Skip to main content

Home/ foe_2013/ Group items tagged analysis

Rss Feed Group items tagged

Raúl Sarrión

An R Introduction to Statistics | R Tutorial - 1 views

shared by Raúl Sarrión on 22 Apr 13 - Cached
  • In an experiment study, various treatments are applied to test subjects and the response data is gathered for analysis. A critical tool for carrying out the analysis is the Analysis of Variance (ANOVA).
    • Raúl Sarrión
       
      El lenguaje de programación R se puede utilizar para realizar análisis de la varianza
    • Raúl Sarrión
       
      ANOVA
  •  
    In an experiment study, various treatments are applied to test subjects and the response data is gathered for analysis. A critical tool for carrying out the analysis is
Enrique Diaz Romero

An Introduction to R - 1 views

    • nerub val
       
      las carateristicas generales de R
    • nerub val
       
      El desarrollo de R
  • R is an integrated suite of software facilities for data manipulation, calculation and graphical display. Among other things it has an effective data handling and storage facility, a suite of operators for calculations on arrays, in particular matrices, a large, coherent, integrated collection of intermediate tools for data analysis, graphical facilities for data analysis and display either directly at the computer or on hardcopy, and a well developed, simple and effective programming language (called ‘S’) which includes conditionals, loops, user defined recursive functions and input and output facilities. (Indeed most of the system supplied functions are themselves written in the S language.)
    • Enrique Diaz Romero
       
      El entorno de R entre otras cosas nos permite el uso y almacenamiento eficaz de datos, así como su análisis en forma de matrices, un gran numero de herramientas graficas y un lenguaje claro y sencillo de programación en el que podemos encontrar un gran numero de funciones.
  • ...4 more annotations...
  • his section presumes the reader has some familiarity with statistical methodology, in particular with regression analysis and the analysis of variance. Later we make some rather more ambitious presumptions, namely that something is known about generalized linear models and nonlinear regression. The requirements for fitting statistical models are sufficiently well defined to make it possible to construct general tools that apply in a broad spectrum of problems. R provides an interlocking suite of facilities that make fitting statistical models very simple. As we mention in the introduction, the basic output is minimal, and one needs to ask for the details by calling extractor functions.
  • When you use the R program it issues a prompt when it expects input commands. The default prompt is ‘>’, which on UNIX might be the same as the shell prompt, and so it may appear that nothing is happening. However, as we shall see, it is easy to change to a different R prompt if you wish. We will assume that the UNIX shell prompt is ‘$’.
  • R can be regarded as an implementation of the S language which was developed at Bell Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-Plus systems. The evolution of the S language is characterized by four books by John Chambers and coauthors. For R, the basic reference is The New S Language: A Programming Environment for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The new features of the 1991 release of S are covered in Statistical Models in S edited by John M. Chambers and Trevor J. Hastie. The formal methods and classes of the methods package are based on those described in Programming with Data by John M. Chambers. See References, for precise references. There are now a number of books which describe how to use R for data analysis and statistics, and documentation for S/S-Plus can typically be used with R, keeping the differences between the S implementations in mind. See What documentation exists for R?.
  • R (“GNU S”), a language and environment for statistical computing and graphics. R is similar to the award-winning1 S system, which was developed at Bell Laboratories by John Chambers et al. It provides a wide variety of statistical and graphical techniques
    • Enrique Diaz Romero
       
      ¿Que es R y de donde viene? R nos lo presentan como un lenguaje y entorno que desciende del reconocido sistema S desarrollado por los laboratorios Bell, y que nos ofrece una serie de técnicas u herramientas para el análisis estadístico y gráfico
  •  
    Introducción completa al lenguaje R de programación para análisis de datos estadísticos.
David Moya

What is R? | inside-R | A Community Site for R - 1 views

    • Carlos Espinosa
       
      R desallorador de análisis estadístico siendo sus principales funciones la manipulación de datos,modelo estadístico y un abanico de funciones del análisis de datos que necesites.R es una comunidad on-line abierta en crecimiento.
    • David Moya
       
      R es usado sobretodo para crear programas que realicen estadisticas, ya que fue creado para ello principalmente. Con el se pueden hacer análisis estadísticos, predicciónes, modelos... Tiene herramientas que permiten usar poco código para programar estas estadisticas y modelos. Además es un proyecto libre por lo que puedes tener acceso al código fuente y mejorarlo. Gracias a esto y a la gran comunidad que tiene, actualmente es de una gran calidad y tiene disponibles varios "add-on packages".
  • Complete data analyses can often be represented in just a few lines of code.
  • ...7 more annotations...
  • R is a programming language: you do data analysis in R by writing scripts and functions in the R programming language. R is a complete, interactive, object-oriented language: designed by statisticians, for statisticians.
  • R is data analysis software: data scientists, statisticians, analysts, quants, and others who need to make sense of data use R for statistical analysis, data visualization, and predictive modeling.
  • R has benefited for over 15 years from the "many-eyes" approach to code improvement, and as a result has an extremely high standard of quality and numerical accuracy.
  • R is an open-source software project
  • you can download and use R for free, but the source code is also open for inspection and modification to anyone who wants to see how the methods and algorithms work under the covers.
  • R is an environment for statistical analysis: Available in the R language are functions for virtually every data manipulation, statistical model, or chart that the data analyst could ever need. Not only are all the "standard" methods available, but because most cutting-edge research in statistics and predictive modeling is done in R, the latest techniques are usually available first in the R system.
  • R was first created by Ross Ihaka and Robert Gentleman at the University of Auckland in 1993, and since then the project leadership has grown to include more than 20 leading statisticians and computer scientists from around the world. In addition, thousands of others have contributed additional functionality to the R language by creating add-on "packages" for use by the 2 million users of R worldwide.
LaRuPu upv

Statistical Computing with R: A tutorial - 0 views

  • R is a software package especially suitable for data analysis and graphical representation
  • is not particularly efficient in handling large data sets
  • Students can quickly grasp the role of outliers and influential points in a simple linear regression
    • LuCla EdPa
       
      No es eficiente manejando bases de datos grandes
  • ...9 more annotations...
  • R can be used as an ordinary calculator
    • LuCla EdPa
       
      Fácil manejo, se puede interactuar con expresiones simples
  • > 2 + 3 * 5      # Note the order of operations. > log (10)       # Natural logarithm with base e=2.718282 > 4^2            # 4 raised to the second power > 3/2            # Division > sqrt (16)      # Square root > abs (3-7)      # Absolute value of 3-7 > pi             # The mysterious number > exp(2)         # exponential function > 15 %/% 4       # This is the integer divide operation > # This is a comment line
    • LuCla EdPa
       
      Al igual que Matlab, puede usarse como una potente calculadora
  • x<- log(2.843432) *pi
    • LuCla EdPa
       
      Ejemplos
  • R can handle complex numbers, too.
    • LuCla EdPa
       
      Para fijar valores a variables, usamos '
  • Important note: since there are many built-in functions in R, make sure that the new object names you assign are not already used by the system. A simple way of checking this is to type in the name you want to use. If the system returns an error message telling you that such object is not found, it is safe to use the name. For example, c (for concatenate) is a built-in function used to combine elements so NEVER assign an object to c!
    • LuCla EdPa
       
      También admite el uso de números complejos
  • Character vector:
    • LuCla EdPa
       
      Al igual que en los lenguajes de programación no puedes poner una variable con nombre de función, en R no puedes asignar una variable con nombre de objeto
  • Note that m1*m2 is NOT the usual matrix multiplication. To do the matrix multiplication, you should use %*% operator instead
    • LuCla EdPa
       
      Vectores de caracteres
  • 2.4 Finding roots: a simple example
    • LuCla EdPa
       
      Para multiplicar matrices, usamos %*%
  • R is a software package especially suitable for data analysis and graphical representation. Functions and results of analysis are all stored as objects, allowing easy function modification and model building. R provides the language, tool, and environment in one convenient package. It is very flexible and highly customizable. Excellent graphical tools make R an ideal environment for EDA (Exploratory Data Analysis). Since most high level functions are written in R language itself, you can learn the language by studying the function code.
    • LuCla EdPa
       
      La información que ya hemos adquirido es suficiente para tener una idea del funcionamiento de R, omitimos el resto
  •  
    Ejemplos gráficos y explicación matemática de lo que es capaz de hacer R
  •  
    uso de R para crear estadisticas y graficos en este caso en la industria del automovil.
LaRuPu upv

Data Mining Applications with R - RDataMining.com: R and Data Mining - 0 views

shared by LaRuPu upv on 01 May 13 - No Cached
  • Data ExplorationDecision Treesk-means ClusteringHierarchical ClusteringOutlier DetectionTime Series AnalysisTime Series Clustering and ClassificationAssociation RulesText MiningSocial Network AnalysisParallel ComputingOther Examples
  •  
    Uso aplicado de aplicaciones Data mining en R para el análisis de datos.
Alexis Agustín

See how Deloitte uses R for actuarial analysis - 0 views

    • Alexis Agustín
       
      Aqui un consultor de Deloitte nos muestra como usa R para explorar datos y ajustarlos en distribuciones, calculando proyecciones usando la regresion de Poisson. Ademas lo contrapone a Excel, concluyendo que no hay una hoja de calculo en la que confundir columnas, si no que en lineas de codigo simple que se puede copiar se puede trabajar mas facilmente con grandes cantidades de datos
  • Jim Guszcza (Predictive Analytics lead at Deloitte Consulting and Assistant Professor at UW-Madison) who gave a great webinar presentation yesterday
  • R is used for exploratory data analysis and modeling, with a live examples of fitting a mixute distribution to bimodal claims data, and calculating loss reserves using Poisson regression.
  • ...2 more annotations...
  • Just one simple line of [R] code that would work just as well for a 100-by-100 loss triangle as it would for a 10-by-10 triangle. No hidden cells in the spreadsheet, no risk of spreadsheet error. It's a little bit of code you could look at in one screen, it's replicable ... and this does all the work that a spreadsheet would do. 
  • He uses the Allstate Claim Prediction Challenge data (from a recent Kaggle competition) to fit a Tweedie model to 13 million records of claim data. (The Tweedie distribution is often used to model insurance claims, where many claims are exactly zero, and non-zero claims follow a continuous Gamma-like distribution.) Using the forthcoming rxGLM function, he fit the model to this large data set in just over two minutes (140.22 seconds) using a single quad-core PC.
Alexis Agustín

Actuarial Analytics in R - 0 views

    • Alexis Agustín
       
      En este artículo se expone la increible versatilidad del lenguaje R con un monton de ejemplos en los que se ha usado (Analisis de estadisticas en Baseball, juzgar la calidad de un vino, analisis de datos de un scanner de supermercado) y luego introduce una presentacion donde se analizan 4 casos entre los que se encuentra uno interesante sobre el tiempo ademas de otro donde se valora los datos de un grupo de trabajadores
  • With data analysis showing up in domains as varied as baseball, evidence-based medicine, predicting recidivism and child support lapses, judging wine quality, credit scoring, supermarket scanner data analysis, and “genius” recommendation engines, “business analytics” is part of the zeitgeist. This is a good moment for actuaries to remember that their discipline is arguably the first – and a quarter of a millennium old – example of business analytics at work.
  • This session will include an overview of the R statistical computing environment as well as a sequence of brief case studies of actuarial analyses in R. Case studies will include examples from loss distribution analysis, ratemaking, loss reserving, and predictive modeling.
    • Alexis Agustín
       
      En este artículo se expone la increible versatilidad del lenguaje R con un monton de ejemplos en los que se ha usado (Analisis de estadisticas en Baseball, juzgar la calidad de un vino, analisis de datos de un scanner de supermercado) y luego introduce una presentacion donde se analizan 4 casos entre los que se encuentra uno interesante sobre el tiempo ademas de otro donde se valora los datos de un grupo de trabajadores
viinjo A1c

The Power of R: More Companies Using Language for Business Analytics | Interviews | ITB... - 0 views

    • diigo lemon
       
      En esta entrevista al director de operaciones de Revolution Analytics, Jeff Edhardt, se explica brevemente lo que es el lenguaje R, un lenguaje de programación estadístico de código abierto, usado para analizar cualquier tipo de dato. Remarca el hecho de que se está extendiendo cada vez más ya que las compañías que utilizan alguna herramienta de análisis de datos están obteniendo un mayor rendimiento en la empresa. Jeff Edhardt finaliza explicando el amplio rango de aplicaciones que se le pueden extraer a este lenguaje.
  • It's incredibly diverse. It ranges from pharmaceuticals for drug developments, biostatistics, gene analysis, genetic analysis into finance. It's very heavily used in hedge funds, quantitative finance risk, credit analysis, fraud detection, understanding customer churn, understanding customer behavior, pricing optimization forecasting. We have customers who are entertainment or gaming companies using it to understand buying patterns and effectiveness of different media campaigns. So it ranges anywhere from life sciences to finance to Internet to telecom.
    • viinjo A1c
       
      Usos de R en el ámbito empresarial según el COO de Revolution Analytics.
  •  
    The Power of R: More Companies Using Language for Business Analytics - Parte 1
Rafa Llopis

R aplicado a la psicología - 0 views

  • What makes R particularly powerful is that statisticians and statistically minded people around the world have contributed packages to the R Group and maintain a very active news group offering suggestions and help. The growing collection of packages and the ease with which they interact with each other and the core R is perhaps the greatest advantage of R
    • Rafa Llopis
       
      Esta web afirma que la mejor ventaja del lenguaje R es que es una comunidad abierta y que mejora constantemente.
  • Using R in 12 simple steps for personality research (These steps are not meant to limit what can be done with R, but merely to describe how to do the analysis for the most basic of research projects and to give a first experience with R). Install R on your computer or go to a machine that has it. Download the psych package as well as other recommended packages from CRAN using the install.packages function, or using the package installer in the GUI. To get packages recommended for a particular research field, use the ctv package to install a particular task view. Note, these first two steps need to be done only once! Activate the psych package or other desired packages using e.g., library(psych). This needs to be done every time you start R. Or, it is possible to modify the startup parameters for R so that certain libraries are loaded automatically. Enter your data using a text editor and save as a text file (perhaps comma delimited if using a spreadsheet program such as Excel or OpenOffice) Read the data file or copy and paste from the clipboard (using, e.g., read.clipboard). Find basic descriptive statistics (e.g., means, standard deviations, minimum and maxima) using describe. Prepare a simple descriptive graph (e.g, a box plot) of your variables. Find the correlation matrix to give an overview of relationships (if the number is not too great, a scatter plot matrix or SPLOM plot is very useful, this can be done with pairs.panels. If you have an experimental variable, do the appropriate multiple regression using stan- dardized or at least zero centered scores. If you want to do a factor analysis or principal components analysis, use the factanal or fa and principal function To score items and create a scale and find various reliability estimates, use score.items and perhaps omega. Graph the results.
    • Rafa Llopis
       
      Uso del lenguaje R para estudios psicológicos.
LaRuPu upv

Bioconductor - About - 0 views

  • Project Goals The broad goals of the Bioconductor project are: To provide widespread access to a broad range of powerful statistical and graphical methods for the analysis of genomic data. To facilitate the inclusion of biological metadata in the analysis of genomic data, e.g. literature data from PubMed, annotation data from Entrez genes. To provide a common software platform that enables the rapid development and deployment of extensible, scalable, and interoperable software. To further scientific understanding by producing high-quality documentation and reproducible research. To train researchers on computational and statistical methods for the analysis of genomic data
  •  
    Uso de R en el campo de la bio estadística (análisis de datos sobre el genoma)
Enrique Diaz Romero

¿Qué es R? | Omnia sunt Communia! - 0 views

  • Una de sus grandes fortalezas es que puede ser ampliado mediante paquetes que extienden sus funcionalidades.
  • Actualmente hay más de 2860 paquetes publicados con licencias libres y disponibles en un repositorio general (CRAN), y unos 400 paquetes destinados al análisis de genomas (Bioconductor).
  • Los paquetes publicados en CRAN están organizados en lo que denominan “Task Views“, abarcando aplicaciones tales como  Empirical Finance, Computational Econometrics, Social Sciences, Analysis of Ecological and Environmental Data, Official Statistics & Survey Methodology, Chemometrics and Computational Physics, Natural Language Processing, Time Series Analysis
  • ...2 more annotations...
  • En el campo de la visualización de datos destacan especialmente tres paquetes: lattice, latticeExtra y ggplot2.
  • Destacan los paquetes gWidgets (para interfaces de escritorio: ejemplo) y gWidgetsWWW (para interfaces vía web y aplicaciones en un servidor: ejemplo). También hay interfaces ya construidas orientadas hacia el análisis de datos (por ejemplo, latticist, playwith y rattle).
  •  
    Aquí se pueden observar la gran variedad de paquetes, orientados a diferentes tipos de aplicaciones. "Task Views", visualización de datos, interfaces gráficas simplificadas y personalizadas para interfaces web, para aplicaciones en servidores o orientadas hacia análisis de datos.
anonymous

R - About - 2 views

    • Sébastien Sanchez
       
      Introducción al lenguaje y entorno de programación R. Características y posibilidades de manejo, cálculo y gráficos.
  • Windows and MacOS
  • R is available as Free Software
  • ...9 more annotations...
  • It compiles and runs on a wide variety of UNIX
  • a suite of operators for calculations on arrays, in particular matrices
  • It includes
  • an effective data handling and storage facility
  • R is a language and environment for statistical computing and graphics
  • a large, coherent, integrated collection of intermediate tools for data analysis
  • graphical facilities for data analysis and display either on-screen or on hardcopy, and
  • a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities
    • anonymous
       
      Caracteristicas del lenguaje R en las que destaca su facilidad para trabajar con gráficos y análisis de datos.
nerub val

R - GNU Project - Free Software Foundation (FSF) - 1 views

shared by nerub val on 24 Apr 13 - No Cached
  • R is a language and environment for statistical computing and graphics.
  • developed at Bell Laboratories
  • R provides an Open Source route to participation in that activity.
  • ...21 more annotations...
  • R provides a wide variety of statistical
  • and graphical techniques,
  • R is an integrated suite
  • of software facilities for data manipulation
  • storage facility,
  • operators for calculations on arrays,
  • collection of intermediate tools for data analysis,
  • graphical facilities
  • simple and effective programming language
  • is designed around a true computer languag
  • R, like S
  • allows users to add additional functionalit
  • defining new functions
    • nerub val
       
      r es un lenguaje creado por bell laboraties de codigo abierto
    • nerub val
       
      caracteristicas del lenguaje , facil almacenamiento, ayudas en operaciones y graficas, y efectivo
  • For computationally-intensive tasks, C, C++ and Fortran code can be linked and called at run time
    • nerub val
       
      compatible con c y c++
  • R can be found on http://cran.r-project.org, the master site of comprehensive R archive network, or at one of its mirrors.
    • nerub val
       
      enlace para descargarlo para linux, mac y windows
    • nerub val
       
      y algunos recursos adicionales
  • with an FAQ list, and an introduction to the language and how to use R for doing statistical analysis and graphics in PDF and other formats.
    • nerub val
       
      tutorial de como usar r asi como diversos posibles problemas con el y su istalacion y soluciones
pajoje lololo

R (programming language) - Wikipedia, the free encyclopedia - 1 views

    • David Moya
       
      Anualmente se celebra un encuentro para los usuarios que utilizan el lenguaje R. Entre los últimos destinos en los que se han celebrado las reuniones, podemos destacar Rennes, Tennessee o Albacete.
  • R is an interpreted language; users typically access it through a command-line interpreter.
  • R supports matrix arithmetic
  • ...7 more annotations...
  • R's data structures include scalars, vectors, matrices, data frames (similar to tables in a relational database) and lists.
  • R's extensible object-system includes objects for (among others): regression models, time-series and geo-spatial coordinates.
  • Although mostly used by statisticians and other practitioners requiring an environment for statistical computation and software development, R can also operate as a general matrix calculation toolbox - with performance benchmarks comparable to GNU Octave or MATLAB.
  • "useR!" is the name given to the official annual gathering of R users.
  • Here is the list of useR! conference: useR! 2004, Vienna, Austria useR! 2006, Vienna, Austria useR! 2007, Ames, Iowa, USA useR! 2008, Dortmund, Germany useR! 2009, Rennes, France useR! 2010, Gaithersburg, Maryland, USA useR! 2011, Coventry, United Kingdom useR! 2012, Nashville, Tennessee, USA useR! 2013, Albacete, Spain
    • David Moya
       
      R es un lenguaje basado en el uso de línea de comandos. Soporta matrices, escalares y vectores además de operar estadísticamente. Su cálculo en el ámbito de matrices es comparable a otros softwares como pueden ser Matlab o GNU Octave.
    • pajoje lololo
       
      Hemos elegido consultar la información general sobre R en la versión en inglés de Wikipedia, ya que nos parecía más completa y elaborada. En primer lugar se enumeran las capacidades principales de este lenguaje y algunos de sus principales usos. También se destaca el hecho de que es 'GNU project' y que está disponible bajo licencia GPL. A pesar de ser un lenguaje que utiliza la linea de comandos, se descaca que existen diversas interfaces gráficas para facilitar su uso. En un apartado posterior se enumeran algunas de las principales versiones de estas interfaces. http://en.wikipedia.org/wiki/R_(programming_language)#Graphical_user_interfaces Se destaca en varios de los apartados del artículo la enorme versatilidad y capacidad de adaptación a distintos campos que posee este lenguaje debido a la gran cantidad de paquetes y extensiones que soporta. También se indica que debido a su herencia del lenguaje S, está más dirigido a la programación orientada a objetos que la mayoria de lenguajes estadísticos. Finalmente se destaca el uso comercial que se le ha dado a este lenguaje, y encontramos ejemplos como el de Oracle y el de Revolution Analytics.
Alpha Teleco

Time Series Analysis and Mining with R | (R news & tutorials) - 0 views

    • Alpha Teleco
       
      Cómo clasificar y agrupar series de tiempo en R y explicación mediante una serie de ejemplos.
  • classification and clustering of time series data are not readily supported by existing R functions or packages.
    • Alpha Teleco
       
      Ejemplo de descomposición de una serie temporal, con el ejemplo de pasajeros de avión.
  • ...18 more annotations...
  • Time series data are widely seen in analytics. Some examples are stock indexes/prices, currency exchange rates and electrocardiogram (ECG)
  • Time Series Decomposition
  • Time series decomposition is to decompose a time series into trend, seasonal, cyclical and irregular components.
    • Alpha Teleco
       
      Serie de tiempo original.
    • Alpha Teleco
       
      Tendencia.
    • Alpha Teleco
       
      Factores estacionales.
    • Alpha Teleco
       
      Componente aleatoria.
    • Alpha Teleco
       
      Previsión de hechos futuros basados en conocidos.
  • Time Series Forecasting
  • Time series forecasting is to forecast future events based on known past data.
    • Alpha Teleco
       
      Agrupar series temporales basandose en su similitud o distancia.
  • Time Series Clustering
    • Alpha Teleco
       
      Ejemplo de agrupacion con 600 graficos, agrupados en 6 grupos. (Normales, ciclicos, tendencia alcista, tendencia bajista...)
  • Time series clustering is to partition time series data into groups based on similarity or distance, so that time series in the same cluster are similar.
    • Alpha Teleco
       
      Clasificacion de series de tiempo. Construir un modelo de clasificacion basado en las series de tiempo marcadas y usando el modelo construido, predecir la continuación de la series.
  • o build a classification model based on labelled time series and then use the model to predict the label of unlabelled time series.
  • Time series classification is t
  • Time Series Classification
Alpha Teleco

Comparison of data analysis packages: R, Matlab, SciPy, Excel, SAS, SPSS, Stata | AI an... - 2 views

  • R Library support; visualization Steep learning curve Yes Finance; Statistics
  • Matlab Elegant matrix support; visualization Expensive; incomplete statistics support No Engineering
  •  
    En esta página web podemos observar una tabla comparativa entre las herramientas de analisis de datos más importantes
nelvia del cisne gonza ajila

Revolution R Statistical Language for Life Science Big Data Analytics - 0 views

  •  
    Esta página muestra algunas de las aplicaciones del  lenguaje R en el campo de la medicina.
LaRuPu upv

Applications of R in Business Competition - 0 views

  • Here at Revolution Analytics, we’d like to thank all of the data scientists who participated in our first R in Business competition and congratulate the winners. Each of the applications selected demonstrates how predictive analytics with R goes well beyond traditional business intelligence to empower business decision-makers to evaluate critical success factors within important business processes early and often. We see from the winning entries that a wide variety of industries and processes – from marketing, heavy manufacturing, clinical trial design, and IT project management all share a need for ongoing predictive analysis. Revolution Analytics delivers the only R-based enterprise analytics framework, and by examining undiscovered applications of the R language, Revolution Analytics can further refine R tools to meet all organizations’ deep analysis needs.
  • Learn more about the winning entries in the slide show below:
  •  
    Concurso en el que surgen diferente aplicaciones en R para realizar programas que creen predicciones que apoyen las decisiones de negocios.
Bora Jasan

R Statistics, R Statistical Consulting Home - 0 views

    • Bora Jasan
       
      Este es un ejemplo de una empresa que se dedica a proveer datos estadísticos, análisis de distintos tipos, data mining... Además, también atienden a diferentes negocios como servicios financieros, productos médicos, etc. Es, en definitiva, lo que nos puede aportar el lenguaje de programación R a nivel empresarial.
  • R Statistical Consulting provides statistical software development and consulting services. We design statistical based algorithms in the R language that provide advanced statistical / graphical data analysis, R Project time series analysis, econometrics, data mining, machine learning, statistical computing and optimization.
  • We currently serve a broad range of businesses, specifically including the financial services, medical product, and hotel industries. We provide end-to-end solutions that provide our clients the tools needed to make critical business decisions that impact the company's bottom line.
  • ...1 more annotation...
  • R Statistical Consulting draws on over 20 years of experience in computational algorithmic infrastructure and database development. We also have depth of experience in the migration of functionality to newer, advanced platforms.
Yes We Pass

How Google and Facebook are using R « Dataspora - 1 views

    • Javier Soriano
       
      R es un lenguaje de programación que podemos encontrar en tres áreas: manipulación de datos, estadísticas y visualización de datos
    • Javier Soriano
       
      R es utilizado en google y facebook
    • Practica 5 de FOE
       
      Todo lo que está en la red relacionado con R, la sede central de cualquier programa R está en CRAN, y desde CRAN se producen intercambios de informacion con otros lenguajes como el de Matlab, Excel,SAS... 
  • R es utilizado en google y faceboo
  • ...7 more annotations...
  • R is the most popular statistical package at Google
  • and indeed Google is a donor to the R Foundation.
  • He remarked that “The best thing about R is that it was developed by statisticians.
  • What sets it apart from other data analysis tools? It was developed by statisticians, it’s free software, and it is extensible via user-developed packages
  • I began by describing R as a programming language with strengths in three areas: (i) data manipulation, (ii) statistics, and (iii) data visualization.
  • The typical workflow that Bo thus described for using R was: (i) pulling data with some external tool, (ii) loading it into R, (iii) performing analysis and modeling within R, (iv) implementing a resulting model in Python or C++ for a production environment.
    • anonymous
       
      En este artículo muestra empresas como google y facebook utilizan este lenguaje y destacan su dificultad para aprenderlo, pero su compatibilidad con otros programas hace que sea muy utilizado.
  •  
    Usos de R en empresas como Facebook y Google
1 - 20 of 36 Next ›
Showing 20 items per page