Skip to main content

Home/ COSEE-West/ Group items tagged glaciers

Rss Feed Group items tagged

Gwen Noda

Glacier Bay - 0 views

  •  
    Understanding Glaciers of Glacier Bay, Alaska A Glacier quicktime movie
Gwen Noda

AGU Web Site: Measuring a Moving Glacier - 0 views

  •  
    Measuring a Moving Glacier, from "Earth in Space"
Gwen Noda

NASA - Scientists Report Increased Thinning of West Antarctic Glaciers - 0 views

  •  
    Scientists Report Increased Thinning of West Antarctic Glaciers RELEASE : 04-312 Sept. 23, 2004
Gwen Noda

COSEE West - Resources - 0 views

  •  
    Resources: Glaciers and Global Sea Level Rise - November 2005
Gwen Noda

An Accelerating Problem - 0 views

  •  
    "An Accelerating Problem A glacier speeds up unexpectedly and scientists pay attention to it. "
Gwen Noda

Rising Waters - 0 views

  •  
    "Rising Waters Scientists worry as huge glaciers melt into the sea."
Gwen Noda

Random Sample - 0 views

  •  
    Science 25 November 2011: Vol. 334 no. 6059 p. 1039 DOI: 10.1126/science.334.6059.1039-b * News of the Week Random Sample Mongolia's 'Ice Shield' Figure View larger version: * In this page * In a new window Hot zone. Flanked by desert, Ulan Bator will be cooled in summer by an "ice shield." "CREDIT: BRÜCKE-OSTEUROPA/WIKIPEDIA" As the coldest capital on Earth, you might think the last thing Ulan Bator needs is more ice. But that is just what it's about to get under a geoengineering trial aimed at "storing" freezing winter temperatures to cool and water the city during the summer. At the end of this month, engineers will drill a series of bores through the ice on the Tuul River, pump up water from below, and spray it on the surface where it will freeze. This process will be repeated throughout the winter, adding layer after layer to create a chunk of ice that will be 7 or 8 meters thick by the spring. It's an attempt to artificially create the ultra-thick slabs-known as naleds in Russian-that occur naturally in far northern climes when rivers or springs push through surface cracks. Nomads have long made their summer camps near such phenomena, which melt much later than normal ice. Flanked by desert and plagued by summer temperatures that can rise close to 40°C, Ulan Bator's municipal government hopes the $724,000 experiment will create a cool microclimate and provide fresh water as the naled melts. ECOS & EMI, the Anglo-Mongolian company behind the plan, has still greater ambitions. "Everyone is panicking about melting glaciers and icecaps, but nobody has yet found a cheap, environmentally friendly alternative," says Robin Grayson, a geologist in Ulan Bator for ECOS & EMI. "If you know how to manipulate them, naled ice shields can repair permafrost and build cool parks in cities." The process, Grayson says, can be replicated anywhere where winter temperatures fall below −5°C for at least a couple of months.
Gwen Noda

Ice Flow of the Antarctic Ice Sheet - 0 views

  •  
    "We present a reference, comprehensive, high-resolution, digital mosaic of ice motion in Antarctica assembled from multiple satellite interferometric synthetic-aperture radar data acquired during the International Polar Year 2007 to 2009. The data reveal widespread, patterned, enhanced flow with tributary glaciers reaching hundreds to thousands of kilometers inland over the entire continent. This view of ice sheet motion emphasizes the importance of basal-slip-dominated tributary flow over deformation-dominated ice sheet flow, redefines our understanding of ice sheet dynamics, and has far-reaching implications for the reconstruction and prediction of ice sheet evolution. "
Gwen Noda

Could East Antarctica Be Headed for Big Melt? - 0 views

  •  
    "The Orangeburg Scarp, a band of hard, crusty sediment teeming with tiny plankton fossils that runs from Florida to Virginia, marks an ancient shoreline where waves eroded bedrock 3 million years ago. That period, the middle Pliocene, saw carbon dioxide levels and temperatures that many scientists say could recur by 2100. The question is: Could those conditions also result in Pliocene-epoch sea levels within the next 10 to 20 centuries, sea levels that may have been as much as 35 meters higher than they are today? The answer, say climate scientists, may lie 17,000 kilometers away in East Antarctica. The East Antarctic Ice Sheet is the world's largest, a formation up to 4 km thick and 11 million km2 in area that covers three-quarters of the southernmost continent. Its glaciers were thought to sit mostly above sea level, protecting them from the type of ocean-induced losses that are affecting the West Antarctic Ice Sheet. But studies of ancient sea levels that focus on the Orangeburg Scarp and other sites challenge that long-held assumption. Not everybody believes the records from Orangeburg. But combined with several other new lines of evidence, they support the idea that parts of East Antarctica could indeed be more prone to melting than expected. "
Gwen Noda

Science Magazine: Sign In - 0 views

  •  
    Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly-in some cases, not even agreeing about whether there is a net loss or a net gain-making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise.
1 - 20 of 26 Next ›
Showing 20 items per page