Skip to main content

Home/ Math Coffee/ Contents contributed and discussions participated by arithwsun arithwsun

Contents contributed and discussions participated by arithwsun arithwsun

arithwsun arithwsun

杨贵妃体重到底多少_岳南的BLOG_新浪博客 - 0 views

  • 男女大防’在唐代是被冲毁了很大一个缺口,男女之间自由恋爱之风颇浓,非常开放。”又说:“先生上课,我们从不发问,有天下课后,一位同学好奇地问道:‘杨贵妃体形肥胖,究竟体重若干?’先生顺口回答:‘135磅。’(约合61.5公斤
arithwsun arithwsun

留美学人激辩中国,香港,美国大学和文化的优劣_薛涌:反智的书生_新浪博客 - 0 views

  • 去年,上海交通大学高等教育研究所发布了"2007年世界大学学术排名",香港科技大学和美国乔治梅森大学(George Mason University)都位于203-304名之间。也就是说,这两所学校的综合实力不相上下,均属于第三梯队。不过,一位留心观察的学者在两所学校各访问过几个月,就会感受到两地学风的显著差异。科技大学的学生在课堂上往往一言不发;梅森大学的学生常常抢不到发言机会。科技大学的师生习惯于墨守成规,他们的研究课题很少跃出主流领域之外;梅森大学的师生喜欢标新立异,海阔天空的想法在这里经常受到鼓励。科技大学的教授们平常总呆在自己的办公室里,他们很少和同系的老师交流,更不必谈跨系合作了;梅森大学的教授们则走动频繁,他们不仅和本院的学者常常碰头,而且不时发表与其他院系教授合著的论文。 提起香港学者,我们马上会想到张五常、郎咸平和丁学良诸公。这几位先生好发惊世之语,经常受到中文媒体的争议和追捧。其实他们三位只是特例,远远不能代表香港学人的众像。我甚至怀疑,这几位"公共知识分子" 正是因为在香港憋得发慌,才跑到内地媒体上鼓动唇舌的。香港的大牌学者享有言论自由,却更可能在大陆找到听众。笔者曾在香港科技大学社会科学部读过两年书,对该校学术气氛的印象,只合用"保守规矩,差强人意"八个字来概括。事实上,这种沉闷学风弥漫在整个香港学术界,科技大学只是尤显突出罢了。
  • 尽管香港学者享有言论的自由和资讯的便利,这座城市的其他氛围并不利于研究事业。由于紧促的城市布局和长期的殖民统治,香港社会条例繁多,管理严格。这一方面固然保证了规则明晰,维持了社会稳定;另一方面也强化了等级秩序,疏远了人际关系。中国人本来就承袭了父权制的传统,英国人的管治更是变本加厉;两者一同造就了香港人温顺保守的性格。香港人的这种"乘孩子"性格也渗透到了学术界,以至于北京的学者王小东挖苦他们搞的是"管家学术"。在香港的大学里,自由平等的讨论空气很难形成,年轻人参与讨论的劲头还不如中老年人,而讨论会(seminar)的频率和规模也逊于美国的大学。
  • 作为中西文化混杂的城市,香港不乏多元性,却缺少一种整合多种文化的亲和力。笔者在科大即发现,香港本地教授,大陆教授和外籍教授三足鼎立,各自抱团,只在自己小圈子里活动,相互之间很少往来。有位洋教授告诉我,他在香港呆了多年,依然有客人的感觉。学者之间如此隔膜,怎么可能促进学术交流?
  • ...5 more annotations...
  • 商业价值挂帅是影响香港学风的第三大负面因素。在《香港的困境》一文中,郎咸平强调香港是一个商人治理的社会。他毫不客气地批评香港的执政精英"一不懂高层次宏观管理,二不懂高新技术,三尤其是不重视研究发展和长期规划,因为他们以前的成功和这些因素无关。"其实不仅政界如此,商业气息弥漫在香港社会的各个领域。在大学餐厅的饭桌上,你会听到教授们热心于讨论各自申请研究经费的数额,而不是某学者文章的好坏。香港人普遍信奉功利主义,既不热衷于学术研究,也很难理解其长远价值。在商业文化浸润下成长起来的香港学生,很早就学会压抑个性,将自己嵌入整齐划一的白领模式。他们在校园里举办社团活动,不仅西装革履,而且样式颜色都别无二致,活脱在上就职预科班。在这崇商抑文的环境中,很难想像哪个年轻人会狂热地投入到实验室或书堆里。
  • 香港的大学资源很多,但比起美国来相对落后,特别是教授评选的学术标准,非常跟不上趟。老一代学者,在旧制度下养尊处优惯了,抵抗变革。这是学术死气沉沉的重要原因。
  • 各位许多是经过香港的大学来美国求学的。在美国大学的中国研究生里,已经有香港帮了。大陆人能去香港上学才几年呀!这本身说明香港大学的成就。各位可能觉得香港的大学比美国还落后。我完全同意。所以才主张进一步美国化。不过,香港的大学比起大陆的大学来,领先恐怕越来越大了(清华北大除了在生源上有优势外,哪方面能和香港的学校比?)。这是最近十年美国化的结果。这一过程,一定要走到底才对。不知道各位什么看法。
  • 其中有一句说:世界上没有任何一所一流大学座落在弹丸之地,香港不太可能产生世界一流大学----除非香港已经和中国融为一体
  • 我相信象各位这些在美国大学里的香港帮,如果不经过香港的教育,事业上大部分恐怕没有这么顺.我倒是觉得,北大人有一股傲气很要不得.就是觉得自己老子天下第一,目空一切.我和在纽约大学教书的张旭东有过一场辩论,他嘲笑我"不过拿了人家几个奖学金"就感恩戴德.我则确实拿了人家一点钱就非常珍惜.毕竟这是人家的钱.香港的大学,对各位学术事业逐益不小,我对各位对香港学生的蔑视有些不安.人家父母勤奋劳作纳税,创造了这么繁荣稳定的社会,并且给钱请各位去读书.难道人家没有一点好的地方?我们看不到人家身上可以学的地方,是人家一无是处,还是我们有这北大教育培养出来的"北大眼光",看不到人家的任何优点?这是否是因为中了北大的毒而不自知?
arithwsun arithwsun

Structure and randomness in the prime numbers « What's new - 0 views

  • 2 July, 2008 at 6:28 pm Terence Tao It unfortunately seems that the decomposition claimed in equation (6.9) on page 20 of that paper is, in fact, impossible; it would endow the function h (which is holding the arithmetical information about the primes) with an extremely strong dilation symmetry which it does not actually obey. It seems that the author was relying on this symmetry to make the adelic Fourier transform far more powerful than it really ought to be for this problem.
  • 3 July, 2008 at 3:41 am Gergely Harcos I also have some (perhaps milder) troubles with the proof. It seems to me as if Li had treated the Dirac delta on L^2(A) as a function. For example, the first 5 lines of page 28 make little sense to me. Am I missing something here?
  • 4 July, 2008 at 5:15 am Lior Silberman The function defined on page 20 does have a strong dilation symmetry: it is invariant by multiplication by ideles of norm one (since it is merely a function of the norm of ). In particular, it is invariant under multiplication by elements of . I’m probably missing something here. Probably the subtlety is in passing from integration over the nice space of idele classes to the singular space . The topologies on the spaces of adeles and ideles are quite different. There is a formal error in Theorem 3.1 which doesn’t affect the paper: the distribution discussed is not unique. A distribution supported at a point is a sum of derivatives of the delta distribution. Clearly there exist many such with a given special value of the Fourier transform. There is also something odd about this paper: nowhere is it pointed out what is the new contribution of the paper. Specifically, what is the new insight about number theory?
  • ...12 more annotations...
  • 4 July, 2008 at 6:09 am Emmanuel Kowalski A remark concerning Lior’s remark: the function h(u) in the current (v4) version of the paper is _not_ the same as the one that was defined when T. Tao pointed out a problem with it. This earlier one (still visible on arXiv, v1) was defined in different ways depending on whether the idele had at most one or more than one non-unit component, and was therefore not invariant under multiplication by . (It is another problem with looking at such a paper if corrections as drastic as that are made without any indication of when and why).
  • 4 July, 2008 at 8:15 am Terence Tao Dear Lior, Emmanuel is correct. The old definition of h was in fact problematic for a large number of reasons (the author was routinely integrating h on the idele class group C, which is only well-defined if h was -invariant). Changing the definition does indeed fix the problem I pointed out (and a number of other issues too). But Connes has pointed out a much more serious issue, in the proof of the trace formula in Theorem 7.3 (which is the heart of the matter, and is what should be focused on in any future revision): the author is trying to use adelic integration to control a function (namely, h) supported on the ideles, which cannot work as the ideles have measure zero in the adeles. (The first concrete error here arises in the equation after (7.13): the author has made a change of variables on the idele class group C that only makes sense when u is an idele, but u is being integrated over the adeles instead. All subsequent manipulations involving the adelic Fourier transform Hh of h are also highly suspect, since h is zero almost everywhere on the adeles.)
  • More generally, there is a philosophical objection as to why a purely multiplicative adelic approach such as this one cannot work. The argument only uses the multiplicative structure of , but not the additive structure of k. (For instance, the fact that k is a cocompact discrete additive subgroup of A is not used.) Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from ). If the arguments worked, this would mean that the Weil-Bombieri positivity criterion (Theorem 3.2 in the paper) would continue to hold even after deleting an arbitrary number of places. But I am pretty sure one can cook up a function g which (assuming RH) fails this massively stronger positivity property (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)
  • Emmanuel Kowalski That’s an interesting point indeed, if one considers that the RH doesn’t work over function fields once we take out a point of a (smooth projective) curve — there arise zeros of the zeta function which are not on the critical line.
  • 7 July, 2008 at 9:59 am javier Dear Terence, I am not sure I understand your “philosophical” complain on using only the multiplicative structure and not the additive one. This is essentially the philosophy while working over the (so over-hyped lately) field with one element, which apparently comes into the game in the description of the Connes-Bost system on the latest Connes-Consani-Marcolli paper (Fun with F_un). From an algebraic point of view, you can often recover the additive structure of a ring from the multiplicative one provided that you fix the zero. There is an explanation of this fact (using the language of monads) in the (also famous lately) work by Nikolai Durov “A new approach to Arakelov geometry (Section 4.8, on additivity on algebraic monads). By the way, I wanted to tell you that I think you are doing an impressive work with this blog and that I really enjoy learning from it, even if this is the very first time I’ve got something sensible to say :-)
  • 6 July, 2008 at 7:44 pm Terence Tao Dear Chip, Actually, the product has a number of poles on the line , when s is a multiple of . Li’s approach to the RH was not to tackle it directly, but instead to establish the Weil-Bombieri positivity condition which is known to be equivalent to RH. However, the proof of that equivalence implicitly uses the functional equation for the zeta function (via the explicit formula). If one starts deleting places (i.e. primes) from the problem, the RH stays intact (at least on the half-plane ), but the positivity condition does not, because the functional equation has been distorted.
  • The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be. [Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)
  • 6 July, 2008 at 5:28 pm Chip Neville Terence, I have a question about your comment: “Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from k^*). … (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)” Does this mean that you would be considering the “reduced” (for lack of a better name) zeta function \prod 1/(1-1/p^{-s}), where the product is taken over the set of primes not in a finite subset S? If so, this “reduced” zeta function has the same zeroes as the standard Riemann zeta function, since the finite product \prod_S 1/(1-1/p^{-s}) is an entire function with no zeroes in the complex plane. Thus the classical situation in the complex plane seems to be very different in this regard from the situation with function fields over smooth projective curves alluded to by Emmanuel above. Does anyone have an example of an infinite set S and corresponding reduced zeta function with zeroes in the half plane Re z > 1/2? A set S of primes p so that \sum_S 1/p^{1/2} converges will not do, since \prod_S 1/(1-1/p^{-s}) is holomorphic in the half plane Re z > 1/2 with no zeroes there. Perhaps a set S of primes P thick enough so that \sum_S 1/p^{1/2} diverges, but thin enough so that \sum_S 1/p converges, might do. This seems to me to be a delicate and difficult matter. I hope these questions do not sound too foolish.
  • 7 July, 2008 at 11:01 am Terence Tao Dear Javier, I must confess I do not understand the field with one element much at all (beyond the formal device of setting q to 1 in any formula derived using and seeing what one gets), and don’t have anything intelligent to say on that topic. Regarding my philosophical objection, the point was that if one deleted some places from the adele ring A and the multiplicative group (e.g. if k was the rationals, one could delete the place 2 by replacing with the group of non-zero rationals with odd numerator and denominator) then one would still get a perfectly good “adele” ring in place of A, and a perfectly good multiplicative group in place of (which would be the invertible elements in the ring of rationals with odd denominator), but somehow the arithmetic aspects of the adeles have been distorted in the process (in particular, Poisson summation and the functional equation get affected). The Riemann hypothesis doesn’t seem to extend to this general setting, so that suggests that if one wants to use adeles to prove RH, one has to somehow exploit the fact that one has all places present, and not just a subset of such places. Now, Poisson summation does exploit this very fact, and so technically this means that my objection does not apply to Li’s paper, but I feel that Poisson summation is not sufficient by itself for this task (just as the functional equation is insufficient to resolve RH), and some further exploitation of additive (or field-theoretic) structure of k should be needed. I don’t have a precise formalisation of this feeling, though.
  • 7 July, 2008 at 1:22 pm Gergely Harcos Dear Terry, you are absolutely right that Poisson summation over k inside A is the (now) standard way to obtain the functional equation for Hecke L-functions. This proof is due to Tate (his thesis from 1950), you can also find it in Weil’s Basic Number Theory, Chapter 7, Section 5.
  • Babak Hi Terrance, A few months ago I stumbled upon an interesting differential equation while using probability heuristics to explore the distribution of primes. It’s probably nothing, but on the off-chance that it might mean something to a better trained mind, I decided to blog about it: http://babaksjournal.blogspot.com/2008/07/differential-equation-estimating.html -Babak
  • 15 July, 2008 at 7:57 am michele I think that the paper of Prof. Xian-Jin Li will be very useful for a future and definitive proof of the Riemann hypothesis. Furthermore, many mathematics contents of this paper can be applied for further progress in varios sectors of theoretical physics (p-adic and adelic strings, zeta strings).
arithwsun arithwsun

科学网-人工智能不神秘(3)--揭开神秘的面纱 - 0 views

  • 人物介绍: 人工智能的创始人之一——西蒙(Herbert Simon)    这位犹太人最大的贡献还不限于人工智能。他在1958年获得了心理学领域最高奖——心理学的杰出贡献奖;1975年获得计算机领域最高奖——图灵奖。最令人称奇的是1978年他获得诺贝尔经济学奖,成了世界上第一位荣获诺贝尔经济学奖的心理学家。1986年他还获得美国总统科学奖——科学管理的特别奖。这真是当代少有的高深莫测的博学杂家。       西蒙在自传《我的生活模型》一书中这样描写他自己:      “ 我是一个科学家,而且是许多学科的科学家。我曾经在许多科学迷宫中探索,但这些迷宫并未连成一体。我扮演了许多不同角色,角色之间有时难免互相借用。但我对我所扮演的每一种角色都是尽了力的,从而是有信誉的,这也就足够了。” 1972年7月西蒙随美国计算机科学家代表团第一次来到中国,之后又9次来华访问。他是中美科技协会美方主席(当时中方主席是周培源)。1994年他成为中国科学院首批外籍院士,为表达对中国的感情,他给自己起了个中文名字“司马贺”。 2001年2月在一次不很复杂的手术后西蒙去世,享年85岁。 西蒙虽然荣获了象诺贝尔、图灵等世界顶尖大奖,但他非常平易近人,与普通人没有两样,我们经常可以在走廊里和电梯里遇见他。他见我们是中国人,显得格外热情。沈为民结婚时,他带着夫人来作证婚人。他没有其它冠冕堂皇的行政职位,只有一个职位:卡内基-梅隆大学的终身教授。
arithwsun arithwsun

科学网-参加Zare教授北大午餐 - 0 views

  • It’s high time to realize that standardized tests are overhyped. While educational institutions compete in training their students to become even better test takers, skills that are difficult to quantify in test results—like lab talent—are increasingly being neglected.
  • Standardized tests can help provide a solid floor of academic achievement, but we must be very careful that it doesn’t produce an artificially low ceiling as well!
arithwsun arithwsun

大学摆脱专业教育的桎梏_薛涌:反智的书生_新浪博客 - 0 views

  • 上大学,选专业并不重要,但大学很重要:你必须把孩子送到一个有高远的教育理想的地方去读书。我们这一代当家长的,不要拿着从自己的大学教育中得到的枷锁,来束缚下一代的发展。
arithwsun arithwsun

科学网-[转载]用裸眼观看原子弹爆炸的人 --记诺贝尔物理奖获得者费曼 - 0 views

  • 1946年10月,麦尔维尔在一次中风后去世,这更加重了费曼的忧郁。 但是他既没有闷闷不乐也没有与世隔绝。正如贝特解释的那样:“费曼 忧郁的时候也比任何其他人兴高采烈的时候还要高兴。”   最终,费曼用一种完全是费曼式的方法打破了忧郁的恶性循环。有 一天,他在康奈尔大学的咖啡厅里看见一个学生抛起了一个餐盘。他给 自己提出一个挑战,用公式来描述盘子的转动和摆动之间的关系。经过 一番努力,他终于能够证明,就像他观察到的一样,当摆动角度很小时, 转动速度是摆动速度的两倍。当费曼兴奋地把这一结果告诉贝特的时候, 贝特很有兴趣地听完了他的话,然后问他:这有什么实际价值呢?   费曼只好承认这的确没有任何实际价值。对于费曼来说,这是一次 深刻的领悟。他决定从今以后,他只为了自己的兴趣而研究物理。被这 个决定激励着,他重新开始研究量子电动力学的问题,早在普林斯顿大 学的时候他就开始涉足这个领域了棗最终就是这方面的研究使他获得了 诺贝尔奖。具有讽刺意味的是,他发现他出于感兴趣而研究的旋转餐碟 的运动,也适用于电子旋转的问题。 
arithwsun arithwsun

王泛森院士- 如果让我重做一次研究生...... - 0 views

  • (一)选择自己的问题取向,学会创新
  • (二)尝试跨领域研究,主动学习
  • 我昨天还请教林毓生院士,他今年已经七十几岁了,我告诉他我今天要来作演讲,就问他:「你如果讲这个题目你要怎么讲?」他说:「只有一点,就是那重要的五、六本书要读好几遍。」
  • ...6 more annotations...
  • 找到学习的楷模
  • 最后还有一点很重要的,就是我们的人生是两只脚,我们不是靠一只脚走路。做研究生的时代,固然应该把所有的心思都放在学业上,探索你所要探索的那些问题,可是那只是你的一只脚,另外还有一只脚是要学习培养一、两种兴趣。
  • 很多很有名的大学者最后都陷入极度的精神困扰之中,就是因为他只是培养他的右脚,他忘了培养他的左脚,他忘了人生用两只脚走路,他少了一个小小的兴趣或嗜好,用来好好的调解或是排遣自己。
  • 现在很多人都在讨论,何谓卓越的大学?我认为一个好的大学,学校生活的一大部份,以及校园的许多活动,直接或间接都与学问有关,同学在咖啡厅里面谈论的,直接或间接也都会是学术相关的议题。教授们在餐厅里面吃饭,谈的是「有没有新的发现」?或是哪个人那天演讲到底讲了什么重要的想法?一定是沉浸在这种氛围中的大学,才有可能成为卓越大学。那种交换思想学识、那种互相教育的气氛不是花钱就有办法获得的。我知道钱固然重要,但不是唯一的东西。一个卓越的大学、一个好的大学、一个好的学习环境,表示里面有一个共同关心的焦点,如果没有的话,这个学校就不可能成为好的大学
  • 王泛森院士
  • 各位要记得我以前的老师所说的一句话:「硕士跟博士是一个训练的过程,硕士跟博士不是写经典之作的过程。」
arithwsun arithwsun

科学网-转载:从希尔伯特(Hilbert)到克雷(Clay) - 0 views

  • 我以数学物理所方程组为例。方程的研究方向哪来的,不是凭空掉下来的,记得是1986年我来当时的数学物理所当所长时,我们自己不好定,数学物理所的方向,就开了一个洪山会议,我们就把全国最好的、第一流的数学家请来,有李国平院士,吴文俊院士,许国志院士,陆启铿院士,林群院士,李邦河院士等,还有王柔怀教授,齐民友教授等,把他们请来帮我们确定未来研究的方向。所以这个方向不是随便定的,也不能随便改动。方向这个东西就怕随便改,一旦改了就前功尽弃。到一定程度了需要改,要么是我们自己知道这个方向没有前途,或者是我们要往更高的、更有效点的地方发挥作用。这些是自己知道要改方向,否则,你指挥他改方向,是揠苗助长。所以我们要深深吸取过去的经验和教训,洪山会议的确帮助我们取得很大的成绩,如果没有这个方向,搞什么?知道了这个方向我们培养了很多人,比如朱熹平啊,他用他的强项搞几何,他搞几何靠的就是偏微分方程,他的几何不比别人强,他自己讲的,很多工具就是在我们武汉数理所受到的训练,他在武汉数理所做偏微分方程最后拿到杰青,后来搞到几何上,恰好和偏微分方程联系上了,他这个东西比搞几何的人强,这就是他的一个特长。所以他能把这个Poincare猜想完整证明。
  • 这就说明武汉数理所,我们这个方向定下来以后是行之有效、有成就的,这个方向我们还有很多强人:陈贵强现在是海外杰青、长江学者,在守恒律方面在国际上有极高声望;陆云光现在在哥伦比亚,还拿了个院士;曹道民,“百人计划”入选者,杰青;黄飞敏,王振都是那个时候培养起来的,他们后面做的方程是等温流,等温流做得极好,我自己觉得他们那个东西比我们等熵流的工作还要好,为什么?简单。他们的工作,整理以后都可以写到教科书上去。SIAM,叫美国工业与应用数学学会,给了他们2004年的奖,从2004年算起,2001,2002,2003前三年,SIAM所有的十几本数学杂志,里面所有的文章,选一篇理论的,做得好的,评一个奖,一篇计算类的评一个奖,还有一个应用的。他们就是那个理论的奖,说明人家欣赏他们的这个东西,也说明我们这样做下来肯定有成绩,而且我们这是一个系统,很多出去的都是骨干。所以就是按照我们那个方向做,不要随便触动它,就像说的,数学伯乐和千里马,千里马常有而伯乐不常有,认识人才,解放人才的人不常有,因此我们就要注意,不能随便瞎指挥,人才要爱护,方向也要爱护,不能随便给他打断,我们过去有很多这样的经验教训。我们刚提到Yang-Mills方程还有Navier-Stokes方程都是很大的交叉问题,如果对物理很感兴趣,我建议可以搞搞Yang-Mills方程看看,那也是有可能出大成果的。所以说Navier-Stokes方程我们一直在干,从50年代一直围绕着,不管是压缩的不可压缩的,粘性的或者没有粘性的,一直到现在我们还要坚持,也做了不少的工作,所以这个东西不能放弃,从根本上对我们国家有利。
arithwsun arithwsun

伟大的数学家 Grothendieck致瑞典皇家科学院的一封信 -恒甫学社-搜狐博客 - 0 views

  • I regret to inform you that I do not wish to accept this (or any other) prize for the following reasons.
arithwsun arithwsun

科学网-元妃省亲与高校评估 - 0 views

  • 高校评估这一事物为什么会出现,是因为它有它存在的道理,因此它的出路不管如何,必须考虑它所考虑的问题。这样才能告别它。
  • 第一,变全面评估为单项评估,而且内容越具体越好。
  • 第二,变上级检查为学校自行进行信息公开。
  • ...3 more annotations...
  • 具体做法包括学校要以专门的网页进行评估信息公开。
  • 第三,鼓励学生对学校的监督。
  • 第四,变突击检查为日常管理。
« First ‹ Previous 361 - 380 of 482 Next › Last »
Showing 20 items per page