difficult it is to prove anything. We like to pretend that our experiments define the truth for us. But that’s often not the case. Just because an idea is true doesn’t mean it can be proved. And just because an idea can be proved doesn’t mean it’s true. When the experiments are done, we still have to choose what to believe.
  • Lehrer is ultimately referring to aspects of science that skeptics have been pointing out for years (as a way of discerning science from pseudoscience), but Lehrer takes it to the nihilistic conclusion that it is difficult to prove anything, and that ultimately “we still have to choose what to believe.” Bollocks!
  • Lehrer is describing the cutting edge or the fringe of science, and then acting as if it applies all the way down to the core. I think the problem is that there is so much scientific knowledge that we take for granted – so much so that we forget it is knowledge that derived from the scientific method, and at one point was not known.
  • It is telling that Lehrer uses as his primary examples of the decline effect studies from medicine, psychology, and ecology – areas where the signal to noise ratio is lowest in the sciences, because of the highly variable and complex human element. We don’t see as much of a decline effect in physics, for example, where phenomena are more objective and concrete.
  • If the truth itself does not “wear off”, as the headline of Lehrer’s article provocatively states, then what is responsible for this decline effect?
  • it is no surprise that effect science in preliminary studies tend to be positive. This can be explained on the basis of experimenter bias – scientists want to find positive results, and initial experiments are often flawed or less than rigorous. It takes time to figure out how to rigorously study a question, and so early studies will tend not to control for all the necessary variables. There is further publication bias in which positive studies tend to be published more than negative studies.
  • Further, some preliminary research may be based upon chance observations – a false pattern based upon a quirky cluster of events. If these initial observations are used in the preliminary studies, then the statistical fluke will be carried forward. Later studies are then likely to exhibit a regression to the mean, or a return to more statistically likely results (which is exactly why you shouldn’t use initial data when replicating a result, but should use entirely fresh data – a mistake for which astrologers are infamous).
  • skeptics are frequently cautioning against new or preliminary scientific research. Don’t get excited by every new study touted in the lay press, or even by a university’s press release. Most new findings turn out to be wrong. In science, replication is king. Consensus and reliable conclusions are built upon multiple independent lines of evidence, replicated over time, all converging on one conclusion.
  • Lehrer does make some good points in his article, but they are points that skeptics are fond of making. In order to have a  mature and functional appreciation for the process and findings of science, it is necessary to understand how science works in the real world, as practiced by flawed scientists and scientific institutions. This is the skeptical message.
  • But at the same time reliable findings in science are possible, and happen frequently – when results can be replicated and when they fit into the expanding intricate weave of the picture of the natural world being generated by scientific investigation.
Weiye Loh

Models, Plain and Fancy - NYTimes.com - 0 views

  • Karl Smith argues that informal economic arguments — models in the sense of thought experiments, not necessarily backed by equations and/or data-crunching — deserve more respect from the profession.
  • misunderstandings in economics come about because people don’t have in their minds any intuitive notion of what it is they’re supposed to be modeling.
  • And Karl Smith is right: no way could Hume have published such a thing in a modern journal. So yes, simple intuitive stories are important, and deserve more credit.
  • ...1 more annotation...
  • You could argue that modern economics really began with David Hume’s Of the Balance of Trade, whose core is a gloriously clear thought experiment
Weiye Loh

Religion: Faith in science : Nature News - 0 views

  • The Templeton Foundation claims to be a friend of science. So why does it make so many researchers uneasy?
  • With a current endowment estimated at US$2.1 billion, the organization continues to pursue Templeton's goal of building bridges between science and religion. Each year, it doles out some $70 million in grants, more than $40 million of which goes to research in fields such as cosmology, evolutionary biology and psychology.
  • however, many scientists find it troubling — and some see it as a threat. Jerry Coyne, an evolutionary biologist at the University of Chicago, Illinois, calls the foundation "sneakier than the creationists". Through its grants to researchers, Coyne alleges, the foundation is trying to insinuate religious values into science. "It claims to be on the side of science, but wants to make faith a virtue," he says.
  • ...25 more annotations...
  • But other researchers, both with and without Templeton grants, say that they find the foundation remarkably open and non-dogmatic. "The Templeton Foundation has never in my experience pressured, suggested or hinted at any kind of ideological slant," says Michael Shermer, editor of Skeptic, a magazine that debunks pseudoscience, who was hired by the foundation to edit an essay series entitled 'Does science make belief in God obsolete?'
  • The debate highlights some of the challenges facing the Templeton Foundation after the death of its founder in July 2008, at the age of 95.
  • With the help of a $528-million bequest from Templeton, the foundation has been radically reframing its research programme. As part of that effort, it is reducing its emphasis on religion to make its programmes more palatable to the broader scientific community. Like many of his generation, Templeton was a great believer in progress, learning, initiative and the power of human imagination — not to mention the free-enterprise system that allowed him, a middle-class boy from Winchester, Tennessee, to earn billions of dollars on Wall Street. The foundation accordingly allocates 40% of its annual grants to programmes with names such as 'character development', 'freedom and free enterprise' and 'exceptional cognitive talent and genius'.
  • Unlike most of his peers, however, Templeton thought that the principles of progress should also apply to religion. He described himself as "an enthusiastic Christian" — but was also open to learning from Hinduism, Islam and other religious traditions. Why, he wondered, couldn't religious ideas be open to the type of constructive competition that had produced so many advances in science and the free market?
  • That question sparked Templeton's mission to make religion "just as progressive as medicine or astronomy".
  • Early Templeton prizes had nothing to do with science: the first went to the Catholic missionary Mother Theresa of Calcutta in 1973.
  • By the 1980s, however, Templeton had begun to realize that fields such as neuroscience, psychology and physics could advance understanding of topics that are usually considered spiritual matters — among them forgiveness, morality and even the nature of reality. So he started to appoint scientists to the prize panel, and in 1985 the award went to a research scientist for the first time: Alister Hardy, a marine biologist who also investigated religious experience. Since then, scientists have won with increasing frequency.
  • "There's a distinct feeling in the research community that Templeton just gives the award to the most senior scientist they can find who's willing to say something nice about religion," says Harold Kroto, a chemist at Florida State University in Tallahassee, who was co-recipient of the 1996 Nobel Prize in Chemistry and describes himself as a devout atheist.
  • Yet Templeton saw scientists as allies. They had what he called "the humble approach" to knowledge, as opposed to the dogmatic approach. "Almost every scientist will agree that they know so little and they need to learn," he once said.
  • Templeton wasn't interested in funding mainstream research, says Barnaby Marsh, the foundation's executive vice-president. Templeton wanted to explore areas — such as kindness and hatred — that were not well known and did not attract major funding agencies. Marsh says Templeton wondered, "Why is it that some conflicts go on for centuries, yet some groups are able to move on?"
  • Templeton's interests gave the resulting list of grants a certain New Age quality (See Table 1). For example, in 1999 the foundation gave $4.6 million for forgiveness research at the Virginia Commonwealth University in Richmond, and in 2001 it donated $8.2 million to create an Institute for Research on Unlimited Love (that is, altruism and compassion) at Case Western Reserve University in Cleveland, Ohio. "A lot of money wasted on nonsensical ideas," says Kroto. Worse, says Coyne, these projects are profoundly corrupting to science, because the money tempts researchers into wasting time and effort on topics that aren't worth it. If someone is willing to sell out for a million dollars, he says, "Templeton is there to oblige him".
  • At the same time, says Marsh, the 'dean of value investing', as Templeton was known on Wall Street, had no intention of wasting his money on junk science or unanswerables such as whether God exists. So before pursuing a scientific topic he would ask his staff to get an assessment from appropriate scholars — a practice that soon evolved into a peer-review process drawing on experts from across the scientific community.
  • Because Templeton didn't like bureaucracy, adds Marsh, the foundation outsourced much of its peer review and grant giving. In 1996, for example, it gave $5.3 million to the American Association for the Advancement of Science (AAAS) in Washington DC, to fund efforts that work with evangelical groups to find common ground on issues such as the environment, and to get more science into seminary curricula. In 2006, Templeton gave $8.8 million towards the creation of the Foundational Questions Institute (FQXi), which funds research on the origins of the Universe and other fundamental issues in physics, under the leadership of Anthony Aguirre, an astrophysicist at the University of California, Santa Cruz, and Max Tegmark, a cosmologist at the Massachusetts Institute of Technology in Cambridge.
  • But external peer review hasn't always kept the foundation out of trouble. In the 1990s, for example, Templeton-funded organizations gave book-writing grants to Guillermo Gonzalez, an astrophysicist now at Grove City College in Pennsylvania, and William Dembski, a philosopher now at the Southwestern Baptist Theological Seminary in Fort Worth, Texas. After obtaining the grants, both later joined the Discovery Institute — a think-tank based in Seattle, Washington, that promotes intelligent design. Other Templeton grants supported a number of college courses in which intelligent design was discussed. Then, in 1999, the foundation funded a conference at Concordia University in Mequon, Wisconsin, in which intelligent-design proponents confronted critics. Those awards became a major embarrassment in late 2005, during a highly publicized court fight over the teaching of intelligent design in schools in Dover, Pennsylvania. A number of media accounts of the intelligent design movement described the Templeton Foundation as a major supporter — a charge that Charles Harper, then senior vice-president, was at pains to deny.
  • Some foundation officials were initially intrigued by intelligent design, Harper told The New York Times. But disillusionment set in — and Templeton funding stopped — when it became clear that the theory was part of a political movement from the Christian right wing, not science. Today, the foundation website explicitly warns intelligent-design researchers not to bother submitting proposals: they will not be considered.
  • Avowedly antireligious scientists such as Coyne and Kroto see the intelligent-design imbroglio as a symptom of their fundamental complaint that religion and science should not mix at all. "Religion is based on dogma and belief, whereas science is based on doubt and questioning," says Coyne, echoing an argument made by many others. "In religion, faith is a virtue. In science, faith is a vice." The purpose of the Templeton Foundation is to break down that wall, he says — to reconcile the irreconcilable and give religion scholarly legitimacy.
  • Foundation officials insist that this is backwards: questioning is their reason for being. Religious dogma is what they are fighting. That does seem to be the experience of many scientists who have taken Templeton money. During the launch of FQXi, says Aguirre, "Max and I were very suspicious at first. So we said, 'We'll try this out, and the minute something smells, we'll cut and run.' It never happened. The grants we've given have not been connected with religion in any way, and they seem perfectly happy about that."
  • John Cacioppo, a psychologist at the University of Chicago, also had concerns when he started a Templeton-funded project in 2007. He had just published a paper with survey data showing that religious affiliation had a negative correlation with health among African-Americans — the opposite of what he assumed the foundation wanted to hear. He was bracing for a protest when someone told him to look at the foundation's website. They had displayed his finding on the front page. "That made me relax a bit," says Cacioppo.
  • Yet, even scientists who give the foundation high marks for openness often find it hard to shake their unease. Sean Carroll, a physicist at the California Institute of Technology in Pasadena, is willing to participate in Templeton-funded events — but worries about the foundation's emphasis on research into 'spiritual' matters. "The act of doing science means that you accept a purely material explanation of the Universe, that no spiritual dimension is required," he says.
  • It hasn't helped that Jack Templeton is much more politically and religiously conservative than his father was. The foundation shows no obvious rightwards trend in its grant-giving and other activities since John Templeton's death — and it is barred from supporting political activities by its legal status as a not-for-profit corporation. Still, many scientists find it hard to trust an organization whose president has used his personal fortune to support right-leaning candidates and causes such as the 2008 ballot initiative that outlawed gay marriage in California.
  • Scientists' discomfort with the foundation is probably inevitable in the current political climate, says Scott Atran, an anthropologist at the University of Michigan in Ann Arbor. The past 30 years have seen the growing power of the Christian religious right in the United States, the rise of radical Islam around the world, and religiously motivated terrorist attacks such as those in the United States on 11 September 2001. Given all that, says Atran, many scientists find it almost impossible to think of religion as anything but fundamentalism at war with reason.
  • the foundation has embraced the theme of 'science and the big questions' — an open-ended list that includes topics such as 'Does the Universe have a purpose?'
  • Towards the end of Templeton's life, says Marsh, he became increasingly concerned that this reaction was getting in the way of the foundation's mission: that the word 'religion' was alienating too many good scientists.
  • The peer-review and grant-making system has also been revamped: whereas in the past the foundation ran an informal mix of projects generated by Templeton and outside grant seekers, the system is now organized around an annual list of explicit funding priorities.
  • The foundation is still a work in progress, says Jack Templeton — and it always will be. "My father believed," he says, "we were all called to be part of an ongoing creative process. He was always trying to make people think differently." "And he always said, 'If you're still doing today what you tried to do two years ago, then you're not making progress.'" 
Weiye Loh

Rationally Speaking: Studying folk morality: philosophy, psychology, or what? - 0 views

  • in the magazine article Joshua mentions several studies of “folk morality,” i.e. of how ordinary people think about moral problems. The results are fascinating. It turns out that people’s views are correlated with personality traits, with subjects who score high on “openness to experience” being reliably more relativists than objectivists about morality (I am not using the latter term in the infamous Randyan meaning here, but as Knobe does, to indicate the idea that morality has objective bases).
  • Other studies show that people who are capable of considering multiple options in solving mathematical puzzles also tend to be moral relativists, and — in a study co-authored by Knobe himself — the very same situation (infanticide) was judged along a sliding scale from objectivism to relativism depending on whether the hypothetical scenario involved a fellow American (presumably sharing our same general moral values), the member of an imaginary Amazonian tribe (for which infanticide was acceptable), and an alien from the planet Pentar (belonging to a race whose only goal in life is to turn everything into equilateral pentagons, and killing individuals that might get in the way of that lofty objective is a duty). Oh, and related research also shows that young children tend to be objectivists, while young adults are usually relativists — but that later in life one’s primordial objectivism apparently experiences a comeback.
  • This is all very interesting social science, but is it philosophy? Granted, the differences between various disciplines are often not clear cut, and of course whenever people engage in truly inter-disciplinary work we should simply applaud the effort and encourage further work. But I do wonder in what sense, if any, the kinds of results that Joshua and his colleagues find have much to do with moral philosophy.
  • ...6 more annotations...
  • there seems to me the potential danger of confusing various categories of moral discourse. For instance, are the “folks” studied in these cases actually relativist, or perhaps adherents to one of several versions of moral anti-realism? The two are definitely not the same, but I doubt that the subjects in question could tell the difference (and I wouldn’t expect them to, after all they are not philosophers).
  • why do we expect philosophers to learn from “folk morality” when we do not expect, say, physicists to learn from folk physics (which tends to be Aristotelian in nature), or statisticians from people’s understanding of probability theory (which is generally remarkably poor, as casino owners know very well)? Or even, while I’m at it, why not ask literary critics to discuss Shakespeare in light of what common folks think about the bard (making sure, perhaps, that they have at least read his works, and not just watched the movies)?
  • Hence, my other examples of stat (i.e., math) and literary criticism. I conceive of philosophy in general, and moral philosophy in particular, as more akin to a (science-informed, to be sure) mix between logic and criticism. Some moral philosophy consists in engaging an “if ... then” sort of scenario, akin to logical-mathematical thinking, where one begins with certain axioms and attempts to derive the consequences of such axioms. In other respects, moral philosophers exercise reflective criticism concerning those consequences as they might be relevant to practical problems.
  • For instance, we may write philosophically about abortion, and begin our discussion from a comparison of different conceptions of “person.” We might conclude that “if” one adopts conception X of what a person is, “then” abortion is justifiable under such and such conditions; while “if” one adopts conception Y of a person, “then” abortion is justifiable under a different set of conditions, or not justifiable at all. We could, of course, back up even further and engage in a discussion of what “personhood” is, thus moving from moral philosophy to metaphysics.
  • Nowhere in the above are we going to ask “folks” what they think a person is, or how they think their implicit conception of personhood informs their views on abortion. Of course people’s actual views on abortion are crucial — especially for public policy — and they are intrinsically interesting to social scientists. But they don’t seem to me to make much more contact with philosophy than the above mentioned popular opinions on Shakespeare make contact with serious literary criticism. And please, let’s not play the cheap card of “elitism,” unless we are willing to apply the label to just about any intellectual endeavor, in any discipline.
  • There is one area in which experimental philosophy can potentially contribute to philosophy proper (as opposed to social science). Once we have a more empirically grounded understanding of what people’s moral reasoning actually is, then we can analyze the likely consequences of that reasoning for a variety of societal issues. But now we would be doing something more akin to political than moral philosophy.
  •  
    My colleague Joshua Knobe at Yale University recently published an intriguing article in The Philosopher's Magazine about the experimental philosophy of moral decision making. Joshua and I have had a nice chat during a recent Rationally Speaking podcast dedicated to experimental philosophy, but I'm still not convinced about the whole enterprise.
1 - 20 of 135 Next › Last »
Showing 20 items per page