Skip to main content

Home/ Neuropsychology/ Group items tagged cortex

Rss Feed Group items tagged

David McGavock

How Did Consciousness Evolve? - The Atlantic - 0 views

  • consciousness, is rarely studied in the context of evolution.
  • What is the adaptive value of consciousness? When did it evolve and what animals have it?
  • Attention Schema Theory (AST),
  • ...20 more annotations...
  • suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others,
  • The next evolutionary advance was a centralized controller for attention that could coordinate among all senses. In many animals, that central controller is a brain area called the tectum
  • It coordinates something called overt attention
  • The tectum is a beautiful piece of engineering. To control the head and the eyes efficiently, it constructs something called an internal model, a feature well known to engineers. An internal model is a simulation that keeps track of whatever is being controlled and allows for predictions and planning.
  • With the evolution of reptiles around 350 to 300 million years ago, a new brain structure began to emerge – the wulst
  • our version is usually called the cerebral cortex and has expanded enormously
  • The cortex is like an upgraded tectum
  • The most important difference between the cortex and the tectum may be the kind of attention they control
  • tectum is the master of overt attention—pointing the sensory apparatus toward anything important
  • cortex ups the ante with something called covert attention
  • Your cortex can shift covert attention from the text in front of you to a nearby person, to the sounds in your backyard, to a thought or a memory. Covert attention is the virtual movement of deep processing from one item to another.
  • the cortex must model something much more abstract.
  • it does so by constructing an attention schema
  • a constantly updated set of information that describes what covert attention is doing moment-by-moment and what its consequences are
  • The attention schema is therefore strategically vague. It depicts covert attention in a physically incoherent way, as a non-physical essence. And this, according to the theory, is the origin of consciousness. We say we have consciousness because deep in the brain, something quite primitive is computing that semi-magical self-description.
  • In the AST, the attention schema first evolved as a model of one’s own covert attention. But once the basic mechanism was in place, according to the theory, it was further adapted to model the attentional states of others, to allow for social prediction
  • theory of mind, the ability to understand the possible contents of someone else’s mind.
  • Language is perhaps the most recent big leap in the evolution of consciousness. Nobody knows when human language first evolved. Certainly we had it by 70 thousand years ago when people began to disperse around the world, since all dispersed groups have a sophisticated language.
  • Maybe partly because of language and culture, humans have a hair-trigger tendency to attribute consciousness to everything around us.
  • Justin Barrett called it the Hyperactive Agency Detection Device, or HADD
  •  
    The Attention Schema Theory (AST), developed over the past five years, may be able to answer those questions. The theory suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others, and in the AST, consciousness is the ultimate result of that evolutionary sequence. If the theory is right-and that has yet to be determined-then consciousness evolved gradually over the past half billion years and is present in a range of vertebrate species.
Tero Toivanen

NIMH · Our brains are made of the same stuff, despite DNA differences - 0 views

  • “Having at our fingertips detailed information about when and where specific gene products are expressed in the brain brings new hope for understanding how this process can go awry in schizophrenia, autism and other brain disorders,” said NIMH Director Thomas R. Insel, M.D.
  • Among key findings in the prefrontal cortex:Individual genetic variations are profoundly linked to expression patterns. The most similarity across individuals is detected early in development and again as we approach the end of life.Different types of related genes are expressed during prenatal development, infancy, and childhood, so that each of these stages shows a relatively distinct transcriptional identity. Three-fourths of genes reverse their direction of expression after birth, with most switching from on to off.Expression of genes involved in cell division declines prenatally and in infancy, while expression of genes important for making synapses, or connections between brain cells, increases. In contrast, genes required for neuronal projections decline after birth – likely as unused connections are pruned.By the time we reach our 50s, overall gene expression begins to increase, mirroring the sharp reversal of fetal expression changes that occur in infancy.Genetic variation in the genome as a whole showed no effect on variation in the transcriptome as a whole, despite how genetically distant individuals might be. Hence, human cortexes have a consistent molecular architecture, despite our diversity.
  • Among key findings:Over 90 percent of the genes expressed in the brain are differentially regulated across brain regions and/or over developmental time periods. There are also widespread differences across region and time periods in the combination of a gene’s exons that are expressed.Timing and location are far more influential in regulating gene expression than gender, ethnicity or individual variation.Among 29 modules of co-expressed genes identified, each had distinct expression patterns and represented different biological processes. Genetic variation in some of the most well-connected genes in these modules, called hub genes, has previously been linked to mental disorders, including schizophrenia and depression.Telltale similarities in expression profiles with genes previously implicated in schizophrenia and autism are providing leads to discovery of other genes potentially involved in those disorders.Sex differences in the risk for certain mental disorders may be traceable to transcriptional mechanisms. More than three-fourths of 159 genes expressed differentially between the sexes were male-biased, most prenatally. Some genes found to have such sex-biased expression had previously been associated with disorders that affect males more than females, such as schizophrenia, Williams syndrome, and autism.
  • ...2 more annotations...
  • Our brains are all made of the same stuff. Despite individual and ethnic genetic diversity, our prefrontal cortex shows a consistent molecular architecture.
  • Males show more sex-biased gene expression. More genes differentially expressed (DEX) between the sexes were found in males than females, especially prenatally. Some genes found to have such sex-biased expression had previously been associated with disorders that affect males more than females, such as schizophrenia, Williams syndrome, and autism.
  •  
    Our brains are all made of the same stuff. Despite individual and ethnic genetic diversity, our prefrontal cortex shows a consistent molecular architecture. 
Tero Toivanen

Investing in the Developing Brain : The Frontal Cortex - 0 views

  • But there has been one major payoff from our investigations of the brain: an increasing emphasis on educating young children, before they reach kindergarten. Decades of research have demonstrated that the cortex is astonishingly plastic at a young age and that many important traits and habits seem to solidify before the age of 4.
  •  
    But there has been one major payoff from our investigations of the brain: an increasing emphasis on educating young children, before they reach kindergarten. Decades of research have demonstrated that the cortex is astonishingly plastic at a young age and that many important traits and habits seem to solidify before the age of 4.
Tero Toivanen

New Light On Nature Of Broca's Area: Rare Procedure Documents How Human Brain Computes ... - 0 views

  • The study – which provides a picture of language processing in the brain with unprecedented clarity – will be published in the October 16 issue of the journal Science.
  • "Two central mysteries of human brain function are addressed in this study: one, the way in which higher cognitive processes such as language are implemented in the brain and, two, the nature of what is perhaps the best-known region of the cerebral cortex, called Broca's area," said first author Ned T. Sahin, PhD, post-doctoral fellow in the UCSD Department of Radiology and Harvard University Department of Psychology.
  • The study demonstrates that a small piece of the brain can compute three different things at different times – within a quarter of a second – and shows that Broca's area doesn't just do one thing when processing language.
  • ...2 more annotations...
  • The procedure, called Intra-Cranial Electrophysiology (ICE), allowed the researchers to resolve brain activity related to language with spatial accuracy down to the millimeter and temporal accuracy down to the millisecond.
  • "We showed that distinct linguistic processes are computed within small regions of Broca's area, separated in time and partially overlapping in space," said Sahin. Specifically, the researchers found patterns of neuronal activity indicating lexical, grammatical and articulatory computations at roughly 200, 320 and 450 milliseconds after the target word was presented. These patterns were identical across nouns and verbs and consistent across patients.
  •  
    "Two central mysteries of human brain function are addressed in this study: one, the way in which higher cognitive processes such as language are implemented in the brain and, two, the nature of what is perhaps the best-known region of the cerebral cortex, called Broca's area," said first author Ned T. Sahin, PhD, post-doctoral fellow in the UCSD Department of Radiology and Harvard University Department of Psychology.
Tero Toivanen

The Advantages of Tourette's : The Frontal Cortex - 0 views

  •  
    Tim Howard: "I like the way I am. If I woke up tomorrow without Tourette's, I wouldn't know what to do with myself."
Tero Toivanen

Naps, Learning and REM : The Frontal Cortex - 0 views

  • Taking a nap without REM sleep also led to slightly better results. But a nap that included REM sleep resulted in nearly a 40 percent improvement over the pre-nap performance.
  • The study, published June 8 in The Proceedings of the National Academy of Sciences, found that those who had REM sleep took longer naps than those who napped without REM, but there was no correlation between total sleep time and improved performance. Only REM sleep helped.
  • Numerous studies have now demonstrated that REM sleep is an essential part of the learning process. Before you can know something, you have to dream about it.
  • ...2 more annotations...
  • The breakthrough came in 1972, when psychologist Jonathan Winson came up with a simple theory: The rabbit brain exhibited the same pattern of activity when it was scared and when it was dreaming because it was dreaming about being scared. The theta rhythm of sleep was just the sound of the mind processing information, sorting through the day's experiences and looking for any new knowledge that might be important for future survival. They were learning while dreaming, solving problems in their sleep.
  • Wilson began his experiment by training rats to run through mazes. While a rat was running through one of these labyrinths, Wilson measured clusters of neurons in the hippocampus with multiple electrodes surgically implanted in its brain. As he'd hypothesized, Wilson found that each maze produced its own pattern of neural firing. To figure out how dreams relate to experience, Wilson recorded input from these same electrodes while the rats were sleeping. The results were astonishing. Of the 45 rat dreams recorded by Wilson, 20 contained an exact replica of the maze they had run earlier that day. The REM sleep was recapitulating experience, allowing the animals to consolidate memory and learn new things. Wilson's lab has since extended these results, demonstrating that "temporally structured replay" occurs in both the hippocampus and visual cortex.
  •  
    Taking a nap without REM sleep also led to slightly better results. But a nap that included REM sleep resulted in nearly a 40 percent improvement over the pre-nap performance
Tero Toivanen

» Brain Plasticity: How learning changes your brain   « Brain Fitness Revolut... - 0 views

  • A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
  • The brain compensates for damage by reorganizing and forming new connections between intact neurons. In order to reconnect, the neurons need to be stimulated through activity.
  • Research has shown that in fact the brain never stops changing through learning. Plasticity IS the capacity of the brain to change with learning. Changes associated with learning occur mostly at the level of the connections between neurons. New connections can form and the internal structure of the existing synapses can change.
  • ...6 more annotations...
  • It looks like learning a second language is possible through functional changes in the brain: the left inferior parietal cortex is larger in bilingual brains than in monolingual brains.
  • For instance, London taxi drivers have a larger hippocampus (in the posterior region) than London bus drivers (Maguire, Woollett, & Spiers, 2006)…. Why is that? It is because this region of the hippocampus is specialized in acquiring and using complex spatial information in order to navigate efficiently. Taxi drivers have to navigate around London whereas bus drivers follow a limited set of routes.
  • Did you know that when you become an expert in a specific domain, the areas in your brain that deal with this type of skill will grow?
  • Plastic changes also occur in musicians brains compared to non-musicians.
  • They found that gray matter (cortex) volume was highest in professional musicians, intermediate in amateur musicians, and lowest in non-musicians in several brain areas involved in playing music: motor regions, anterior superior parietal areas and inferior temporal areas.
  • Medical students’ brains showed learning-induced changes in regions of the parietal cortex as well as in the posterior hippocampus. These regions of the brains are known to be involved in memory retrieval and learning.
  •  
    A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
Tero Toivanen

The five ages of the brain: Adolescence - life - 04 April 2009 - New Scientist - 0 views

  • Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
  • This cerebral pruning trims unused neural connections that were overproduced in the childhood growth spurt, starting with the more basic sensory and motor areas.
  • Among the last to mature is the dorsolateral prefrontal cortex at the very front of the frontal lobe. This area is involved in control of impulses, judgement and decision-making, which might explain some of the less-than-stellar decisions made by your average teen. This area also acts to control and process emotional information sent from the amygdala - the fight or flight centre of gut reactions - which may account for the mercurial tempers of adolescents.
  • ...5 more annotations...
  • As grey matter is lost, though, the brain gains white matter
  • These changes have both benefits and pitfalls. At this stage of life the brain is still childishly flexible, so we are still sponges for learning. On the other hand, the lack of impulse control may lead to risky behaviours such as drug and alcohol abuse, smoking and unprotected sex.
  • Substance abuse is particularly concerning, as brain imaging studies suggest that the motivation and reward circuitry in teen brains makes them almost hard-wired for addiction.
  • since drug abuse and stressful events - even a broken heart - have been linked to mood disorders later in life, this is the time when both are best avoided.
  • Making the most of this time is a matter of throwing all that teen energy into learning and new experiences - whether that means hitting the books, learning to express themselves through music or art, or exploring life by travelling the world.
  •  
    Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
Tero Toivanen

Wired 14.02: Buddha on the Brain - 0 views

  • Davidson's research created a stir among brain scientists when his results suggested that, in the course of meditating for tens of thousands of hours, the monks had actually altered the structure and function of their brains.
  • Lutz asked Ricard to meditate on "unconditional loving-kindness and compassion." He immediately noticed powerful gamma activity - brain waves oscillating at roughly 40 cycles per second -�indicating intensely focused thought. Gamma waves are usually weak and difficult to see. Those emanating from Ricard were easily visible, even in the raw EEG output. Moreover, oscillations from various parts of the cortex were synchronized - a phenomenon that sometimes occurs in patients under anesthesia.
  • The researchers had never seen anything like it. Worried that something might be wrong with their equipment or methods, they brought in more monks, as well as a control group of college students inexperienced in meditation. The monks produced gamma waves that were 30 times as strong as the students'. In addition, larger areas of the meditators' brains were active, particularly in the left prefrontal cortex, the part of the brain responsible for positive emotions.
  • ...3 more annotations...
  • In the traditional view, the brain becomes frozen with the onset of adulthood, after which few new connections form. In the past 20 years, though, scientists have discovered that intensive training can make a difference. For instance, the portion of the brain that corresponds to a string musician's fingering hand grows larger than the part that governs the bow hand - even in musicians who start playing as adults. Davidson's work suggested this potential might extend to emotional centers
  • But Davidson saw something more. The monks had responded to the request to meditate on compassion by generating remarkable brain waves. Perhaps these signals indicated that the meditators had attained an intensely compassionate state of mind. If so, then maybe compassion could be exercised like a muscle; with the right training, people could bulk up their empathy. And if meditation could enhance the brain's ability to produce "attention and affective processes" - emotions, in the technical language of Davidson's study - it might also be used to modify maladaptive emotional responses like depression.
  • Davidson and his team published their findings in the Proceedings of the National Academy of Sciences in November 2004. The research made The Wall Street Journal, and Davidson instantly became a celebrity scientist.
  •  
    Davidson's research created a stir among brain scientists when his results suggested that, in the course of meditating for tens of thousands of hours, the monks had actually altered the structure and function of their brains
Tero Toivanen

YouTube - Somatosensory Cortex - 0 views

  •  
    Our brains are beautiful!
Tero Toivanen

Reading, E-Books and the Brain : The Frontal Cortex - 0 views

  • Although scientists had previously assumed that the dorsal route ceased to be active once we learned how to read, Deheane's research demonstrates that even literate adults still rely, in some situations, on the same patterns of brain activity as a first-grader, carefully sounding out the syllables.
  • This research suggests that the act of reading observes a gradient of fluency. Familiar sentences printed in Helvetica activate the ventral route, while difficult prose filled with jargon and fancy words and printed in an illegible font require us to use the slow dorsal route.
  • The larger point is that most complaints about E-Books and Kindle apps boil down to a single problem: they don't feel as "effortless" or "automatic" as old-fashioned books. But here's the wonderful thing about the human brain: give it a little time and practice and it can make just about anything automatic.
  •  
     Although scientists had previously assumed that the dorsal route ceased to be active once we learned how to read, Deheane's research demonstrates that even literate adults still rely, in some situations, on the same patterns of brain activity as a first-grader, carefully sounding out the syllables.
Tero Toivanen

Creativity and the Aging Brain | Psychology Today Blogs - 0 views

  • So instead of promoting retirement at age 65, perhaps we as a society should be promoting transition at age 65: transition into a creative field where our growing resource of individuals with aging brains can preserve their wisdom in culturally-valued works of art, music, or writing.
  • Numerous studies suggest that highly creative individuals also employ a broadened rather than focused state of attention. This state of widened attention allows the individual to have disparate bits of information in mind at the same time. Combining remote bits of information is the hallmark of the creative idea.
  • Other studies show that certain areas of the prefrontal cortex involved in self-conscious awareness and emotions are thinner in the aging brain. This may correlate with the diminished need to please and impress others, which is a notable characteristic of both aging individuals and creative luminaries.
  • ...1 more annotation...
  • Finally, intelligence studies indicate that older individuals have access to an increasing store of knowledge gained over a lifetime of learning and experience. Combining bits of knowledge into novel and original ideas is what the creative brain is all about.
  •  
    The aging brain resembles the creative brain in several ways. For instance, the aging brain is more distractible and somewhat more disinhibited than the younger brain (so is the creative brain). Aging brains score better on tests of crystallized IQ (and creative brains use crystallized knowledge to make novel and original associations).
Tero Toivanen

Interactive Movie - How the human brain works - New Scientist - 0 views

  •  
    Interactive image of brain and it's functions.
Tero Toivanen

First Evidence That Musical Training Affects Brain Development In Young Children - 0 views

  • The findings, published today (20 September 2006) in the online edition of the journal Brain [1], show that not only do the brains of musically-trained children respond to music in a different way to those of the untrained children, but also that the training improves their memory as well. After one year the musically trained children performed better in a memory test that is correlated with general intelligence skills such as literacy, verbal memory, visiospatial processing, mathematics and IQ.
  • Researchers have found the first evidence that young children who take music lessons show different brain development and improved memory over the course of a year compared to children who do not receive musical training.
  • While previous studies have shown that older children given music lessons had greater improvements in IQ scores than children given drama lessons, this is the first study to identify these effects in brain-based measurements in young children.
  • ...6 more annotations...
  • The researchers chose children being trained by the Suzuki method for several reasons: it ensured the children were all trained in the same way, were not selected for training according to their initial musical talent and had similar support from their families. In addition, because there was no early training in reading music, the Suzuki method provided the researchers with a good model of how training in auditory, sensory and motor activities induces changes in the cortex of the brain.
  • Analysis of the MEG responses showed that across all children, larger responses were seen to the violin tones than to the white noise, indicating that more cortical resources were put to processing meaningful sounds. In addition, the time that it took for the brain to respond to the sounds (the latency of certain MEG components) decreased over the year. This means that as children matured, the electrical conduction between neurons in their brains worked faster.
  • Of most interest, the Suzuki children showed a greater change over the year in response to violin tones in an MEG component (N250m) related to attention and sound discrimination than did the children not taking music lessons.
  • Analysis of the music tasks showed greater improvement over the year in melody, harmony and rhythm processing in the children studying music compared to those not studying music. General memory capacity also improved more in the children studying music than in those not studying music.
  • The finding of very rapid maturation of the N250m component to violin sounds in children taking music lessons fits with their large improvement on the memory test. It suggests that musical training is having an effect on how the brain gets wired for general cognitive functioning related to memory and attention.
  • It is clear that music is good for children's cognitive development and that music should be part of the pre-school and primary school curriculum.
  •  
    Researchers have found the first evidence that young children who take music lessons show different brain development and improved memory over the course of a year compared to children who do not receive musical training.
Ruth Howard

Artificial Synesthesia for Synthetic Vision via Sensory Substitution - 0 views

  • The additional perception is regarded by the trained synesthete as real, often outside the body, instead of imagined in the mind's eye. Its reality and vividness are what makes artificial synesthesia so interesting in its violation of conventional perception. Synesthesia in general is also fascinating because logically it should have been a product of the human brain, where the evolutionary trend has been for increasing coordination, mutual consistency and perceptual robustness in the processing of different sensory inputs.
  • synesthesia
  • options it may provide for people with sensory disabilities like deafness and blindness, where a neural joining of senses can help in replacing one sense by the other:
  • ...3 more annotations...
  • hear colors, taste shapes, or experience other curious sensory modality crossings, allegedly related to abnormal functioning of the hippocampus, one of the limbic structures in the brain. It has also been suggested that synesthesia constitutes a form of "supernormal integration" involving the posterior parietal cortex. The Russian composer Alexander Scriabin and Russian-born painter Wassily Kandinsky both pioneered artistic links between sight and sound, while they may have been synesthetes themselves. Russian mnemonist Solomon Shereshevskii, studied for decades by neuropsychologist Alexander Luria, appears to have used his natural synesthesia to memorize amazing amounts of data.
  • in seeing with your ears when using a device that maps images into sounds, or in hearing with your eyes when using a device that maps sounds into images.
  • In case of "explicit" synesthesia, the sounds would induce conscious sensations (qualia) of light and visual patterns.
Tero Toivanen

Machine Translates Thoughts into Speech in Real Time - 0 views

  • Model of the brain-machine interface for real-time synthetic speech production.
  • Signals collected from an electrode in the speech motor cortex are amplified and sent wirelessly across the scalp as FM radio signals.
  • The Neuralynx System amplifies, converts, and sorts the signals. The neural decoder then translates the signals into speech commands for the speech synthesizer.
  • ...1 more annotation...
  • By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process takes about 50 milliseconds - the same amount of time for a non-paralyzed, neurologically intact person to speak their thoughts.
  •  
    Model of the brain-machine interface for real-time synthetic speech production.
Tero Toivanen

Sign language study shows multiple brain regions wired for language - 1 views

  • A new study from the University of Rochester finds that there is no single advanced area of the human brain that gives it language capabilities above and beyond those of any other animal species.
  • Instead, humans rely on several regions of the brain, each designed to accomplish different primitive tasks, in order to make sense of a sentence.
  • "We're using and adapting the machinery we already have in our brains," said study coauthor Aaron Newman. "Obviously we're doing something different [from other animals], because we're able to learn language unlike any other species. But it's not because some little black box evolved specially in our brain that does only language, and nothing else."
  • ...4 more annotations...
  • The team of brain and cognitive scientists
  • published their findings in the latest edition of the journal Proceedings of the National Academies of Sciences.
  • The study found that there are, in fact, distinct regions of the brain that are used to process the two types of sentences: those in which word order determined the relationships between the sentence elements, and those in which inflection was providing the information.
  • In fact, Newman said, in trying to understand different types of grammar, humans draw on regions of the brain that are designed to accomplish primitive tasks that relate to the type of sentence they are trying to interpret. For instance, a word order sentence draws on parts of the frontal cortex that give humans the ability to put information into sequences, while an inflectional sentence draws on parts of the temporal lobe that specialize in dividing information into its constituent parts, the study demonstrated.
  •  
    A new study from the University of Rochester finds that there is no single advanced area of the human brain that gives it language capabilities above and beyond those of any other animal species.
Tero Toivanen

Neurons lose information at one bit per second | KurzweilAI - 0 views

  •  
    Approximately one bit of information disappears per active neuron per second.
1 - 18 of 18
Showing 20 items per page