Skip to main content

Home/ Neuropsychology/ Group items tagged scientist

Rss Feed Group items tagged

Tero Toivanen

Wired 14.02: Buddha on the Brain - 0 views

  • Davidson's research created a stir among brain scientists when his results suggested that, in the course of meditating for tens of thousands of hours, the monks had actually altered the structure and function of their brains.
  • Lutz asked Ricard to meditate on "unconditional loving-kindness and compassion." He immediately noticed powerful gamma activity - brain waves oscillating at roughly 40 cycles per second -�indicating intensely focused thought. Gamma waves are usually weak and difficult to see. Those emanating from Ricard were easily visible, even in the raw EEG output. Moreover, oscillations from various parts of the cortex were synchronized - a phenomenon that sometimes occurs in patients under anesthesia.
  • The researchers had never seen anything like it. Worried that something might be wrong with their equipment or methods, they brought in more monks, as well as a control group of college students inexperienced in meditation. The monks produced gamma waves that were 30 times as strong as the students'. In addition, larger areas of the meditators' brains were active, particularly in the left prefrontal cortex, the part of the brain responsible for positive emotions.
  • ...3 more annotations...
  • In the traditional view, the brain becomes frozen with the onset of adulthood, after which few new connections form. In the past 20 years, though, scientists have discovered that intensive training can make a difference. For instance, the portion of the brain that corresponds to a string musician's fingering hand grows larger than the part that governs the bow hand - even in musicians who start playing as adults. Davidson's work suggested this potential might extend to emotional centers
  • But Davidson saw something more. The monks had responded to the request to meditate on compassion by generating remarkable brain waves. Perhaps these signals indicated that the meditators had attained an intensely compassionate state of mind. If so, then maybe compassion could be exercised like a muscle; with the right training, people could bulk up their empathy. And if meditation could enhance the brain's ability to produce "attention and affective processes" - emotions, in the technical language of Davidson's study - it might also be used to modify maladaptive emotional responses like depression.
  • Davidson and his team published their findings in the Proceedings of the National Academy of Sciences in November 2004. The research made The Wall Street Journal, and Davidson instantly became a celebrity scientist.
  •  
    Davidson's research created a stir among brain scientists when his results suggested that, in the course of meditating for tens of thousands of hours, the monks had actually altered the structure and function of their brains
Tero Toivanen

Does Vitamin D Improve Brain Function?: Scientific American - 0 views

  • And although vitamin D is well known for promoting bone health and regulating vital calcium levels—hence its addition to milk—it does more than that. Scientists have now linked this fat-soluble nutrient’s hormonelike activity to a number of functions throughout the body, including the workings of the brain.
  • We know there are receptors for vitamin D throughout the central nervous system and in the hippocampus
  • We also know vitamin D activates and deactivates enzymes in the brain and the cerebrospinal fluid that are involved in neurotransmitter synthesis and nerve growth.
  • ...5 more annotations...
  • In addition, animal and laboratory studies suggest vitamin D protects neurons and reduces inflammation.
  • The scientists found that the lower the subjects’ vitamin D levels, the more negatively impacted was their perform­ance on a battery of mental tests. Compared with people with optimum vitamin D levels, those in the lowest quartile were more than twice as likely to be cognitively impaired.
  • The data show that those people with lower vitamin D levels exhibited slower information-processing speed. This correlation was particularly strong among men older than 60 years.
  • Although we now know that low levels of vitamin D are associated with cognitive impairment, we do not know if high or optimum levels will lessen cognitive losses. It is also unclear if giving vitamin D to those who lack it will help them regain some of these high-level functions.
  • So how much is enough vitamin D? Experts say 1,000 to 2,000 IU daily—about the amount your body will synthesize from 15 to 30 minutes of sun exposure two to three times a week—is the ideal range for almost all healthy adults. Keep in mind, however, that skin color, where you live and how much skin you have exposed all affect how much vitamin D you can produce.
  •  
    And although vitamin D is well known for promoting bone health and regulating vital calcium levels-hence its addition to milk-it does more than that. Scientists have now linked this fat-soluble nutrient's hormonelike activity to a number of functions throughout the body, including the workings of the brain.
Tero Toivanen

Scientists discover how brain cells age | KurzweilAI - 2 views

  •  
    "Now scientists at Newcastle University, led by Professor Thomas von Zglinicki, have shown that neurons in fact follow the same pathway as senescing fibroblasts, the cells that divide in the skin to repair wounds."
Tero Toivanen

Growing evidence of the brain's plasticity could benefit stroke victims or those suffer... - 0 views

  • With the right training, scientists now know the brain can reshape itself to work around dead and damaged areas, often with dramatic benefits.
  • Therapies that exploit the brain's power to adapt have helped people overcome damage caused by strokes, depression, anxiety and learning disabilities, and may one day replace drugs for some of these conditions.
  • Children with language difficulties have been shown to make significant progress using computer training tools that are the equivalent of cerebral cross-training.
  • ...2 more annotations...
  • Neuroplasticity does not see the different regions of the brain as completely versatile and certainly not interchangeable. But it recognises that if part of the brain is damaged, it can be possible to train other areas to take on, at least to some extent, the job of the lost brain matter.
  • Doidge says he is not anti-medication, but wonders if therapies that tap into neuro-plasticity will soon replace drug treatments for certain conditions. "We can change our brains by sensing, imagining and acting in the world. It's economical and mostly low-tech, and I'm very, very hopeful"
  •  
    With the right training, scientists now know the brain can reshape itself to work around dead and damaged areas, often with dramatic benefits.
Tero Toivanen

Reading, E-Books and the Brain : The Frontal Cortex - 0 views

  • Although scientists had previously assumed that the dorsal route ceased to be active once we learned how to read, Deheane's research demonstrates that even literate adults still rely, in some situations, on the same patterns of brain activity as a first-grader, carefully sounding out the syllables.
  • This research suggests that the act of reading observes a gradient of fluency. Familiar sentences printed in Helvetica activate the ventral route, while difficult prose filled with jargon and fancy words and printed in an illegible font require us to use the slow dorsal route.
  • The larger point is that most complaints about E-Books and Kindle apps boil down to a single problem: they don't feel as "effortless" or "automatic" as old-fashioned books. But here's the wonderful thing about the human brain: give it a little time and practice and it can make just about anything automatic.
  •  
     Although scientists had previously assumed that the dorsal route ceased to be active once we learned how to read, Deheane's research demonstrates that even literate adults still rely, in some situations, on the same patterns of brain activity as a first-grader, carefully sounding out the syllables.
David McGavock

About Neuroscience News - Neuroscience News - 0 views

  • In 2001, there was a need for a science website that was dedicated strictly to neuroscience research news, so NeuroscienceNews.com was started. To this day, the site is an independent science news website focusing mainly on neuroscience and other cognitive sciences.No funds have been taken from governments, grants, pharmaceutical companies, big businesses, banks, schools, or others with possibly conflicting interests, to help with this site at any time.We scour news sources from universities, labs, news agencies, scientists, science publishers, and other science departments. We post full articles, releases, abstracts, and sometimes full research journal papers on our site. We also take submissions from nearly anyone.We attempt to link to the original news releases in our posts. We try to include a link to the research papers discussed in the press release, or article, as well as other information that may be important to our readers. We try to include the full list of authors, journal names, research title and identifiers (doi) under the content of each post.
  •  
    We scour news sources from universities, labs, news agencies, scientists, science publishers, and other science departments. We post full articles, releases, abstracts, and sometimes full research journal papers on our site. We also take submissions from nearly anyone.
Tero Toivanen

Visual training to retain driving competence - and your independence! | On the Brain by... - 1 views

  • Today, Posit Science announced the release of a new computer-based visual training tool, DriveSharp, specifically designed to improve the performance abilities of adult automobile drivers to a degree that can be expected to very substantially impact their driving safety.
  • Again, with a few hours of intensive training, a youthful MOT performance level can be achieved for most individuals. The result: A still FURTHER increase of driving safety.
  • In our fast-moving world, losing control of one’s peripheral vision is a main cause of driving accidents.
  • ...11 more annotations...
  • Ball and Roenker demonstrated that these losses are substantially reversible, through appropriate, intensive training, in almost all older drivers. UFOVs can be re-expanded to relatively youthful ability levels through only a few hours of exercise. The result: About 50% fewer driving accidents in the over-65 population.
  • Moreover, once your UFOV is opened up again, you use it!
  • You can use DriveSharp repeatedly, over the rest of your days, to keep yourself in fine driving fettle!
  • The second training program that is included in DriveSharp is designed to improve your ability to keep track of more than one thing happening at the same time. This fundamental visual skill — called “multiple object tracking” (MOT) — also dramatically declines as you get older.
  • As you get older, you progressively lose the ability to accurately detect and respond to visual events in your far visual periphery.
  • If you’ve reached your 50th birthday, DriveSharp training is especially important for upgrading and sustaining your driving competence. It’s all about maintaining your performance abilities in driving as in all other ways at the highest possible level, throughout the second half of life.
  • few other benefits demonstrated by published studies originating with the Ball/Roenker team (including University of South Florida scientist Sherri Willis and a University of Iowa scientist, Fred Wolinsky).
  • 1) You’re healthier after DriveSharp training! Five years after training, Physical indices of Quality of Life are more than 30% higher — maybe because you get out more.
  • Trainees are much more likely to have retained your driver’s license — and to have sustained their personal independence.
  • After DriveSharp, you are a more confident driver, as expressed by gains in the number of times you drive each week, by an increase in average driving distances, and by your driving more often at night, or in the rain or snow.
  • Try DriveSharp now: If you are a member of one of the participating AAA clubs, please visit your AAA club’s website for more information and a special offer on DriveSharp. If not, please visit www.DriveSharp.com or call (866)599-6463 to learn more.
  •  
    Today, Posit Science announced the release of a new computer-based visual training tool, DriveSharp, specifically designed to improve the performance abilities of adult automobile drivers to a degree that can be expected to very substantially impact their driving safety.
Tero Toivanen

YouTube - Cognitive Neuroscience of Mindfulness Meditation - 0 views

  •  
    Speaker: Philippe Goldin. Mindfulness meditation, one type of meditation technique, has been shown to enhance emotional awareness and psychological flexibility as well as induce well-being and emotional balance. Scientists have also begun to examine how meditation may influence brain functions.
Tero Toivanen

Interactive Movie - How the human brain works - New Scientist - 0 views

  •  
    Interactive image of brain and it's functions.
Tero Toivanen

http://www.sciencedaily.com/releases/2009/12/091223125125.htm - 1 views

  •  
    Scientists at UC Santa Barbara have made a major discovery in how the brain encodes memories. The finding, published in the December 24 issue of the journal Neuron, could eventually lead to the development of new drugs to aid memory.
Ruth Howard

BBC News - Brain scans 'can distinguish memories', say scientists - 0 views

  •  
    Scientists say they have been able to tell which past event a person is recalling using a brain scan. The University College London researchers showed people film clips and were able to predict which ones they were subsequently thinking about.
David McGavock

Scientific Understanding of Consciousness - 0 views

  • During the past 20 years or so, biological sciences have advanced to the point that scientists have begun researching biological mechanisms of brain function and suggesting some reasonably well-founded hypotheses for consciousness. Leading the way in these pioneering efforts, in my judgment, have been:   Gerald Edelman with his hypothesis of the Dynamic Core, Antonio Damasio with his concepts of  Protoself, Core Self, Autobiographical Self, Core Consciousness and Extended Consciousness, Joseph LeDoux and his emphasis on the intricacies of synapses and the emotional brain,
  • Rudolfo Llinás and his researches into ~40 Hz oscillations and synchronization, György Buzsáki with his discussion and exploration of neural mechanisms related to oscillation and synchronization in the neocortex and hippocampus for perception and memory, Joaquín Fuster, the world’s preeminent expert on the frontal lobes, and his concept of the "perception-action cycle," Susan Greenfield's notion of "neuronal gestalts" as a way of conceptualizing a highly variable aggregation of neurons that is temporarily recruited around a triggering epicenter. I use the neuronal gestalts idea in my way of visualizing the functionality of the dynamic core of the thalamocortical system, Eric Kandel who has explored short-term and long-term memory,
  • The late Francis Crick with his collaborator Christof Koch who have pursued the neural correlate of consciousness (NCC), Michael Gazzaniga with the concept of the left hemisphere ‘interpreter’ unifying consciousness experience, Edmund Rolls and Gustavo Deco with their mathematical models of brain function using information theory approaches for biologically plausible neurodynamical modeling of cognitive phenomena corroborated by brain imaging studies, David LaBerge with his discussion of the thalamocortical circuit and attention, Alan Baddeley who continues to refine his model for working memory, Philosopher John Searle who endorses the idea that consciousness is an emergent property of neural networks.
  •  
    "My objective in this website has been to bring together salient features of these assorted interpretations by science experts into a synthesis of my own understanding of consciousness. I consider these statements and interpretations to be a framework on which to build a fuller understanding as further data, concepts and insights develop from ongoing research."
Matti Narkia

How to unleash your brain's inner genius - life - 03 June 2009 - New Scientist - 0 views

  •  
    Savants - individuals with conditions that result in remarkable mathematical, artistic or musical talents - are extremely rare. But new findings about how their formidable brains work hint that we might all be able to develop similar abilities
Tero Toivanen

Innovation: Mind-reading headsets will change your brain - tech - 23 April 2009 - New S... - 0 views

  • This week, engineer Adam Wilson made global headlines by updating Twitter using his brainwaves. "USING EEG TO SEND TWEET" he explained.
  • Escaping the lab Researchers have developed systems that read brainwaves – in the form of electroencephalogram (EEG) signals – in order to help people suffering from disabilities or paralysis control wheelchairs, play games , or type on a computer. Now, two companies are preparing to market similar devices to mainstream consumers.
  • Compatible with any PC running Windows, it will ship later this year for $299 (see image). They have shown off a game where the player moves stones to rebuild Stonehenge using mind power alone (see video).
  • ...1 more annotation...
  • Californian company NeuroSky has also built a device that can detect emotions: the firm says it can tell whether you are focused, relaxed, afraid or anxious, for example.
  •  
    This week, engineer Adam Wilson made global headlines by updating Twitter using his brainwaves. "USING EEG TO SEND TWEET" he explained.
Tero Toivanen

The five ages of the brain: Adolescence - life - 04 April 2009 - New Scientist - 0 views

  • Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
  • This cerebral pruning trims unused neural connections that were overproduced in the childhood growth spurt, starting with the more basic sensory and motor areas.
  • Among the last to mature is the dorsolateral prefrontal cortex at the very front of the frontal lobe. This area is involved in control of impulses, judgement and decision-making, which might explain some of the less-than-stellar decisions made by your average teen. This area also acts to control and process emotional information sent from the amygdala - the fight or flight centre of gut reactions - which may account for the mercurial tempers of adolescents.
  • ...5 more annotations...
  • These changes have both benefits and pitfalls. At this stage of life the brain is still childishly flexible, so we are still sponges for learning. On the other hand, the lack of impulse control may lead to risky behaviours such as drug and alcohol abuse, smoking and unprotected sex.
  • As grey matter is lost, though, the brain gains white matter
  • Substance abuse is particularly concerning, as brain imaging studies suggest that the motivation and reward circuitry in teen brains makes them almost hard-wired for addiction.
  • since drug abuse and stressful events - even a broken heart - have been linked to mood disorders later in life, this is the time when both are best avoided.
  • Making the most of this time is a matter of throwing all that teen energy into learning and new experiences - whether that means hitting the books, learning to express themselves through music or art, or exploring life by travelling the world.
  •  
    Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
Tero Toivanen

Scientists capture the first image of memories being made - 0 views

  • A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation. The finding provides the first visual evidence that when a new memory is formed new proteins are made locally at the synapse - the connection between nerve cells - increasing the strength of the synaptic connection and reinforcing the memory. The study published in Science, is important for understanding how memory traces are created and the ability to monitor it in real time will allow a detailed understanding of how memories are formed.
  • research has focused on synapses which are the main site of exchange and storage in the brain.
  • They form a vast but also constantly fluctuating network of connections whose ability to change and adapt, called synaptic plasticity, may be the fundamental basis of learning and memory.
  • ...3 more annotations...
  • Using a translational reporter, a fluorescent protein that can be easily detected and tracked, we directly visualized the increased local translation, or protein synthesis, during memory formation.
  • Importantly, this translation was synapse-specific and it required activation of the post-synaptic cell, showing that this step required cooperation between the pre and post-synaptic compartments, the parts of the two neurons that meet at the synapse.
  • This study provides evidence that a mechanism that mediates this gene expression during neuronal plasticity involves regulated translation of localized mRNA at stimulated synapses.
  •  
    A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation.
Tero Toivanen

Tests find benefit of sleeping on job - Science, News - The Independent - 0 views

  • A type of dreamy sleep that occurs more frequently in the early morning is important for solving problems that cannot be easily answered during the day, a study has found.
  • The discovery could explain many anecdotal accounts of famous intellectuals who had wrestled with a problem only to find that they have solved it by the morning after a good night's sleep.
  • Scientists believe that a form of dreaming slumber called rapid-eye movement (REM) sleep, when the brain becomes relatively active and the eyes flicker from side to side under closed eyelids, plays a crucial role in subconscious problem solving.
  • ...3 more annotations...
  • Those people who had enjoyed REM sleep improved significantly, by about 40 per cent, while the other volunteers who had not had REM sleep showed little if any improvement, according to the study published in the journal Proceedings of the National Academy of Sciences.
  • In a series of tests on nearly 80 people, the researchers found that REM sleep increases the chances of someone being able to successfully solve a new problem involving creative associations – finding an underlying pattern behind complex information.
  • The researchers suggest that it is not merely sleep itself, or the simple passage of time, that is important for the solving of a new problem, but the act of being able to fall into a state of REM sleep where the brain slips into a different kind of neural activity that encourages the formation of new nerve connections.
  •  
    A type of dreamy sleep that occurs more frequently in the early morning is important for solving problems that cannot be easily answered during the day, a study has found.
Tero Toivanen

Adult Learning - Neuroscience - How to Train the Aging Brain - NYTimes.com - 1 views

  • One explanation for how this occurs comes from Deborah M. Burke, a professor of psychology at Pomona College in California. Dr. Burke has done research on “tots,” those tip-of-the-tongue times when you know something but can’t quite call it to mind. Dr. Burke’s research shows that such incidents increase in part because neural connections, which receive, process and transmit information, can weaken with disuse or age.
  • But she also finds that if you are primed with sounds that are close to those you’re trying to remember — say someone talks about cherry pits as you try to recall Brad Pitt’s name — suddenly the lost name will pop into mind. The similarity in sounds can jump-start a limp brain connection. (It also sometimes works to silently run through the alphabet until landing on the first letter of the wayward word.)
  • Recently, researchers have found even more positive news. The brain, as it traverses middle age, gets better at recognizing the central idea, the big picture. If kept in good shape, the brain can continue to build pathways that help its owner recognize patterns and, as a consequence, see significance and even solutions much faster than a young person can.
  • ...5 more annotations...
  • The trick is finding ways to keep brain connections in good condition and to grow more of them.
  • Educators say that, for adults, one way to nudge neurons in the right direction is to challenge the very assumptions they have worked so hard to accumulate while young. With a brain already full of well-connected pathways, adult learners should “jiggle their synapses a bit” by confronting thoughts that are contrary to their own, says Dr. Taylor, who is 66.
  • Teaching new facts should not be the focus of adult education, she says. Instead, continued brain development and a richer form of learning may require that you “bump up against people and ideas” that are different. In a history class, that might mean reading multiple viewpoints, and then prying open brain networks by reflecting on how what was learned has changed your view of the world.
  • Such stretching is exactly what scientists say best keeps a brain in tune: get out of the comfort zone to push and nourish your brain. Do anything from learning a foreign language to taking a different route to work.
  • “As adults we have these well-trodden paths in our synapses,” Dr. Taylor says. “We have to crack the cognitive egg and scramble it up. And if you learn something this way, when you think of it again you’ll have an overlay of complexity you didn’t have before — and help your brain keep developing as well.”
  •  
    Dr. Burke has done research on "tots," those tip-of-the-tongue times when you know something but can't quite call it to mind. Dr. Burke's research shows that such incidents increase in part because neural connections, which receive, process and transmit information, can weaken with disuse or age.
Tero Toivanen

Machine Translates Thoughts into Speech in Real Time - 0 views

  • Model of the brain-machine interface for real-time synthetic speech production.
  • Signals collected from an electrode in the speech motor cortex are amplified and sent wirelessly across the scalp as FM radio signals.
  • The Neuralynx System amplifies, converts, and sorts the signals. The neural decoder then translates the signals into speech commands for the speech synthesizer.
  • ...1 more annotation...
  • By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process takes about 50 milliseconds - the same amount of time for a non-paralyzed, neurologically intact person to speak their thoughts.
  •  
    Model of the brain-machine interface for real-time synthetic speech production.
Ruth Howard

You won't find consciousness in the brain - opinion - 07 January 2010 - New Scientist - 0 views

  • MOST neuroscientists, philosophers of the mind and science journalists feel the time is near when we will be able to explain the mystery of human consciousness in terms of the activity of the brain. There is, however, a vocal minority of neurosceptics who contest this orthodoxy.
  • This may well happen, but my argument is not about technical, probably temporary, limitations.
  • It is about the deep philosophical confusion embedded in the assumption that if you can correlate neural activity with consciousness, then you have demonstrated they are one and the same thing, and that a physical science such as neurophysiology is able to show what consciousness truly is.
  • ...10 more annotations...
  • While neural activity of a certain kind is a necessary condition for every manifestation of consciousness, from the lightest sensation to the most exquisitely constructed sense of self, it is neither a sufficient condition of it, nor, still less, is it identical with it.
  • Many features of ordinary consciousness also resist neurological explanation.
  • There is nothing in the convergence or coherence of neural pathways that gives us this "merging without mushing", this ability to see things as both whole and separate.
  • Then their "appearings" will depend on the viewpoint of the conscious observer.
  • Thus measurement takes us further from experience and the phenomena of subjective consciousness to a realm where things are described in abstract but quantitative terms. To do its work, physical science has to discard "secondary qualities", such as colour, warmth or cold, taste - in short, the basic contents of consciousness. For the physicist then, light is not in itself bright or colourful, it is a mixture of vibrations in an electromagnetic field of different frequencies. The material world, far from being the noisy, colourful, smelly place we live in, is colourless, silent, full of odourless molecules, atoms, particles, whose nature and behaviour is best described mathematically. In short, physical science is about the marginalisation, or even the disappearance, of phenomenal appearance/qualia, the redness of red wine or the smell of a smelly dog.
  • Consciousness, on the other hand, is all about phenomenal appearances/qualia.
  • There is nothing in physical science that can explain why a physical object such as a brain should ascribe appearances/qualia to material objects that do not intrinsically have them.
  • This concerns the disjunction between the objects of science and the contents of consciousness. Science begins when we escape our subjective, first-person experiences into objective measurement, and reach towards a vantage point the philosopher Thomas Nagel called "the view from nowhere".
  • Material objects require consciousness in order to "appear".
  • Our failure to explain consciousness in terms of neural activity inside the brain inside the skull is not due to technical limitations which can be overcome. It is due to the self-contradictory nature of the task, of which the failure to explain "aboutness", the unity and multiplicity of our awareness, the explicit presence of the past, the initiation of actions, the construction of self are just symptoms.
1 - 20 of 21 Next ›
Showing 20 items per page