Skip to main content

Home/ Electronic Everything!/ Group items tagged semiconductors

Rss Feed Group items tagged

Aasemoon =)

IEEE Spectrum: Breakthrough in Creating a Band Gap for Graphene Promises Huge Potential... - 0 views

  • Ever since graphene was first produced in a lab at the University of Manchester in 2004, researchers around the world have been fascinated with its potential in electronics applications. Graphene possessed all the benefits of carbon nanotubes (CNTs), namely its charged-carrier mobility, but it didn’t have any of the down sides, such as CNTs’ need for different processing techniques than silicon and the intrinsic difficulty of creating interconnects for CNTs. But all was not easy for applying graphene to electronics applications. One of the fundamental problems for graphene was its lack of a band gap, which left it with a very low on-off ratio measured at about 10 as compared to in the 100s for silicon. Now this fundamental hurdle has been overcome. Based on research led by Phaedon Avouris at IBM’s IBM T.J. Watson Research Center, Yorktown Heights, New York, IBM is reporting that they have created a significant band gap in graphene.
  •  
    VERY interesting...
Aasemoon =)

IEEE Spectrum: Flexible Flash - 0 views

  • 4 January 2010—Though flexible devices such as roll-up displays have been promised for several years, their commercialization has been stalled by a missing ingredient: a flexible form of flash memory. But researchers at the University of Tokyo have recently developed an organic, floating-gate nonvolatile memory that behaves like flash memory, which may solve that problem. While silicon-based flash memory is fine for the mass data storage found in cellphones, digital music players, and thumb drives, fabricating it requires high processing temperatures, thus ruling out its production on flexible substrates like plastic. Organic semiconductors, however, can be processed at temperatures well below the melting point of most plastics. What's more, "the cost of flash memory is too high to use in applications that require large arrays of memory," says Tsuyoshi Sekitani, an assistant professor in the University of Tokyo's department of electrical and electronic engineering and one of the researchers who developed the new memory. "But we can print our organic memory on flexible substrates and over large areas using inkjet printers. So costs will be low."
Aasemoon =)

IEEE Spectrum: Design Challenges Loom for 3-D Chips - 0 views

  • Three-dimensional microchip designs are making their way to market to help pack more transistors on a chip as traditional scaling slows down. By stacking logic chips on top of one another other or combining logic chips with memory or RF with logic, chipmakers hope to sidestep Moore's Law, increasing the functionality of smartphones and other gadgets not by shrinking a chip's transistors but the distance between them. "There's a big demand for smaller packages in the consumer market, especially for the footprint of a mobile phone, or for improving the memory bandwidth of your GPU," says Pol Marchal, a principal scientist of 3-D integration at European microelectronics R&D center Imec. On 9 February, at the IEEE International Solid-State Circuits Conference (ISSCC), in San Francisco, Imec engineers presented some key design challenges facing 3-D chips made by stacking layers of silicon circuits using vertical copper interconnects called through-silicon vias (TSVs). These design constraints will have to be dealt with before TSVs can be widely used in advanced microchip architectures, Marchal says.
Aasemoon =)

Xilinx, Avnet wrap X-fest seminar series | Programmable Logic DesignLine - 0 views

  • Avnet Electronics Marketing and Xilinx Inc. said they have concluded their five-month, 37-city global X-fest technical seminar series. According to the companies, the free one-day training sessions offered practical, how-to system level design instruction featuring the Spartan-6 and Virtex-6 FPGA families from Xilinx, as well as key enabling technologies from suppliers including Cypress Semiconductor, Intel, Maxim Integrated Products, National Semiconductor, NXP, Texas Instruments and Tyco Electronics. Replays of the events are available online.
Aasemoon =)

IEEE Spectrum: Spinning Out New Circuits - 0 views

  • Tiny semiconductor dots could lead to a new type of circuit based on magnetism rather than current flow. At least that’s the hope of researchers who’ve made the dots and are hoping to build them into a workable device. ”We want to make it into a so-called nonvolatile transistor,” says Kang Wang, head of the Device Research Laboratory at the University of California, Los Angeles. Such a ”spintronic” transistor would retain its logic state in the absence of current and require less power to switch a bit, reducing the electrical power required by a computer chip by as much as 99 percent. Wang’s research, supported in part by Intel, was published in March in the online version of Nature Materials. Where electronic transistors rely on the presence or absence of current to register the ones and zeros of digital logic, spintronic transistors depend on ”spin,” a quantum characteristic of the electron. Picture the electron as a rotating globe. When the north pole is pointing upward, that’s spin up; when pointing the other way, it’s spin down. When the spins of most electrons are aligned, the material is magnetic. When their spins are random, the material isn’t. An applied current can align or randomize the spins, allowing for spin-based switches.
Aasemoon =)

IEEE Spectrum: Spintronics Gets Boost from First Images Taken of the Spin of Electrons - 0 views

  • One of the biggest commercial applications of spintronics in computing to date has been the use of giant magnetoresistance (GMR), the material phenomenon that makes possible the huge storage capacity of today’s hard disk drives. In the awarding of the 2007 Nobel Prize in Physics, GMR was cited as the first big commercial application for nanotechnology. But extending the commercial application of spintronic-enabled systems beyond read heads for HDDs has proven to be a difficult task. One need only look at the seemingly endless travails of NVE Corporation, which in its financial results still shows it greatest revenue growth in contract research as opposed to product sales. While recent research from a team of researchers at Ohio State University and the University of Hamburg in Germany may not turn around the fortunes of spintronics in the short term, it does provide a way to better characterize the spin of electrons and thereby promises better ways of exploiting it for electronics applications. The researchers are reporting in Nature Nanotechnology that they have for the first time been able to create images of the spin direction of electrons.
Aasemoon =)

WEBENCH® Designer Tools | National Semiconductor - 0 views

  • With the introduction of the WEBENCH Online Design Environment in 1999, National Semiconductor made it possible for design engineers to create a reliable power supply circuit over the internet in minutes. The user specified the circuit performance and the WEBENCH Toolset delivered. Today, WEBENCH Designer creates and presents all of the possible power, lighting, or sensing circuits that meet a design requirement in seconds. This enables the user to make value based comparisons at a system and supply chain level before a design is committed. This expert analysis is not possible anywhere else.
Aasemoon =)

Bionic Pancreas - IEEE Spectrum - 0 views

  • When Pantelis Georgiou and his fellow biomedical engineers at Imperial College London decided to design an intelligent insulin pump for diabetes patients, they started at the source. "We asked ourselves, what does a pancreas do to control blood glucose?" Georgiou recalls. The answer is pretty well known: The organ relies primarily on two populations of cells—beta cells, to secrete insulin when blood glucose is high, and alpha cells, which release a hormone called glucagon when glucose levels are low. "We simulated them both in microchip form," Georgiou says. This biomimetic approach diverges from today's dominant method of delivering only insulin using a relatively simple control system.
Aasemoon =)

The application guides the MOSFET selection process | Audio DesignLine - 0 views

  • Given the maturity of MOSFETs, selecting one for your next design may seem deceptively simple. Engineers are familiar with the figures of merit on a MOSFET data sheet. Selecting a MOSFET requires the engineer to use their expertise in scrutinizing different specifications for individual applications. In an application such as a load switch in a server power supply, the switching aspects of a MOSFET matter little because the MOSFET is on almost 100% of the time. The on resistance (RDS(ON)) may be the key figure of merit in such an application. Still other applications, including switching power supplies, use MOSFETs as active switches, and cause the engineer to value other MOSFET performance parameters. Let us consider some applications and their prioritization of MOSFET specifications.
Aasemoon =)

Embedded.com - Protecting FPGAs from power analysis security vulnerabilities - 0 views

  • Recent advances in the size and performance of FPGAs, coupled with advantages in time-to-market, field-reconfigurability and lower up-front costs, make FPGAs ideally suited to a wide range of commercial and defense applications [6]. In addition, FPGAs generality and reconfigurability provide important protections against the introduction of Trojan horses during semiconductor manufacturing process[8]. As a result, FPGA applications increasingly involve highly-sensitive intellectual property and trade-secrets, as well as cryptographic keys and algorithms [7].
Aasemoon =)

What really limits MOSFET performance: silicon, package, driver or circuit board? (Part... - 0 views

  • Simple mathematical analysis shows that the best answer to address this problem is to  select a CR ratio QGD/QGS1 that is less than 1. Other factors to consider for preventing C dv/dt induced turn-on include low driver-sinking impedance (<1 Ώ), a FET design with intrinsically low RG, an externally-applied G-S capacitor and Q2 packages that minimize parasitics and voltage ringing.
Aasemoon =)

IEEE Spectrum: Get on the Optical Bus - 0 views

  • IBM's light-powered links overcome the greatest speed bump in supercomputing: interconnect bandwidth
Aasemoon =)

IEEE Spectrum: Infrared Optoelectronics You Can Apply With a Brush - 0 views

  • Not so long ago, artists routinely made their own paints using all sorts of odd ingredients: clay, linseed oil, ground-up insects—whatever worked. It was a crude and rather ad hoc process, but the results were used to create some of the greatest paintings in the world. Today I and other scientists are developing our own special paints. We’re not trying to compete with Vermeer or Gauguin, though. We hope to create masterpieces of a more technical nature: optoelectronic components that will make for better photovoltaic cells, imaging sensors, and optical communications equipment. And we’re not mixing and matching ingredients quite so haphazardly. Instead, we’re using our blossoming understanding of the world of nanomaterials to design the constituents of our paints at the molecular level.
Aasemoon =)

Leveraging FPGA and CPLD digital logic to implement analog to digital converters - 0 views

  • Ted Marena of Lattice Semiconductor Corp., points out that designers of digital systems are familiar with implementing the 'leftovers' of their digital design by using FPGAs and CPLDs to glue together various processors, memories, and standard function components on their printed circuit board. In addition to these digital functions, FPGAs and CPLDs can also implement common analog functions using an LVDS input, a simple resistor capacitor (RC) circuit and some FPGA or CPLD digital logic elements to create an analog to digital converter (ADC).
Aasemoon =)

Hardware platform transmits control data over power lines with no new wires | Programma... - 0 views

  • Cypress Semiconductor Corp. has launched a programmable product for data communication over existing power lines. The Powerline Communication product leverages the programmable analog and digital resources of Cypress's PSoC programmable system-on-a-chip architecture. It integrates multiple functions beyond communication, such as power measurement, system management and LCD drive. In addition to its flexibility and integration, the product offers greater than 97% packet success rates without retries and 100% success rates with retries built into the solution's coding, according to Cypress. It also offers the flexibility to communicate over high-voltage and low-voltage power lines for lighting and industrial control, home automation, automatic meter reading and smart energy management applications.
Aasemoon =)

IEEE Spectrum: Scientists Solve Mystery of Superinsulators - 1 views

  • In 2008 a team of physicists from Argonne National Laboratory, in Illinois, and other institutions stumbled upon an odd phenomenon. They called it superinsulation, because in many ways it was the opposite of superconductivity. Now they’ve worked out the theory behind it, potentially opening the doors to better batteries, supersensitive sensors, and strange new circuits. Superconductors lose all resistance once they fall below a certain temperature. In superinsulators, on the other hand, the resistance to the flow of electricity becomes infinite at very low temperatures, preventing any flow of electric current.
Aasemoon =)

IEEE Spectrum: New Wireless Sensor Uses Light to Run Nearly Perpetually - 0 views

  • The race to create tiny wireless sensors that could monitor anything from pressure in the eyes and brain to the stability of bridges appears to be heating up. Earlier this month, IEEE Spectrum reported on two approaches to creating an almost-indefinitely-running sensor using piezoelectric systems to convert tiny vibrations into power. Now, another team from the University of Michigan has created an alternative approach that uses solar power to keep the sensor running autonomously for many years.
Aasemoon =)

Multiplexers provide higher data rates without compromising signal integrity | Industri... - 0 views

  • ON Semiconductor has expanded its multiplexer product line with devices that are designed to function at high input rates/clock frequencies. The NB6VQ572M, NB6LQ572, NB7L572, NB6L572M, NB7LQ572, NB6LQ572M, NB7VQ58M and NB7V58M mux/fanout devices are targeted at SONET, Gigabit Ethernet, Fiber Channel, backplane and other clock/data distribution applications. The NB6VQ572M and NB6LQ572M differential 4:1 clock/data input multiplexers with 1:2 current mode logic (CML) clock/data fanout buffers operate at up to 6 GHz/8 Gbps from a 1.8 V, 2.5 V or 3.3 V power supply. The new devices have a data dependent jitter of <10 ps and random clock jitter of less than 0.8 ps RMS.
Aasemoon =)

IEEE Spectrum: Organic Transistor Could Outshine OLEDs - 0 views

  • A transistor that emits light and is made from organic materials could lead to cheaper digital displays and fast-switching light sources on computer chips, according to the researchers who built it. Small displays made from diodes of the same type of materials (organic light-emitting diodes, or OLEDs) are already in commercial production, but the transistor design could improve on those and lead to applications where OLEDs can’t go. The new organic light-emitting transistor (OLET) is much more efficient than previous designs. It has an external quantum efficiency—a key measure of how much light comes out per charge carrier pumped in—of 5 percent. An OLED based on the same material has a quantum efficiency of only 2 percent. Previous OLET designs had an efficiency of only 0.6 percent.
1 - 20 of 21 Next ›
Showing 20 items per page