Skip to main content

Home/ Neuropsychology/ Group items tagged proteins

Rss Feed Group items tagged

Tero Toivanen

Map of Synapse May Help Understand Basis of Many Diseases - NYTimes.com - 3 views

  • The research team, led by Seth Grant of the Sanger Institute near Cambridge, England, compiled the first exact inventory of all the protein components of the synaptic information-processing machinery. No fewer than 1,461 proteins are involved in this biological machinery, they report in the current issue of Nature Neuroscience.
  • Each neuron in the human brain makes an average 1,000 or so connections with other neurons. There are 100 billion neurons, so the brain probably contains 100 trillion synapses, its most critical working part.
  • The 1,461 genes that specify these synaptic proteins constitute more than 7 percent of the human genome’s 20,000 protein-coding genes, an indication of the synapse’s complexity and importance.
  • ...2 more annotations...
  • Dr. Grant believes that the proteins are probably linked together to form several biological machines that process the information and change the physical properties of the neuron as a way of laying down a memory.
  • The new catalog of synaptic proteins “should open a major new window in mental disease,” said Jeffrey Noebels, an expert on the genetics of epilepsy at the Baylor College of Medicine. “We can go in there and systematically look for disease pathways and therefore druggable targets.”
  •  
    The research team, led by Seth Grant of the Sanger Institute near Cambridge, England, compiled the first exact inventory of all the protein components of the synaptic information-processing machinery. No fewer than 1,461 proteins are involved in this biological machinery
  •  
    Seeing mental health as a druggable target is psychotic...
Tero Toivanen

Scientists capture the first image of memories being made - 0 views

  • A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation. The finding provides the first visual evidence that when a new memory is formed new proteins are made locally at the synapse - the connection between nerve cells - increasing the strength of the synaptic connection and reinforcing the memory. The study published in Science, is important for understanding how memory traces are created and the ability to monitor it in real time will allow a detailed understanding of how memories are formed.
  • research has focused on synapses which are the main site of exchange and storage in the brain.
  • They form a vast but also constantly fluctuating network of connections whose ability to change and adapt, called synaptic plasticity, may be the fundamental basis of learning and memory.
  • ...3 more annotations...
  • Using a translational reporter, a fluorescent protein that can be easily detected and tracked, we directly visualized the increased local translation, or protein synthesis, during memory formation.
  • Importantly, this translation was synapse-specific and it required activation of the post-synaptic cell, showing that this step required cooperation between the pre and post-synaptic compartments, the parts of the two neurons that meet at the synapse.
  • This study provides evidence that a mechanism that mediates this gene expression during neuronal plasticity involves regulated translation of localized mRNA at stimulated synapses.
  •  
    A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation.
Tero Toivanen

Understanding alcohol's damaging effects on the brain - 0 views

  •  
    "In particular, evidence is emerging that supports characteristic, discrete alcohol binding sites on protein targets."
Tero Toivanen

Autism Blog - Autism: Is it all about bigger brains? « Left Brain/Right Brain - 0 views

  • in light of the increased cranial volumn and minicolumnar density in autism, more recent studies have begun targeting certain proteins and steroids called Growth Factors, which are in part intimately involved in neocortical expansion.
  • Basic Fibroblast Growth Factor (bFGF or FGF2) has particularly important implications in autism given its involvement in prolonging the period of cell division of the number of undifferentiated radial glial cells (cortical stem cells) which determine the total number of eventual minicolumns: the longer these radial glial divide, the greater the number of minicolumns, like that seen in autism.
  • It’s fascinating to think that while autism can undoubtedly provide for its share of handicap, these foundational elements may be “abnormal” only in the sense that they’re extremes of those things which make us most human.
  •  
    Basic Fibroblast Growth Factor (bFGF or FGF2) has particularly important implications in autism given its involvement in prolonging the period of cell division of the number of undifferentiated radial glial cells (cortical stem cells) which determine the total number of eventual minicolumns: the longer these radial glial divide, the greater the number of minicolumns, like that seen in autism.
1 - 4 of 4
Showing 20 items per page