Skip to main content

Home/ COSEE-West/ Group items tagged ocean currents

Rss Feed Group items tagged

Gwen Noda

ScienceDirect.com - Earth-Science Reviews - Recognising ocean acidification in deep tim... - 0 views

  •  
    "Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary Sarah E. GreeneCorresponding author contact information, 1, E-mail the corresponding author, Rowan C. Martindale1, E-mail the corresponding author, Kathleen A. Ritterbush E-mail the corresponding author, David J. Bottjer E-mail the corresponding author, Frank A. Corsetti E-mail the corresponding author, William M. Berelson E-mail the corresponding author Department of Earth Sciences, University of Southern California, Los Angeles, California, USA 90089 Received 22 July 2011. Accepted 17 March 2012. Available online 5 April 2012. While demonstrating ocean acidification in the modern is relatively straightforward (measure increase in atmospheric CO2 and corresponding ocean chemistry change), identifying palaeo-ocean acidification is problematic. The crux of this problem is that the rock record is a constructive archive while ocean acidification is essentially a destructive (and/or inhibitory) phenomenon. This is exacerbated in deep time without the benefit of a deep ocean record. Here, we discuss the feasibility of, and potential criteria for, identifying an acidification event in deep time. Furthermore, we investigate the evidence for ocean acidification during the Triassic-Jurassic (T-J) boundary interval, an excellent test case because 1) it occurs in deep time, beyond the reach of deep sea drilling coverage; 2) a potential trigger for acidification is known; and 3) it is associated with one of the 'Big Five' mass extinctions which disproportionately affected modern-style invertebrates. Three main criteria suggest that acidification may have occurred across the T-J transition. 1) The eruption of the Central Atlantic Magmatic Province (CAMP) and the associated massive and rapid release of CO2 coincident with the end-Triassic mass extinction provide a suitable trigger for an acidification event (
Gwen Noda

http://www.oceanacidification.org.uk - 0 views

  •  
    The term ocean acidification is used to describe the ongoing decrease in ocean pH caused by human CO2 emissions, such as the burning of fossil fuels. It is the little known consequence of living in a high CO2 world, dubbed at the 2009 United Nations Climate Change Conference (COP15) as the "evil twin of climate change". The oceans currently absorb approximately half of the CO2 produced by burning fossil fuel; put simply, climate change would be far worse if it were not for the oceans. However, there is a cost to the oceans - when CO2 dissolves in seawater it forms carbonic acid and as more CO2 is taken up by the oceans surface, the pH decreases, moving towards a less alkaline and therefore more acidic state. Already ocean pH has decreased by about 30% and if we continue emitting CO2 at the same rate by 2100 ocean acidity will increase by about 150%, a rate that has not been experienced for at least 400,000 years. Such a monumental alteration in basic ocean chemistry is likely to have wide implications for ocean life, especially for those organisms that require calcium carbonate to build shells or skeletons. Ocean acidification is a relatively new field of research, with most of the studies having been conducted over the last decade. While it is gaining some attention among policy makers, international leaders and the media, scientists find there is still a lack of understanding.
Gwen Noda

Science On a Sphere - 0 views

  •  
    Science On a Sphere Well-crafted visualizations provide unique and powerful teaching tools Science On a Sphere® is a large visualization system that uses computers and video projectors to display animated data onto the outside of a sphere. Researchers at NOAA developed Science On a Sphere® as an educational tool to help illustrate Earth System science to people of all ages. Animated images of complex processes such as ocean currents, sea level rise, and ocean acidification are used to to enhance the public's understanding of our dynamic environment. Ocean Acidification on Science On a Sphere® The movies below were developed for use on Science On a Sphere® and show computer model simulations of surface ocean pH and carbonate mineral saturation state for the years 1895 to 2094. The first movie shows a computer recreation of surface ocean pH from 1895 to the present, and it forecasts how ocean pH will drop even more between now and 2094. Dark gray dots show cold-water coral reefs. Medium gray dots show warm-water coral reefs. You can see that ocean acidification was slow at the beginning of the movie, but it speeds up as time goes on. This is because humans are releasing carbon dioxide faster than the atmosphere-ocean system can handle.
Gwen Noda

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
Gwen Noda

Watch. Explore. Discover. | Ocean Today - 0 views

  •  
    Ocean Today Kiosk Online This website provides access to current and archived videos of the Ocean Today kiosk at the Sant Ocean Hall in the Smithsonian Institution's National Museum of Natural History. The Ocean Today Kiosk is a dynamic, visitor-friendly multi-media experience that illustrates both the ocean's influence on humans and their influence upon the ocean. The website offers a transcript of the video along with links for more information.
Gwen Noda

http://www.benthic-acidification.org - 0 views

  •  
    "What are the impacts of ocean acidification on key benthic (seabed) ecosystems, communities, habitats, species and their life cycles? The average acidity (pH) of the world's oceans has been stable for the last 25 million years. However, the oceans are now absorbing so much man made CO2 from the atmosphere that measurable changes in seawater pH and carbonate chemistry can be seen. It is predicted that this could affect the basic biological functions of many marine organisms. This in turn could have implications for the survival of populations and communities, as well as the maintenance of biodiversity and ecosystem function. In the seas around the UK, the habitats that make up the seafloor, along with the animals associated with them, play a crucial role in maintaining a healthy and productive marine ecosystem. This is important considering 40% of the world's population lives within 100km of the coast and many of these people depend on coastal systems for food, economic prosperity and well-being. Given that coastal habitats also harbour incredibly high levels of biodiversity, any environmental change that affects these important ecosystems could have substantial environmental and economical impacts. During several recent international meetings scientific experts have concluded that new research is urgently needed. In particular we need long-term studies that determine: which organisms are likely to be tolerant to high CO2 and which are vulnerable; whether organisms will have time to adapt or acclimatise to this rapid environmental change; and how the interactions between individuals that determine ecosystem structure will be affected. This current lack of understanding is a major problem as ocean acidification is a rapidly evolving management issue and, with an insufficient knowledge base, policy makers and managers are struggling to formulate effective strategies to sustain and protect the marine environment in the face of ocean acidification."
Gwen Noda

Survey Page - 0 views

  •  
    Key Findings Current Coastal Management Challenges Current coastal management challenges are worsening. Top management challenges will be exacerbated by climate change. Current management challenges make adaptation planning and decision-making difficult. Climate Change Concerns, Knowledge, and Actions Attitudes and knowledge about climate change are strongly supportive of adaptation action. Attention to adaptation has increased markedly over the past five years. Adaptation planning and implementation is still in the very early stages. There is limited familiarity with innovative adaptation approaches. Information, Technical Assistance, and Training Needs Organizational missions, job responsibilities, and legal requirements shape common information use. Ease of access to information is the overriding determinant of information use. Specific information needs differ by professional group. Critical opportunities exist to meet coastal professionals' information, technical assistance, and training needs Survey Background Decision-makers in California's (CA) coastal counties recognize that climate change will impact their communities and coastline. Yet, coastal CA communities are at different stages in developing and/or implementing climate change adaptation plans. During the Summer of 2012, USC Sea Grant, in partnership with 14 other CA-based organizations (listed below), launched a survey to understand the needs and barriers coastal communities have in planning for climate change in order to develop appropriate trainings and technical assistance for communities and determine the best way to link communities to resources and tools already available. Survey Partners USC Sea Grant California Sea Grant Center for Ocean Solutions, Stanford University California Nevada Applications Program (CNAP) at the Scripps Institution of Oceanography, University of California, San Diego through the NOAA Regional Integrat
Gwen Noda

Ocean Institute | Dana Point, California - 0 views

  •  
    Wonderful student trips available to and starting from the Ocean Institute in Dana Point. Go learn some current ocean science that is aligned to the science standards!
Gwen Noda

Science Magazine: Sign In - 0 views

  •  
    Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly-in some cases, not even agreeing about whether there is a net loss or a net gain-making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise.
Gwen Noda

Home | Ocean Climate - 0 views

  •  
    UN Climate Change Ocean Climate Forum
Gwen Noda

MCBI_Current.pdf (application/pdf Object) - 1 views

  •  
    Current: The Journal of Marine Education, vol 25, no.1 [http://www.mcbi.org/what/what_pdfs/MCBI_Current.pdf] -The Threat of Acidification to Ocean Ecosystems by J. Guinotte and V.J. Fabry -Researcher Spotlight: Gretchen Hofmann, Ecological Physiologist by S. Brooke -Anticipating Ocean Acidification's Economic Consequences on Commerial Fisheries by S.R. Cooley and S.C. Doney
Gwen Noda

Eliminating Land Based Discharges of Marine Debris in California: A Plan of Action from... - 0 views

  •  
    Produced by: Plastic Debris, Rivers to Sea Project Algalita and California Coastal Commission Funding provided by the State Water Resources Control Board June 2006 pdf document, 91 pages Introduction - The California Marine Debris Action Plan of 1990 - A State Mandate to Eliminate Marine Debris is Necessary - The Plastic Debris, Rivers to Sea Project - The Action Plan - The Actions Recommended in this Plan - Process and Prioritization Part I: Marine Debris - Sources, Composition, and Quantities - What is Marine Debris? - Land versus Ocean Sources - Abundance of Plastic in the Marine Environment - Quantities of Plastic Debris Increasing Significantly in Oceans - Sources and Composition of Debris Found on Beaches - Trash and Debris in Stormwater and Urban Runoff - Other Research Characterizing Trash in Urban Runoff - Distribution and Composition of Marine Debris on California's Coast Part II: Marine Debris - Impacts - Ingestion and Entanglement - Ecosystem Impacts - Debris as a Transport Mechanism for Toxics and Invasive Species - Economic Impacts Part III: Current Efforts to Address Land-Based Discharges of Marine Debris - Federal Programs and Initiatives - State Programs and Initiatives - Regional Programs and Initiatives - Local Government Programs and Initiatives - National Public Interest Groups - California Public Interest Groups and Associations - Industry Initiatives
Gwen Noda

Random Samples - 0 views

  •  
    Isles of Abundance Britain has taken another step toward designating the world's largest marine reserve around the Chagos Islands, a group of 55 coral protrusions in the Indian Ocean. The government announced the end of a 4-month public comment period on 5 March and is expected to reach a final decision by May. The Chagos contain half of the Indian Ocean's remaining healthy reefs. The waters are said to be among the cleanest on Earth, allowing corals to grow in deep water less vulnerable to global warming. The islands are located in the equatorial "tuna belt," which hosts what a Royal Zoological Society of London report called one of the "most exploited, badly enforced fisheries in the world." A total ban on fishing in the 544,000-square-kilometer zone, an area the size of France, would make it an even larger protected area than the current record-holder, the 360,000-km2 Papahanaumokuakea Marine National Monument in the northwestern Hawaiian Islands. The Pew Environment Group has spearheaded a 3-year campaign for creation of a Chagos reserve. It would be "literally an island of abundance in a sea of depletion," says Pew's Jay Nelson. The islands are uninhabited except for the U.S. Navy base on Diego Garcia. Some 1500 Chagossians were deported to Mauritius in the 1970s for military security.
Gwen Noda

Aquarium of the Pacific Event | Flotsametrics and the Floating World - 0 views

  •  
    Aquarium Event Flotsametrics and the Floating World Curtis Ebbesmeyer As an oceanographer for Mobil/Standard Oil, Dr. Curtis Ebbesmeyer was fascinated by sea currents and eddies and began to focus on beaches and the debris deposited on them.
1 - 20 of 23 Next ›
Showing 20 items per page