Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Falsifiability

Rss Feed Group items tagged

Weiye Loh

Science, Strong Inference -- Proper Scientific Method - 0 views

  • Scientists these days tend to keep up a polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist's field and methods of study are as good as every other scientist's and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants.
  • Why should there be such rapid advances in some fields and not in others? I think the usual explanations that we tend to think of - such as the tractability of the subject, or the quality or education of the men drawn into it, or the size of research contracts - are important but inadequate. I have begun to believe that the primary factor in scientific advance is an intellectual one. These rapidly moving fields are fields where a particular method of doing scientific research is systematically used and taught, an accumulative method of inductive inference that is so effective that I think it should be given the name of "strong inference." I believe it is important to examine this method, its use and history and rationale, and to see whether other groups and individuals might learn to adopt it profitably in their own scientific and intellectual work. In its separate elements, strong inference is just the simple and old-fashioned method of inductive inference that goes back to Francis Bacon. The steps are familiar to every college student and are practiced, off and on, by every scientist. The difference comes in their systematic application. Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly: Devising alternative hypotheses; Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly is possible, exclude one or more of the hypotheses; Carrying out the experiment so as to get a clean result; Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.
  • On any new problem, of course, inductive inference is not as simple and certain as deduction, because it involves reaching out into the unknown. Steps 1 and 2 require intellectual inventions, which must be cleverly chosen so that hypothesis, experiment, outcome, and exclusion will be related in a rigorous syllogism; and the question of how to generate such inventions is one which has been extensively discussed elsewhere (2, 3). What the formal schema reminds us to do is to try to make these inventions, to take the next step, to proceed to the next fork, without dawdling or getting tied up in irrelevancies.
  • ...28 more annotations...
  • It is clear why this makes for rapid and powerful progress. For exploring the unknown, there is no faster method; this is the minimum sequence of steps. Any conclusion that is not an exclusion is insecure and must be rechecked. Any delay in recycling to the next set of hypotheses is only a delay. Strong inference, and the logical tree it generates, are to inductive reasoning what the syllogism is to deductive reasoning in that it offers a regular method for reaching firm inductive conclusions one after the other as rapidly as possible.
  • "But what is so novel about this?" someone will say. This is the method of science and always has been, why give it a special name? The reason is that many of us have almost forgotten it. Science is now an everyday business. Equipment, calculations, lectures become ends in themselves. How many of us write down our alternatives and crucial experiments every day, focusing on the exclusion of a hypothesis? We may write our scientific papers so that it looks as if we had steps 1, 2, and 3 in mind all along. But in between, we do busywork. We become "method- oriented" rather than "problem-oriented." We say we prefer to "feel our way" toward generalizations. We fail to teach our students how to sharpen up their inductive inferences. And we do not realize the added power that the regular and explicit use of alternative hypothesis and sharp exclusion could give us at every step of our research.
  • A distinguished cell biologist rose and said, "No two cells give the same properties. Biology is the science of heterogeneous systems." And he added privately. "You know there are scientists, and there are people in science who are just working with these over-simplified model systems - DNA chains and in vitro systems - who are not doing science at all. We need their auxiliary work: they build apparatus, they make minor studies, but they are not scientists." To which Cy Levinthal replied: "Well, there are two kinds of biologists, those who are looking to see if there is one thing that can be understood and those who keep saying it is very complicated and that nothing can be understood. . . . You must study the simplest system you think has the properties you are interested in."
  • At the 1958 Conference on Biophysics, at Boulder, there was a dramatic confrontation between the two points of view. Leo Szilard said: "The problems of how enzymes are induced, of how proteins are synthesized, of how antibodies are formed, are closer to solution than is generally believed. If you do stupid experiments, and finish one a year, it can take 50 years. But if you stop doing experiments for a little while and think how proteins can possibly be synthesized, there are only about 5 different ways, not 50! And it will take only a few experiments to distinguish these." One of the young men added: "It is essentially the old question: How small and elegant an experiment can you perform?" These comments upset a number of those present. An electron microscopist said. "Gentlemen, this is off the track. This is philosophy of science." Szilard retorted. "I was not quarreling with third-rate scientists: I was quarreling with first-rate scientists."
  • Any criticism or challenge to consider changing our methods strikes of course at all our ego-defenses. But in this case the analytical method offers the possibility of such great increases in effectiveness that it is unfortunate that it cannot be regarded more often as a challenge to learning rather than as challenge to combat. Many of the recent triumphs in molecular biology have in fact been achieved on just such "oversimplified model systems," very much along the analytical lines laid down in the 1958 discussion. They have not fallen to the kind of men who justify themselves by saying "No two cells are alike," regardless of how true that may ultimately be. The triumphs are in fact triumphs of a new way of thinking.
  • the emphasis on strong inference
  • is also partly due to the nature of the fields themselves. Biology, with its vast informational detail and complexity, is a "high-information" field, where years and decades can easily be wasted on the usual type of "low-information" observations or experiments if one does not think carefully in advance about what the most important and conclusive experiments would be. And in high-energy physics, both the "information flux" of particles from the new accelerators and the million-dollar costs of operation have forced a similar analytical approach. It pays to have a top-notch group debate every experiment ahead of time; and the habit spreads throughout the field.
  • Historically, I think, there have been two main contributions to the development of a satisfactory strong-inference method. The first is that of Francis Bacon (13). He wanted a "surer method" of "finding out nature" than either the logic-chopping or all-inclusive theories of the time or the laudable but crude attempts to make inductions "by simple enumeration." He did not merely urge experiments as some suppose, he showed the fruitfulness of interconnecting theory and experiment so that the one checked the other. Of the many inductive procedures he suggested, the most important, I think, was the conditional inductive tree, which proceeded from alternative hypothesis (possible "causes," as he calls them), through crucial experiments ("Instances of the Fingerpost"), to exclusion of some alternatives and adoption of what is left ("establishing axioms"). His Instances of the Fingerpost are explicitly at the forks in the logical tree, the term being borrowed "from the fingerposts which are set up where roads part, to indicate the several directions."
  • ere was a method that could separate off the empty theories! Bacon, said the inductive method could be learned by anybody, just like learning to "draw a straighter line or more perfect circle . . . with the help of a ruler or a pair of compasses." "My way of discovering sciences goes far to level men's wit and leaves but little to individual excellence, because it performs everything by the surest rules and demonstrations." Even occasional mistakes would not be fatal. "Truth will sooner come out from error than from confusion."
  • Nevertheless there is a difficulty with this method. As Bacon emphasizes, it is necessary to make "exclusions." He says, "The induction which is to be available for the discovery and demonstration of sciences and arts, must analyze nature by proper rejections and exclusions, and then, after a sufficient number of negatives come to a conclusion on the affirmative instances." "[To man] it is granted only to proceed at first by negatives, and at last to end in affirmatives after exclusion has been exhausted." Or, as the philosopher Karl Popper says today there is no such thing as proof in science - because some later alternative explanation may be as good or better - so that science advances only by disproofs. There is no point in making hypotheses that are not falsifiable because such hypotheses do not say anything, "it must be possible for all empirical scientific system to be refuted by experience" (14).
  • The difficulty is that disproof is a hard doctrine. If you have a hypothesis and I have another hypothesis, evidently one of them must be eliminated. The scientist seems to have no choice but to be either soft-headed or disputatious. Perhaps this is why so many tend to resist the strong analytical approach and why some great scientists are so disputatious.
  • Fortunately, it seems to me, this difficulty can be removed by the use of a second great intellectual invention, the "method of multiple hypotheses," which is what was needed to round out the Baconian scheme. This is a method that was put forward by T.C. Chamberlin (15), a geologist at Chicago at the turn of the century, who is best known for his contribution to the Chamberlain-Moulton hypothesis of the origin of the solar system.
  • Chamberlin says our trouble is that when we make a single hypothesis, we become attached to it. "The moment one has offered an original explanation for a phenomenon which seems satisfactory, that moment affection for his intellectual child springs into existence, and as the explanation grows into a definite theory his parental affections cluster about his offspring and it grows more and more dear to him. . . . There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory..." "To avoid this grave danger, the method of multiple working hypotheses is urged. It differs from the simple working hypothesis in that it distributes the effort and divides the affections. . . . Each hypothesis suggests its own criteria, its own method of proof, its own method of developing the truth, and if a group of hypotheses encompass the subject on all sides, the total outcome of means and of methods is full and rich."
  • The conflict and exclusion of alternatives that is necessary to sharp inductive inference has been all too often a conflict between men, each with his single Ruling Theory. But whenever each man begins to have multiple working hypotheses, it becomes purely a conflict between ideas. It becomes much easier then for each of us to aim every day at conclusive disproofs - at strong inference - without either reluctance or combativeness. In fact, when there are multiple hypotheses, which are not anyone's "personal property," and when there are crucial experiments to test them, the daily life in the laboratory takes on an interest and excitement it never had, and the students can hardly wait to get to work to see how the detective story will come out. It seems to me that this is the reason for the development of those distinctive habits of mind and the "complex thought" that Chamberlin described, the reason for the sharpness, the excitement, the zeal, the teamwork - yes, even international teamwork - in molecular biology and high- energy physics today. What else could be so effective?
  • Unfortunately, I think, there are other other areas of science today that are sick by comparison, because they have forgotten the necessity for alternative hypotheses and disproof. Each man has only one branch - or none - on the logical tree, and it twists at random without ever coming to the need for a crucial decision at any point. We can see from the external symptoms that there is something scientifically wrong. The Frozen Method, The Eternal Surveyor, The Never Finished, The Great Man With a Single Hypothcsis, The Little Club of Dependents, The Vendetta, The All-Encompassing Theory Which Can Never Be Falsified.
  • a "theory" of this sort is not a theory at all, because it does not exclude anything. It predicts everything, and therefore does not predict anything. It becomes simply a verbal formula which the graduate student repeats and believes because the professor has said it so often. This is not science, but faith; not theory, but theology. Whether it is hand-waving or number-waving, or equation-waving, a theory is not a theory unless it can be disproved. That is, unless it can be falsified by some possible experimental outcome.
  • the work methods of a number of scientists have been testimony to the power of strong inference. Is success not due in many cases to systematic use of Bacon's "surest rules and demonstrations" as much as to rare and unattainable intellectual power? Faraday's famous diary (16), or Fermi's notebooks (3, 17), show how these men believed in the effectiveness of daily steps in applying formal inductive methods to one problem after another.
  • Surveys, taxonomy, design of equipment, systematic measurements and tables, theoretical computations - all have their proper and honored place, provided they are parts of a chain of precise induction of how nature works. Unfortunately, all too often they become ends in themselves, mere time-serving from the point of view of real scientific advance, a hypertrophied methodology that justifies itself as a lore of respectability.
  • We speak piously of taking measurements and making small studies that will "add another brick to the temple of science." Most such bricks just lie around the brickyard (20). Tables of constraints have their place and value, but the study of one spectrum after another, if not frequently re-evaluated, may become a substitute for thinking, a sad waste of intelligence in a research laboratory, and a mistraining whose crippling effects may last a lifetime.
  • Beware of the man of one method or one instrument, either experimental or theoretical. He tends to become method-oriented rather than problem-oriented. The method-oriented man is shackled; the problem-oriented man is at least reaching freely toward that is most important. Strong inference redirects a man to problem-orientation, but it requires him to be willing repeatedly to put aside his last methods and teach himself new ones.
  • anyone who asks the question about scientific effectiveness will also conclude that much of the mathematizing in physics and chemistry today is irrelevant if not misleading. The great value of mathematical formulation is that when an experiment agrees with a calculation to five decimal places, a great many alternative hypotheses are pretty well excluded (though the Bohr theory and the Schrödinger theory both predict exactly the same Rydberg constant!). But when the fit is only to two decimal places, or one, it may be a trap for the unwary; it may be no better than any rule-of-thumb extrapolation, and some other kind of qualitative exclusion might be more rigorous for testing the assumptions and more important to scientific understanding than the quantitative fit.
  • Today we preach that science is not science unless it is quantitative. We substitute correlations for causal studies, and physical equations for organic reasoning. Measurements and equations are supposed to sharpen thinking, but, in my observation, they more often tend to make the thinking noncausal and fuzzy. They tend to become the object of scientific manipulation instead of auxiliary tests of crucial inferences.
  • Many - perhaps most - of the great issues of science are qualitative, not quantitative, even in physics and chemistry. Equations and measurements are useful when and only when they are related to proof; but proof or disproof comes first and is in fact strongest when it is absolutely convincing without any quantitative measurement.
  • you can catch phenomena in a logical box or in a mathematical box. The logical box is coarse but strong. The mathematical box is fine-grained but flimsy. The mathematical box is a beautiful way of wrapping up a problem, but it will not hold the phenomena unless they have been caught in a logical box to begin with.
  • Of course it is easy - and all too common - for one scientist to call the others unscientific. My point is not that my particular conclusions here are necessarily correct, but that we have long needed some absolute standard of possible scientific effectiveness by which to measure how well we are succeeding in various areas - a standard that many could agree on and one that would be undistorted by the scientific pressures and fashions of the times and the vested interests and busywork that they develop. It is not public evaluation I am interested in so much as a private measure by which to compare one's own scientific performance with what it might be. I believe that strong inference provides this kind of standard of what the maximum possible scientific effectiveness could be - as well as a recipe for reaching it.
  • The strong-inference point of view is so resolutely critical of methods of work and values in science that any attempt to compare specific cases is likely to sound but smug and destructive. Mainly one should try to teach it by example and by exhorting to self-analysis and self-improvement only in general terms
  • one severe but useful private test - a touchstone of strong inference - that removes the necessity for third-person criticism, because it is a test that anyone can learn to carry with him for use as needed. It is our old friend the Baconian "exclusion," but I call it "The Question." Obviously it should be applied as much to one's own thinking as to others'. It consists of asking in your own mind, on hearing any scientific explanation or theory put forward, "But sir, what experiment could disprove your hypothesis?"; or, on hearing a scientific experiment described, "But sir, what hypothesis does your experiment disprove?"
  • It is not true that all science is equal; or that we cannot justly compare the effectiveness of scientists by any method other than a mutual-recommendation system. The man to watch, the man to put your money on, is not the man who wants to make "a survey" or a "more detailed study" but the man with the notebook, the man with the alternative hypotheses and the crucial experiments, the man who knows how to answer your Question of disproof and is already working on it.
  •  
    There is so much bad science and bad statistics information in media reports, publications, and shared between conversants that I think it is important to understand about facts and proofs and the associated pitfalls.
Weiye Loh

Red-Wine Researcher Charged With 'Photoshop' Fraud - 0 views

  •  
    A University of Connecticut researcher known for touting the health benefits of red wine is guilty of 145 counts of fabricating and falsifying data with image-editing software, according to a 3-year university investigation made public Wednesday. The researcher, Dipak K. Das, PhD, is a director of the university's Cardiovascular Research Center (CRC) and a professor in the Department of Surgery. The university stated in a press release that it has frozen all externally funded research in Dr. Das's lab and turned down $890,000 in federal research grants awarded to him. The process to dismiss Dr. Das from the university is already underway, the university added.
Weiye Loh

Rationally Speaking: Between scientists and citizens, part I - 0 views

  • The authors suggest that there are two publics for science communication, one that is liberal, educated and with a number of resources at its disposals; the other with less predictable and less-formed opinions. The authors explored empirically (via a survey of 108 Colorado citizens) the responses of liberal and educated people to scientific jargon by exposing them to two “treatments”: jargon-laden vs lay terminology news articles. The results found that scientists were considered the most credible sources in the specific area of environmental science (94.3% agreed), followed by activists (61.1%). The least credible were industry representatives, clergy and celebrities. (Remember, this is among liberal educated people.) Interestingly, the use of jargon per se did not increase acceptance of the news source or of the content of the story. So the presence of scientific expertise is important, not so the presence of actual scientific details in the story.
  • There is no complete account of the scientific method, and again one can choose certain methods rather than others, depending on what one is trying to accomplish (a choice that is itself informed by one’s values). And of course the Duhem-Quine thesis shows that there is no straightforward way to falsify scientific theories (contra Popper). If there were supernatural causes that interact with (or override) the causes being studied by science, but are themselves undiscoverable, this would lead to false conclusions and bad predictions. Which means that the truth is discoverable empirically only if such supernatural causes are not active. Science cannot answer the question of whether such factors are present, which raises the question of whether we ought to proceed as if they were not (i.e., methodological naturalism).
  •  
    Expertise is often thought of in terms of skills, but within the context of science communication it really refers to authority and credibility. Expertise is communicated at least in part through the use of jargon, with which of course most journalists are not familiar. Jargon provides an air of authority, but at the same time the concepts referred to become inaccessible to non-specialists. Interestingly, journalists prefer sources that limit the use of jargon, but they themselves deploy jargon to demonstrate scientific proficiency.
Weiye Loh

Is Pure Altruism Possible? - NYTimes.com - 0 views

  • It’s undeniable that people sometimes act in a way that benefits others, but it may seem that they always get something in return — at the very least, the satisfaction of having their desire to help fulfilled.
  • Contemporary discussions of altruism quickly turn to evolutionary explanations. Reciprocal altruism and kin selection are the two main theories. According to reciprocal altruism, evolution favors organisms that sacrifice their good for others in order to gain a favor in return. Kin selection — the famous “selfish gene” theory popularized by Richard Dawkins — says that an individual who behaves altruistically towards others who share its genes will tend to reproduce those genes. Organisms may be altruistic; genes are selfish. The feeling that loving your children more than yourself is hard-wired lends plausibility to the theory of kin selection.
  • The defect of reciprocal altruism is clear. If a person acts to benefit another in the expectation that the favor will be returned, the natural response is: “That’s not altruism!”  Pure altruism, we think, requires a person to sacrifice for another without consideration of personal gain. Doing good for another person because something’s in it for the do-er is the very opposite of what we have in mind. Kin selection does better by allowing that organisms may genuinely sacrifice their interests for another, but it fails to explain why they sometimes do so for those with whom they share no genes
  • ...12 more annotations...
  • When we ask whether human beings are altruistic, we want to know about their motives or intentions. Biological altruism explains how unselfish behavior might have evolved but, as Frans de Waal suggested in his column in The Stone on Sunday, it implies nothing about the motives or intentions of the agent: after all, birds and bats and bees can act altruistically. This fact helps to explain why, despite these evolutionary theories, the view that people never intentionally act to benefit others except to obtain some good for themselves still possesses a powerful lure over our thinking.
  • The lure of this view — egoism — has two sources, one psychological, the other logical. Consider first the psychological. One reason people deny that altruism exists is that, looking inward, they doubt the purity of their own motives. We know that even when we appear to act unselfishly, other reasons for our behavior often rear their heads: the prospect of a future favor, the boost to reputation, or simply the good feeling that comes from appearing to act unselfishly. As Kant and Freud observed, people’s true motives may be hidden, even (or perhaps especially) from themselves. Even if we think we’re acting solely to further another person’s good, that might not be the real reason. (There might be no single “real reason” — actions can have multiple motives.)
  • So the psychological lure of egoism as a theory of human action is partly explained by a certain humility or skepticism people have about their own or others’ motives
  • There’s also a less flattering reason: denying the possibility of pure altruism provides a convenient excuse for selfish behavior.
  • The logical lure of egoism is different: the view seems impossible to disprove. No matter how altruistic a person appears to be, it’s possible to conceive of her motive in egoistic terms.
  • The impossibility of disproving egoism may sound like a virtue of the theory, but, as philosophers of science know, it’s really a fatal drawback. A theory that purports to tell us something about the world, as egoism does, should be falsifiable. Not false, of course, but capable of being tested and thus proved false. If every state of affairs is compatible with egoism, then egoism doesn’t tell us anything distinctive about how things are.
  • s ambiguity in the concepts of desire and the satisfaction of desire. If people possess altruistic motives, then they sometimes act to benefit others without the prospect of gain to themselves. In other words, they desire the good of others for its own sake, not simply as a means to their own satisfaction.
  • Still, when our desires are satisfied we normally experience satisfaction; we feel good when we do good. But that doesn’t mean we do good only in order to get that “warm glow” — that our true incentives are self-interested (as economists tend to claim). Indeed, as de Waal argues, if we didn’t desire the good of others for its own sake, then attaining it wouldn’t produce the warm glow.
  • Common sense tells us that some people are more altruistic than others. Egoism’s claim that these differences are illusory — that deep down, everybody acts only to further their own interests — contradicts our observations and deep-seated human practices of moral evaluation.
  • At the same time, we may notice that generous people don’t necessarily suffer more or flourish less than those who are more self-interested.
  • The point is rather that the kind of altruism we ought to encourage, and probably the only kind with staying power, is satisfying to those who practice it. Studies of rescuers show that they don’t believe their behavior is extraordinary; they feel they must do what they do, because it’s just part of who they are. The same holds for more common, less newsworthy acts — working in soup kitchens, taking pets to people in nursing homes, helping strangers find their way, being neighborly. People who act in these ways believe that they ought to help others, but they also want to help, because doing so affirms who they are and want to be and the kind of world they want to exist. As Prof. Neera Badhwar has argued, their identity is tied up with their values, thus tying self-interest and altruism together. The correlation between doing good and feeling good is not inevitable— inevitability lands us again with that empty, unfalsifiable egoism — but it is more than incidental.
  • Altruists should not be confused with people who automatically sacrifice their own interests for others.
  •  
    Is Pure Altruism Possible?
Weiye Loh

The Fake Scandal of Climategate - 0 views

  • The most comprehensive inquiry was the Independent Climate Change Email Review led by Sir Muir Russell, commissioned by UEA to examine the behaviour of the CRU scientists (but not the scientific validity of their work). It published its final report in July 2010
  • It focused on what the CRU scientists did, not what they said, investigating the evidence for and against each allegation. It interviewed CRU and UEA staff, and took 111 submissions including one from CRU itself. And it also did something the media completely failed to do: it attempted to put the actions of CRU scientists into context.
    • Weiye Loh
       
      Data, in the form of email correspondence, requires context to be interpreted "objectively" and "accurately" =)
  • The Review went back to primary sources to see if CRU really was hiding or falsifying their data. It considered how much CRU’s actions influenced the IPCC’s conclusions about temperatures during the past millennium. It commissioned a paper by Dr Richard Horton, editor of The Lancet, on the context of scientific peer review. And it asked IPCC Review Editors how much influence individuals could wield on writing groups.
  • ...16 more annotations...
  • Many of these are things any journalist could have done relatively easily, but few ever bothered to do.
  • the emergence of the blogosphere requires significantly more openness from scientists. However, providing the details necessary to validate large datasets can be difficult and time-consuming, and how FoI laws apply to research is still an evolving area. Meanwhile, the public needs to understand that science cannot and does not produce absolutely precise answers. Though the uncertainties may become smaller and better constrained over time, uncertainty in science is a fact of life which policymakers have to deal with. The chapter concludes: “the Review would urge all scientists to learn to communicate their work in ways that the public can access and understand”.
  • email is less formal than other forms of communication: “Extreme forms of language are frequently applied to quite normal situations by people who would never use it in other communication channels.” The CRU scientists assumed their emails to be private, so they used “slang, jargon and acronyms” which would have been more fully explained had they been talking to the public. And although some emails suggest CRU went out of their way to make life difficult for their critics, there are others which suggest they were bending over backwards to be honest. Therefore the Review found “the e-mails cannot always be relied upon as evidence of what actually occurred, nor indicative of actual behaviour that is extreme, exceptional or unprofessional.” [section 4.3]
  • when put into the proper context, what do these emails actually reveal about the behaviour of the CRU scientists? The report concluded (its emphasis):
  • we find that their rigour and honesty as scientists are not in doubt.
  • we did not find any evidence of behaviour that might undermine the conclusions of the IPCC assessments.
  • “But we do find that there has been a consistent pattern of failing to display the proper degree of openness, both on the part of the CRU scientists and on the part of the UEA, who failed to recognize not only the significance of statutory requirements but also the risk to the reputation of the University and indeed, to the credibility of UK climate science.” [1.3]
  • The argument that Climategate reveals an international climate science conspiracy is not really a very skeptical one. Sure, it is skeptical in the weak sense of questioning authority, but it stops there. Unlike true skepticism, it doesn’t go on to objectively examine all the evidence and draw a conclusion based on that evidence. Instead, it cherry-picks suggestive emails, seeing everything as incontrovertible evidence of a conspiracy, and concludes all of mainstream climate science is guilty by association. This is not skepticism; this is conspiracy theory.
    • Weiye Loh
       
      How then do we know that we have examined ALL the evidence? What about the context of evidence then? 
  • The media dropped the ball There is a famous quotation attributed to Mark Twain: “A lie can travel halfway around the world while the truth is putting on its shoes.” This is more true in the internet age than it was when Mark Twain was alive. Unfortunately, it took months for the Climategate inquiries to put on their shoes, and by the time they reported, the damage had already been done. The media acted as an uncritical loudspeaker for the initial allegations, which will now continue to circulate around the world forever, then failed to give anywhere near the same amount of coverage to the inquiries clearing the scientists involved. For instance, Rupert Murdoch’s The Australian published no less than 85 stories about Climategate, but not one about the Muir Russell inquiry.
  • Even the Guardian, who have a relatively good track record on environmental reporting and were quick to criticize the worst excesses of climate conspiracy theorists, could not resist the lure of stolen emails. As George Monbiot writes, journalists see FoI requests and email hacking as a way of keeping people accountable, rather than the distraction from actual science which they are to scientists. In contrast, CRU director Phil Jones says: “I wish people would spend as much time reading my scientific papers as they do reading my e-mails.”
  • This is part of a broader problem with climate change reporting: the media holds scientists to far higher standards than it does contrarians. Climate scientists have to be right 100% of the time, but contrarians apparently can get away with being wrong nearly 100% of the time. The tiniest errors of climate scientists are nitpicked and blown out of all proportion, but contrarians get away with monstrous distortions and cherry-picking of evidence. Around the same time The Australian was bashing climate scientists, the same newspaper had no problem publishing Viscount Monckton’s blatant misrepresentations of IPCC projections (not to mention his demonstrably false conspiracy theory that the Copenhagen summit was a plot to establish a world government).
  • In the current model of environmental reporting, the contrarians do not lose anything by making baseless accusations. In fact, it is in their interests to throw as much mud at scientists as possible to increase the chance that some of it will stick in the public consciousness. But there is untold damage to the reputation of the scientists against whom the accusations are being made. We can only hope that in future the media will be less quick to jump to conclusions. If only editors and producers would stop and think for a moment about what they’re doing: they are playing with the future of the planet.
  • As worthy as this defense is, surely this is the kind of political bun-fight SkS has resolutely stayed away from since its inception. The debate can only become a quagmire of competing claims, because this is part of an adversarial process that does not depend on, or even require, scientific evidence. Only by sticking resolutely to the science and the advocacy of the scientific method can SkS continue to avoid being drowned in the kind of mud through which we are obliged to wade elsewhere.
  • I disagree with gp. It is past time we all got angry, very angry, at what these people have done and continue to do. Dispassionate science doesn't cut it with the denial industry or with the media (and that "or" really isn't there). It's time to fight back with everything we can throw back at them.
  • The fact that three quick fire threads have been run on Climatgate on this excellent blog in the last few days is an indication that Climategate (fairly or not) has does serious damage to the cause of AGW activism. Mass media always overshoots and exaggerates. The AGW alarmists had a very good run - here in Australia protagonists like Tim Flannery and our living science legend Robin Williams were talking catastrophe - the 10 year drought was definitely permanent climate change - rivers might never run again - Robin (100 metre sea level rise) Williams refused to even read the Climategate emails. Climategate swung the pendumum to the other extreme - the scientists (nearly all funded by you and me) were under the pump. Their socks rubbed harder on their sandals as they scrambled for clear air. Cries about criminal hackers funded by big oil, tobacco, rightist conspirators etc were heard. Panchuri cried 'voodoo science' as he denied ever knowing about objections to the preposterous 2035 claim. How things change in a year. The drought is broken over most of Australia - Tim Flannery has gone quiet and Robin Williams is airing a science journo who says that AGW scares have been exaggerated. Some balance might have been restored as the pendulum swung, and our hard working misunderstood scientist bretheren will take more care with their emails in future.
  • "Perhaps a more precise description would be that a common pattern in global warming skeptic arguments is to focus on narrow pieces of evidence while ignoring other evidence that contradicts their argument." And this is the issue the article discuss, but in my opinion this article is in guilt of this as well. It focus on a narrow set of non representative claims, claims which is indeed pure propaganda by some skeptics, however the article also suggest guilt buy association and as such these propaganda claims then gets attributed to the be opinions of the entire skeptic camp. In doing so, the OP becomes guilty of the very same issue the OP tries to address. In other words, the issue I try to raise is not about the exact numbers or figures or any particular facts but the fact that the claim I quoted is obvious nonsense. It is nonsense because it a sweeping statement with no specifics and as such it is an empty statement and means nothing. A second point I been thinking about when reading this article is why should scientist be granted immunity to dirty tricks/propaganda in a political debate? Is it because they speak under the name of science? If that is the case, why shall we not grant the same right to other spokesmen for other organization?
    • Weiye Loh
       
      The aspiration to examine ALL evidence is again called into question here. Is it really possible to examine ALL evidence? Even if we have examined them, can we fully represent our examination? From our lab, to the manuscript, to the journal paper, to the news article, to 140characters tweets?
Weiye Loh

Rationally Speaking: Are Intuitions Good Evidence? - 0 views

  • Is it legitimate to cite one’s intuitions as evidence in a philosophical argument?
  • appeals to intuitions are ubiquitous in philosophy. What are intuitions? Well, that’s part of the controversy, but most philosophers view them as intellectual “seemings.” George Bealer, perhaps the most prominent defender of intuitions-as-evidence, writes, “For you to have an intuition that A is just for it to seem to you that A… Of course, this kind of seeming is intellectual, not sensory or introspective (or imaginative).”2 Other philosophers have characterized them as “noninferential belief due neither to perception nor introspection”3 or alternatively as “applications of our ordinary capacities for judgment.”4
  • Philosophers may not agree on what, exactly, intuition is, but that doesn’t stop them from using it. “Intuitions often play the role that observation does in science – they are data that must be explained, confirmers or the falsifiers of theories,” Brian Talbot says.5 Typically, the way this works is that a philosopher challenges a theory by applying it to a real or hypothetical case and showing that it yields a result which offends his intuitions (and, he presumes, his readers’ as well).
  • ...16 more annotations...
  • For example, John Searle famously appealed to intuition to challenge the notion that a computer could ever understand language: “Imagine a native English speaker who knows no Chinese locked in a room full of boxes of Chinese symbols (a data base) together with a book of instructions for manipulating the symbols (the program). Imagine that people outside the room send in other Chinese symbols which, unknown to the person in the room, are questions in Chinese (the input). And imagine that by following the instructions in the program the man in the room is able to pass out Chinese symbols which are correct answers to the questions (the output)… If the man in the room does not understand Chinese on the basis of implementing the appropriate program for understanding Chinese then neither does any other digital computer solely on that basis because no computer, qua computer, has anything the man does not have.” Should we take Searle’s intuition that such a system would not constitute “understanding” as good evidence that it would not? Many critics of the Chinese Room argument argue that there is no reason to expect our intuitions about intelligence and understanding to be reliable.
  • Ethics leans especially heavily on appeals to intuition, with a whole school of ethicists (“intuitionists”) maintaining that a person can see the truth of general ethical principles not through reason, but because he “just sees without argument that they are and must be true.”6
  • Intuitions are also called upon to rebut ethical theories such as utilitarianism: maximizing overall utility would require you to kill one innocent person if, in so doing, you could harvest her organs and save five people in need of transplants. Such a conclusion is taken as a reductio ad absurdum, requiring utilitarianism to be either abandoned or radically revised – not because the conclusion is logically wrong, but because it strikes nearly everyone as intuitively wrong.
  • British philosopher G.E. Moore used intuition to argue that the existence of beauty is good irrespective of whether anyone ever gets to see and enjoy that beauty. Imagine two planets, he said, one full of stunning natural wonders – trees, sunsets, rivers, and so on – and the other full of filth. Now suppose that nobody will ever have the opportunity to glimpse either of those two worlds. Moore concluded, “Well, even so, supposing them quite apart from any possible contemplation by human beings; still, is it irrational to hold that it is better that the beautiful world should exist than the one which is ugly? Would it not be well, in any case, to do what we could to produce it rather than the other? Certainly I cannot help thinking that it would."7
  • Although similar appeals to intuition can be found throughout all the philosophical subfields, their validity as evidence has come under increasing scrutiny over the last two decades, from philosophers such as Hilary Kornblith, Robert Cummins, Stephen Stich, Jonathan Weinberg, and Jaakko Hintikka (links go to representative papers from each philosopher on this issue). The severity of their criticisms vary from Weinberg’s warning that “We simply do not know enough about how intuitions work,” to Cummins’ wholesale rejection of philosophical intuition as “epistemologically useless.”
  • One central concern for the critics is that a single question can inspire totally different, and mutually contradictory, intuitions in different people.
  • For example, I disagree with Moore’s intuition that it would be better for a beautiful planet to exist than an ugly one even if there were no one around to see it. I can’t understand what the words “better” and “worse,” let alone “beautiful” and “ugly,” could possibly mean outside the domain of the experiences of conscious beings
  • If we want to take philosophers’ intuitions as reason to believe a proposition, then the existence of opposing intuitions leaves us in the uncomfortable position of having reason to believe both a proposition and its opposite.
  • “I suspect there is overall less agreement than standard philosophical practice presupposes, because having the ‘right’ intuitions is the entry ticket to various subareas of philosophy,” Weinberg says.
  • But the problem that intuitions are often not universally shared is overshadowed by another problem: even if an intuition is universally shared, that doesn’t mean it’s accurate. For in fact there are many universal intuitions that are demonstrably false.
  • People who have not been taught otherwise typically assume that an object dropped out of a moving plane will fall straight down to earth, at exactly the same latitude and longitude from which it was dropped. What will actually happen is that, because the object begins its fall with the same forward momentum it had while it was on the plane, it will continue to travel forward, tracing out a curve as it falls and not a straight line. “Considering the inadequacies of ordinary physical intuitions, it is natural to wonder whether ordinary moral intuitions might be similarly inadequate,” Princeton’s Gilbert Harman has argued,9 and the same could be said for our intuitions about consciousness, metaphysics, and so on.
  • We can’t usually “check” the truth of our philosophical intuitions externally, with an experiment or a proof, the way we can in physics or math. But it’s not clear why we should expect intuitions to be true. If we have an innate tendency towards certain intuitive beliefs, it’s likely because they were useful to our ancestors.
  • But there’s no reason to expect that the intuitions which were true in the world of our ancestors would also be true in other, unfamiliar contexts
  • And for some useful intuitions, such as moral ones, “truth” may have been beside the point. It’s not hard to see how moral intuitions in favor of fairness and generosity would have been crucial to the survival of our ancestors’ tribes, as would the intuition to condemn tribe members who betrayed those reciprocal norms. If we can account for the presence of these moral intuitions by the fact that they were useful, is there any reason left to hypothesize that they are also “true”? The same question could be asked of the moral intuitions which Jonathan Haidt has classified as “purity-based” – an aversion to incest, for example, would clearly have been beneficial to our ancestors. Since that fact alone suffices to explain the (widespread) presence of the “incest is morally wrong” intuition, why should we take that intuition as evidence that “incest is morally wrong” is true?
  • The still-young debate over intuition will likely continue to rage, especially since it’s intertwined with a rapidly growing body of cognitive and social psychological research examining where our intuitions come from and how they vary across time and place.
  • its resolution bears on the work of literally every field of analytic philosophy, except perhaps logic. Can analytic philosophy survive without intuition? (If so, what would it look like?) And can the debate over the legitimacy of appeals to intuition be resolved with an appeal to intuition?
Weiye Loh

Book Review: Future Babble by Dan Gardner « Critical Thinking « Skeptic North - 0 views

  • I predict that you will find this review informative. If you do, you will congratulate my foresight. If you don’t, you’ll forget I was wrong.
  • My playful intro summarizes the main thesis of Gardner’s excellent book, Future Babble: Why Expert Predictions Fail – and Why We Believe Them Anyway.
  • In Future Babble, the research area explored is the validity of expert predictions, and the primary researcher examined is Philip Tetlock. In the early 1980s, Tetlock set out to better understand the accuracy of predictions made by experts by conducting a methodologically sound large-scale experiment.
  • ...10 more annotations...
  • Gardner presents Tetlock’s experimental design in an excellent way, making it accessible to the lay person. Concisely, Tetlock examined 27450 judgments in which 284 experts were presented with clear questions whose answers could later be shown to be true or false (e.g., “Will the official unemployment rate be higher, lower or the same a year from now?”). For each prediction, the expert must answer clearly and express their degree of certainty as a percentage (e.g., dead certain = 100%). The usage of precise numbers adds increased statistical options and removes the complications of vague or ambiguous language.
  • Tetlock found the surprising and disturbing truth “that experts’ predictions were no more accurate than random guesses.” (p. 26) An important caveat is that there was a wide range of capability, with some experts being completely out of touch, and others able to make successful predictions.
  • What distinguishes the impressive few from the borderline delusional is not whether they’re liberal or conservative. Tetlock’s data showed political beliefs made no difference to an expert’s accuracy. The same is true of optimists and pessimists. It also made no difference if experts had a doctorate, extensive experience, or access to classified information. Nor did it make a difference if experts were political scientists, historians, journalists, or economists.” (p. 26)
  • The experts who did poorly were not comfortable with complexity and uncertainty, and tended to reduce most problems to some core theoretical theme. It was as if they saw the world through one lens or had one big idea that everything else had to fit into. Alternatively, the experts who did decently were self-critical, used multiple sources of information and were more comfortable with uncertainty and correcting their errors. Their thinking style almost results in a paradox: “The experts who were more accurate than others tended to be less confident they were right.” (p.27)
  • Gardner then introduces the terms ‘Hedgehog’ and ‘Fox’ to refer to bad and good predictors respectively. Hedgehogs are the ones you see pushing the same idea, while Foxes are likely in the background questioning the ability of prediction itself while making cautious proposals. Foxes are more likely to be correct. Unfortunately, it is Hedgehogs that we see on the news.
  • one of Tetlock’s findings was that “the bigger the media profile of an expert, the less accurate his predictions.” (p.28)
  • Chapter 2 – The Unpredictable World An exploration into how many events in the world are simply unpredictable. Gardner discusses chaos theory and necessary and sufficient conditions for events to occur. He supports the idea of actually saying “I don’t know,” which many experts are reluctant to do.
  • Chapter 3 – In the Minds of Experts A more detailed examination of Hedgehogs and Foxes. Gardner discusses randomness and the illusion of control while using narratives to illustrate his points à la Gladwell. This chapter provides a lot of context and background information that should be very useful to those less initiated.
  • Chapter 6 – Everyone Loves a Hedgehog More about predictions and how the media picks up hedgehog stories and talking points without much investigation into their underlying source or concern for accuracy. It is a good demolition of the absurdity of so many news “discussion shows.” Gardner demonstrates how the media prefer a show where Hedgehogs square off against each other, and it is important that these commentators not be challenged lest they become exposed and, by association, implicate the flawed structure of the program/network.Gardner really singles out certain people, like Paul Ehrlich, and shows how they have been wrong many times and yet can still get an audience.
  • “An assertion that cannot be falsified by any conceivable evidence is nothing more than dogma. It can’t be debated. It can’t be proven or disproven. It’s just something people choose to believe or not for reasons that have nothing to do with fact and logic. And dogma is what predictions become when experts and their followers go to ridiculous lengths to dismiss clear evidence that they failed.”
Weiye Loh

Skepticblog » A Creationist Challenge - 0 views

  • The commenter starts with some ad hominems, asserting that my post is biased and emotional. They provide no evidence or argument to support this assertion. And of course they don’t even attempt to counter any of the arguments I laid out. They then follow up with an argument from authority – he can link to a PhD creationist – so there.
  • The article that the commenter links to is by Henry M. Morris, founder for the Institute for Creation Research (ICR) – a young-earth creationist organization. Morris was (he died in 2006 following a stroke) a PhD – in civil engineering. This point is irrelevant to his actual arguments. I bring it up only to put the commenter’s argument from authority into perspective. No disrespect to engineers – but they are not biologists. They have no expertise relevant to the question of evolution – no more than my MD. So let’s stick to the arguments themselves.
  • The article by Morris is an overview of so-called Creation Science, of which Morris was a major architect. The arguments he presents are all old creationist canards, long deconstructed by scientists. In fact I address many of them in my original refutation. Creationists generally are not very original – they recycle old arguments endlessly, regardless of how many times they have been destroyed.
  • ...26 more annotations...
  • Morris also makes heavy use of the “taking a quote out of context” strategy favored by creationists. His quotes are often from secondary sources and are incomplete.
  • A more scholarly (i.e. intellectually honest) approach would be to cite actual evidence to support a point. If you are going to cite an authority, then make sure the quote is relevant, in context, and complete.
  • And even better, cite a number of sources to show that the opinion is representative. Rather we get single, partial, and often outdated quotes without context.
  • (nature is not, it turns out, cleanly divided into “kinds”, which have no operational definition). He also repeats this canard: Such variation is often called microevolution, and these minor horizontal (or downward) changes occur fairly often, but such changes are not true “vertical” evolution. This is the microevolution/macroevolution false dichotomy. It is only “often called” this by creationists – not by actual evolutionary scientists. There is no theoretical or empirical division between macro and micro evolution. There is just evolution, which can result in the full spectrum of change from minor tweaks to major changes.
  • Morris wonders why there are no “dats” – dog-cat transitional species. He misses the hierarchical nature of evolution. As evolution proceeds, and creatures develop a greater and greater evolutionary history behind them, they increasingly are committed to their body plan. This results in a nestled hierarchy of groups – which is reflected in taxonomy (the naming scheme of living things).
  • once our distant ancestors developed the basic body plan of chordates, they were committed to that body plan. Subsequent evolution resulted in variations on that plan, each of which then developed further variations, etc. But evolution cannot go backward, undo evolutionary changes and then proceed down a different path. Once an evolutionary line has developed into a dog, evolution can produce variations on the dog, but it cannot go backwards and produce a cat.
  • Stephen J. Gould described this distinction as the difference between disparity and diversity. Disparity (the degree of morphological difference) actually decreases over evolutionary time, as lineages go extinct and the surviving lineages are committed to fewer and fewer basic body plans. Meanwhile, diversity (the number of variations on a body plan) within groups tends to increase over time.
  • the kind of evolutionary changes that were happening in the past, when species were relatively undifferentiated (compared to contemporary species) is indeed not happening today. Modern multi-cellular life has 600 million years of evolutionary history constraining their future evolution – which was not true of species at the base of the evolutionary tree. But modern species are indeed still evolving.
  • Here is a list of research documenting observed instances of speciation. The list is from 1995, and there are more recent examples to add to the list. Here are some more. And here is a good list with references of more recent cases.
  • Next Morris tries to convince the reader that there is no evidence for evolution in the past, focusing on the fossil record. He repeats the false claim (again, which I already dealt with) that there are no transitional fossils: Even those who believe in rapid evolution recognize that a considerable number of generations would be required for one distinct “kind” to evolve into another more complex kind. There ought, therefore, to be a considerable number of true transitional structures preserved in the fossils — after all, there are billions of non-transitional structures there! But (with the exception of a few very doubtful creatures such as the controversial feathered dinosaurs and the alleged walking whales), they are not there.
  • I deal with this question at length here, pointing out that there are numerous transitional fossils for the evolution of terrestrial vertebrates, mammals, whales, birds, turtles, and yes – humans from ape ancestors. There are many more examples, these are just some of my favorites.
  • Much of what follows (as you can see it takes far more space to correct the lies and distortions of Morris than it did to create them) is classic denialism – misinterpreting the state of the science, and confusing lack of information about the details of evolution with lack of confidence in the fact of evolution. Here are some examples – he quotes Niles Eldridge: “It is a simple ineluctable truth that virtually all members of a biota remain basically stable, with minor fluctuations, throughout their durations. . . .“ So how do evolutionists arrive at their evolutionary trees from fossils of organisms which didn’t change during their durations? Beware the “….” – that means that meaningful parts of the quote are being omitted. I happen to have the book (The Pattern of Evolution) from which Morris mined that particular quote. Here’s the rest of it: (Remember, by “biota” we mean the commonly preserved plants and animals of a particular geological interval, which occupy regions often as large as Roger Tory Peterson’s “eastern” region of North American birds.) And when these systems change – when the older species disappear, and new ones take their place – the change happens relatively abruptly and in lockstep fashion.”
  • Eldridge was one of the authors (with Gould) of punctuated equilibrium theory. This states that, if you look at the fossil record, what we see are species emerging, persisting with little change for a while, and then disappearing from the fossil record. They theorize that most species most of the time are at equilibrium with their environment, and so do not change much. But these periods of equilibrium are punctuated by disequilibrium – periods of change when species will have to migrate, evolve, or go extinct.
  • This does not mean that speciation does not take place. And if you look at the fossil record we see a pattern of descendant species emerging from ancestor species over time – in a nice evolutionary pattern. Morris gives a complete misrepresentation of Eldridge’s point – once again we see intellectual dishonesty in his methods of an astounding degree.
  • Regarding the atheism = religion comment, it reminds me of a great analogy that I first heard on twitter from Evil Eye. (paraphrase) “those that say atheism is a religion, is like saying ‘not collecting stamps’ is a hobby too.”
  • Morris next tackles the genetic evidence, writing: More often is the argument used that similar DNA structures in two different organisms proves common evolutionary ancestry. Neither argument is valid. There is no reason whatever why the Creator could not or would not use the same type of genetic code based on DNA for all His created life forms. This is evidence for intelligent design and creation, not evolution.
  • Here is an excellent summary of the multiple lines of molecular evidence for evolution. Basically, if we look at the sequence of DNA, the variations in trinucleotide codes for amino acids, and amino acids for proteins, and transposons within DNA we see a pattern that can only be explained by evolution (or a mischievous god who chose, for some reason, to make life look exactly as if it had evolved – a non-falsifiable notion).
  • The genetic code is essentially comprised of four letters (ACGT for DNA), and every triplet of three letters equates to a specific amino acid. There are 64 (4^3) possible three letter combinations, and 20 amino acids. A few combinations are used for housekeeping, like a code to indicate where a gene stops, but the rest code for amino acids. There are more combinations than amino acids, so most amino acids are coded for by multiple combinations. This means that a mutation that results in a one-letter change might alter from one code for a particular amino acid to another code for the same amino acid. This is called a silent mutation because it does not result in any change in the resulting protein.
  • It also means that there are very many possible codes for any individual protein. The question is – which codes out of the gazillions of possible codes do we find for each type of protein in different species. If each “kind” were created separately there would not need to be any relationship. Each kind could have it’s own variation, or they could all be identical if they were essentially copied (plus any mutations accruing since creation, which would be minimal). But if life evolved then we would expect that the exact sequence of DNA code would be similar in related species, but progressively different (through silent mutations) over evolutionary time.
  • This is precisely what we find – in every protein we have examined. This pattern is necessary if evolution were true. It cannot be explained by random chance (the probability is absurdly tiny – essentially zero). And it makes no sense from a creationist perspective. This same pattern (a branching hierarchy) emerges when we look at amino acid substitutions in proteins and other aspects of the genetic code.
  • Morris goes for the second law of thermodynamics again – in the exact way that I already addressed. He responds to scientists correctly pointing out that the Earth is an open system, by writing: This naive response to the entropy law is typical of evolutionary dissimulation. While it is true that local order can increase in an open system if certain conditions are met, the fact is that evolution does not meet those conditions. Simply saying that the earth is open to the energy from the sun says nothing about how that raw solar heat is converted into increased complexity in any system, open or closed. The fact is that the best known and most fundamental equation of thermodynamics says that the influx of heat into an open system will increase the entropy of that system, not decrease it. All known cases of decreased entropy (or increased organization) in open systems involve a guiding program of some sort and one or more energy conversion mechanisms.
  • Energy has to be transformed into a usable form in order to do the work necessary to decrease entropy. That’s right. That work is done by life. Plants take solar energy (again – I’m not sure what “raw solar heat” means) and convert it into food. That food fuels the processes of life, which include development and reproduction. Evolution emerges from those processes- therefore the conditions that Morris speaks of are met.
  • But Morris next makes a very confused argument: Evolution has neither of these. Mutations are not “organizing” mechanisms, but disorganizing (in accord with the second law). They are commonly harmful, sometimes neutral, but never beneficial (at least as far as observed mutations are concerned). Natural selection cannot generate order, but can only “sieve out” the disorganizing mutations presented to it, thereby conserving the existing order, but never generating new order.
  • The notion that evolution (as if it’s a thing) needs to use energy is hopelessly confused. Evolution is a process that emerges from the system of life – and life certainly can use solar energy to decrease its entropy, and by extension the entropy of the biosphere. Morris slips into what is often presented as an information argument.  (Yet again – already dealt with. The pattern here is that we are seeing a shuffling around of the same tired creationists arguments.) It is first not true that most mutations are harmful. Many are silent, and many of those that are not silent are not harmful. They may be neutral, they may be a mixed blessing, and their relative benefit vs harm is likely to be situational. They may be fatal. And they also may be simply beneficial.
  • Morris finishes with a long rambling argument that evolution is religion. Evolution is promoted by its practitioners as more than mere science. Evolution is promulgated as an ideology, a secular religion — a full-fledged alternative to Christianity, with meaning and morality . . . . Evolution is a religion. This was true of evolution in the beginning, and it is true of evolution still today. Morris ties evolution to atheism, which, he argues, makes it a religion. This assumes, of course, that atheism is a religion. That depends on how you define atheism and how you define religion – but it is mostly wrong. Atheism is a lack of belief in one particular supernatural claim – that does not qualify it as a religion.
  • But mutations are not “disorganizing” – that does not even make sense. It seems to be based on a purely creationist notion that species are in some privileged perfect state, and any mutation can only take them farther from that perfection. For those who actually understand biology, life is a kluge of compromises and variation. Mutations are mostly lateral moves from one chaotic state to another. They are not directional. But they do provide raw material, variation, for natural selection. Natural selection cannot generate variation, but it can select among that variation to provide differential survival. This is an old game played by creationists – mutations are not selective, and natural selection is not creative (does not increase variation). These are true but irrelevant, because mutations increase variation and information, and selection is a creative force that results in the differential survival of better adapted variation.
  •  
    One of my earlier posts on SkepticBlog was Ten Major Flaws in Evolution: A Refutation, published two years ago. Occasionally a creationist shows up to snipe at the post, like this one:i read this and found it funny. It supposedly gives a scientific refutation, but it is full of more bias than fox news, and a lot of emotion as well.here's a scientific case by an actual scientists, you know, one with a ph. D, and he uses statements by some of your favorite evolutionary scientists to insist evolution doesn't exist.i challenge you to write a refutation on this one.http://www.icr.org/home/resources/resources_tracts_scientificcaseagainstevolution/Challenge accepted.
Weiye Loh

Skepticblog » The Linus Pauling effect - 0 views

  • So if syphilis causes AIDS, and not HIV, where is the evidence? As microbiologist and epidemiolist Tara Smith points out in her excellent blog, Margulis offers none. Instead, she says to the credulous and uncritical interviewer: The idea that penicillin kills the cause of the disease is nuts. If you treat the painless chancre in the first few days of infection, you may stop the bacterium before the symbiosis develops, but if you really get syphilis, all you can do is live with the spirochete. The spirochete lives permanently as a symbiont in the patient. The infection cannot be killed because it becomes part of the patient’s genome and protein synthesis biochemistry. After syphilis establishes this symbiotic relationship with a person, it becomes dependent on human cells and is undetectable by any testing. Great. Just what we need: an untestable hypothesis promoted by assertion and reputation, not something concrete that scientists could test (although most specialists in microbiology would say the evidence is clear that the HIV retrovirus, and not the spirochaete bacterium Treponema pallidum, is the true cause of AIDS).
  • Has she never actually LOOKED at the hundreds of peer-reviewed scientific papers documenting the structure of the HIV virus, and the clear documentation of that virus in patients that suffer and die from AIDS? Or the fact that patients treated with anti-retrovirals manage to suppress their AIDS symptoms? Or the disaster in South Africa, when the government became active AIDS deniers, spread misinformation and myths about AIDS, and the infection rate shot up? Not even the hard-core AIDS deniers like Peter Duesberg deny that the HIV virus exists!
  • she slips outside the realm of science entirely, and becomes a full-fledged AIDS denier. My jaw just dropped when I read the following: There is a vast body of literature on syphilis spanning from the 1500s until after World War II, when the disease was supposedly cured by penicillin. It’s in our paper “Resurgence of the Great Imitator.” Our claim is that there’s no evidence that HIV is an infectious virus, or even an entity at all. There’s no scientific paper that proves that the HIV virus causes AIDS. Kary Mullis said in an interview that he went looking for a reference substantiating that HIV causes AIDS and discovered, “There is no such document.”
  •  
    The phenomenon is a familiar one: let's call it "the Linus Pauling effect." A highly respected and honored senior scientist, largely out of the mainstream and not up to date with the recent developments (and perhaps a bit senile), makes weird pronouncements about their pet ideas-and the press, so used to giving celebrities free air time for any junk they wish to say, prints and publishes it all as if it is the final truth. The great Linus Pauling may have won two Nobel Prizes, but his crazy idea that megadoses of Vitamin C would cure nearly everything seems to have died with him. William Shockley may have won a Nobel for his work on transistors, but his racist ideas about genetics (a field in which he had no expertise) should never been taken seriously. Kary Mullis may have deserved his Nobel Prize for developing the polymerase chain reaction, but that gives him no qualifications to speak with authority on his unscientific ideas about AIDS denial and global warming and astrology (he hits the trifecta for pseudoscientific woo).
Weiye Loh

The Black Swan of Cairo | Foreign Affairs - 0 views

  • It is both misguided and dangerous to push unobserved risks further into the statistical tails of the probability distribution of outcomes and allow these high-impact, low-probability "tail risks" to disappear from policymakers' fields of observation.
  • Such environments eventually experience massive blowups, catching everyone off-guard and undoing years of stability or, in some cases, ending up far worse than they were in their initial volatile state. Indeed, the longer it takes for the blowup to occur, the worse the resulting harm in both economic and political systems.
  • Seeking to restrict variability seems to be good policy (who does not prefer stability to chaos?), so it is with very good intentions that policymakers unwittingly increase the risk of major blowups. And it is the same misperception of the properties of natural systems that led to both the economic crisis of 2007-8 and the current turmoil in the Arab world. The policy implications are identical: to make systems robust, all risks must be visible and out in the open -- fluctuat nec mergitur (it fluctuates but does not sink) goes the Latin saying.
  • ...21 more annotations...
  • Just as a robust economic system is one that encourages early failures (the concepts of "fail small" and "fail fast"), the U.S. government should stop supporting dictatorial regimes for the sake of pseudostability and instead allow political noise to rise to the surface. Making an economy robust in the face of business swings requires allowing risk to be visible; the same is true in politics.
  • Both the recent financial crisis and the current political crisis in the Middle East are grounded in the rise of complexity, interdependence, and unpredictability. Policymakers in the United Kingdom and the United States have long promoted policies aimed at eliminating fluctuation -- no more booms and busts in the economy, no more "Iranian surprises" in foreign policy. These policies have almost always produced undesirable outcomes. For example, the U.S. banking system became very fragile following a succession of progressively larger bailouts and government interventions, particularly after the 1983 rescue of major banks (ironically, by the same Reagan administration that trumpeted free markets). In the United States, promoting these bad policies has been a bipartisan effort throughout. Republicans have been good at fragilizing large corporations through bailouts, and Democrats have been good at fragilizing the government. At the same time, the financial system as a whole exhibited little volatility; it kept getting weaker while providing policymakers with the illusion of stability, illustrated most notably when Ben Bernanke, who was then a member of the Board of Governors of the U.S. Federal Reserve, declared the era of "the great moderation" in 2004.
  • Washington stabilized the market with bailouts and by allowing certain companies to grow "too big to fail." Because policymakers believed it was better to do something than to do nothing, they felt obligated to heal the economy rather than wait and see if it healed on its own.
  • The foreign policy equivalent is to support the incumbent no matter what. And just as banks took wild risks thanks to Greenspan's implicit insurance policy, client governments such as Hosni Mubarak's in Egypt for years engaged in overt plunder thanks to similarly reliable U.S. support.
  • Those who seek to prevent volatility on the grounds that any and all bumps in the road must be avoided paradoxically increase the probability that a tail risk will cause a major explosion.
  • In the realm of economics, price controls are designed to constrain volatility on the grounds that stable prices are a good thing. But although these controls might work in some rare situations, the long-term effect of any such system is an eventual and extremely costly blowup whose cleanup costs can far exceed the benefits accrued. The risks of a dictatorship, no matter how seemingly stable, are no different, in the long run, from those of an artificially controlled price.
  • Such attempts to institutionally engineer the world come in two types: those that conform to the world as it is and those that attempt to reform the world. The nature of humans, quite reasonably, is to intervene in an effort to alter their world and the outcomes it produces. But government interventions are laden with unintended -- and unforeseen -- consequences, particularly in complex systems, so humans must work with nature by tolerating systems that absorb human imperfections rather than seek to change them.
  • What is needed is a system that can prevent the harm done to citizens by the dishonesty of business elites; the limited competence of forecasters, economists, and statisticians; and the imperfections of regulation, not one that aims to eliminate these flaws. Humans must try to resist the illusion of control: just as foreign policy should be intelligence-proof (it should minimize its reliance on the competence of information-gathering organizations and the predictions of "experts" in what are inherently unpredictable domains), the economy should be regulator-proof, given that some regulations simply make the system itself more fragile. Due to the complexity of markets, intricate regulations simply serve to generate fees for lawyers and profits for sophisticated derivatives traders who can build complicated financial products that skirt those regulations.
  • The life of a turkey before Thanksgiving is illustrative: the turkey is fed for 1,000 days and every day seems to confirm that the farmer cares for it -- until the last day, when confidence is maximal. The "turkey problem" occurs when a naive analysis of stability is derived from the absence of past variations. Likewise, confidence in stability was maximal at the onset of the financial crisis in 2007.
  • The turkey problem for humans is the result of mistaking one environment for another. Humans simultaneously inhabit two systems: the linear and the complex. The linear domain is characterized by its predictability and the low degree of interaction among its components, which allows the use of mathematical methods that make forecasts reliable. In complex systems, there is an absence of visible causal links between the elements, masking a high degree of interdependence and extremely low predictability. Nonlinear elements are also present, such as those commonly known, and generally misunderstood, as "tipping points." Imagine someone who keeps adding sand to a sand pile without any visible consequence, until suddenly the entire pile crumbles. It would be foolish to blame the collapse on the last grain of sand rather than the structure of the pile, but that is what people do consistently, and that is the policy error.
  • Engineering, architecture, astronomy, most of physics, and much of common science are linear domains. The complex domain is the realm of the social world, epidemics, and economics. Crucially, the linear domain delivers mild variations without large shocks, whereas the complex domain delivers massive jumps and gaps. Complex systems are misunderstood, mostly because humans' sophistication, obtained over the history of human knowledge in the linear domain, does not transfer properly to the complex domain. Humans can predict a solar eclipse and the trajectory of a space vessel, but not the stock market or Egyptian political events. All man-made complex systems have commonalities and even universalities. Sadly, deceptive calm (followed by Black Swan surprises) seems to be one of those properties.
  • The system is responsible, not the components. But after the financial crisis of 2007-8, many people thought that predicting the subprime meltdown would have helped. It would not have, since it was a symptom of the crisis, not its underlying cause. Likewise, Obama's blaming "bad intelligence" for his administration's failure to predict the crisis in Egypt is symptomatic of both the misunderstanding of complex systems and the bad policies involved.
  • Obama's mistake illustrates the illusion of local causal chains -- that is, confusing catalysts for causes and assuming that one can know which catalyst will produce which effect. The final episode of the upheaval in Egypt was unpredictable for all observers, especially those involved. As such, blaming the CIA is as foolish as funding it to forecast such events. Governments are wasting billions of dollars on attempting to predict events that are produced by interdependent systems and are therefore not statistically understandable at the individual level.
  • Political and economic "tail events" are unpredictable, and their probabilities are not scientifically measurable. No matter how many dollars are spent on research, predicting revolutions is not the same as counting cards; humans will never be able to turn politics into the tractable randomness of blackjack.
  • Most explanations being offered for the current turmoil in the Middle East follow the "catalysts as causes" confusion. The riots in Tunisia and Egypt were initially attributed to rising commodity prices, not to stifling and unpopular dictatorships. But Bahrain and Libya are countries with high gdps that can afford to import grain and other commodities. Again, the focus is wrong even if the logic is comforting. It is the system and its fragility, not events, that must be studied -- what physicists call "percolation theory," in which the properties of the terrain are studied rather than those of a single element of the terrain.
  • When dealing with a system that is inherently unpredictable, what should be done? Differentiating between two types of countries is useful. In the first, changes in government do not lead to meaningful differences in political outcomes (since political tensions are out in the open). In the second type, changes in government lead to both drastic and deeply unpredictable changes.
  • Humans fear randomness -- a healthy ancestral trait inherited from a different environment. Whereas in the past, which was a more linear world, this trait enhanced fitness and increased chances of survival, it can have the reverse effect in today's complex world, making volatility take the shape of nasty Black Swans hiding behind deceptive periods of "great moderation." This is not to say that any and all volatility should be embraced. Insurance should not be banned, for example.
  • But alongside the "catalysts as causes" confusion sit two mental biases: the illusion of control and the action bias (the illusion that doing something is always better than doing nothing). This leads to the desire to impose man-made solutions
  • Variation is information. When there is no variation, there is no information. This explains the CIA's failure to predict the Egyptian revolution and, a generation before, the Iranian Revolution -- in both cases, the revolutionaries themselves did not have a clear idea of their relative strength with respect to the regime they were hoping to topple. So rather than subsidize and praise as a "force for stability" every tin-pot potentate on the planet, the U.S. government should encourage countries to let information flow upward through the transparency that comes with political agitation. It should not fear fluctuations per se, since allowing them to be in the open, as Italy and Lebanon both show in different ways, creates the stability of small jumps.
  • As Seneca wrote in De clementia, "Repeated punishment, while it crushes the hatred of a few, stirs the hatred of all . . . just as trees that have been trimmed throw out again countless branches." The imposition of peace through repeated punishment lies at the heart of many seemingly intractable conflicts, including the Israeli-Palestinian stalemate. Furthermore, dealing with seemingly reliable high-level officials rather than the people themselves prevents any peace treaty signed from being robust. The Romans were wise enough to know that only a free man under Roman law could be trusted to engage in a contract; by extension, only a free people can be trusted to abide by a treaty. Treaties that are negotiated with the consent of a broad swath of the populations on both sides of a conflict tend to survive. Just as no central bank is powerful enough to dictate stability, no superpower can be powerful enough to guarantee solid peace alone.
  • As Jean-Jacques Rousseau put it, "A little bit of agitation gives motivation to the soul, and what really makes the species prosper is not peace so much as freedom." With freedom comes some unpredictable fluctuation. This is one of life's packages: there is no freedom without noise -- and no stability without volatility.∂
1 - 10 of 10
Showing 20 items per page