Skip to main content

Home/ Advanced Concepts Team/ Group items tagged polarizer

Rss Feed Group items tagged

johannessimon81

"Natural Light Cloaking for Aquatic and Terrestrial Creatures" - 3 views

  •  
    Cheap and scalable invisibility cloaks being developed. The setup is so trivial that I would almost call it a "trick" (as in "Magicians trick"): 6 prisms of n=1.78 glass. Nontheless, it does the job of cloaking an object at visible wavelengths and from several directions.
  • ...6 more comments...
  •  
    can we build one?
  •  
    Yes, I just did :-) It is on my desk
  •  
    New video here (smaller file than previous): "https://dl.dropboxusercontent.com/u/58527156/20130613_101701.mp4" Note how close to the center of the field of view the hidden objects are. I am quite surprised that such poor lenses create such a sharp focus.
  •  
    Well.. I would say that it is not "fully cloaking", as the image behind is mirrored as well
  •  
    That just means that you have to double the setup, i.e., put 4 glasses in a row. Of course the obvious drawback is that you can only look at this cloak from one direction.
  •  
    Is this really new? I don't know, but I know that the original idea of cloaking was pretty different. When cloaking as an application of transformation optics became popular people tried to make devices that work for any incidence angle, any polarization and in full wave optics (not just ray approximation). This is really hard to achieve and I guess that the people that tried to make such devices knew exactly that the task becomes almost trivial by dropping at least two of the three conditions above.
  •  
    I think it is very easy to call something trivial when you're not the one who invested considerable time (5 min in my case) to design a cloaking device and fill the coffee mugs with water... Also, I did not really violate that many conditions: true I reduced the number of dimensions in which the device works to 1 (as opposed to the 2 dimensions of many metamaterial cloaks). However the polarization should not be affected in my setup as well as the wave phase and wave vector (so it works in full wave optics) - apart maybe from the imperfect lens distortion, but hey I was improvising.
Tom Gheysens

Fur and feathers keep animals warm by scattering light - 1 views

  •  
    In work that has major implications for improving the performance of building insulation, scientists at the University of Namur in Belgium and the University of Hassan I in Morocco have calculated that hairs that reflect infrared light may contribute significant insulating power to the exceptionally warm winter coats of polar bears and other animals.
  •  
    That's quite interesting. Maybe the future of buildings and spacecraft is furry?
LeopoldS

BBC NEWS | Science & Environment | Plans for UK satellite launcher - 0 views

  •  
    ".... taking at least 50kg of payload into a polar orbit with a minimum altitude of 400km (248 miles), but engineers would aim to get significant additional performance. "We'd be looking at a range from 50 to up to a maximum of 200kg because you'd want to do different sizes of satellite," said Mr Whitehorn."
LeopoldS

Macroscopic invisibility cloaking of visible light : Nature Communications : Nature Pub... - 3 views

  •  
    and all this without magic metamaterials ...
  • ...1 more comment...
  •  
    Wellwellwell! I don't know how I have to complain, since I could not yet read the full article, but I'm sure I will :-).
  •  
    It's funny to see how people get more and more humble in the desperate attempt to save their stupid ideas... At the beginning was the brave and bold aim to cloak something in free space (in a sphere or a cylinder). This requires inhomogeneous, anisotropic, magnetic materials; hopeless!! So one reduces to one polarization, now we have inhomogenous, anisotropic materials; still hopeless! At this point one downgraded the pretension: instead of cloaking in free space, we make a "carpet cloak" and hide an object behind an invisible dent in a mirror. But if that shall be continuous, we still need inhomogeneity and this is very hard. So now instead of a dent we take a cone and then it is claimed to work ... for ONE polarization. But of course the cloak can't work at all incident angles... irony of fate: everything is now made from birefringent media, the antithesis of what the metamaterials dogma was at the beginning!
  •  
    Hi Luzi, can you please send me the paper. We are writing a project based on sulfates and carbonates, and all this BS sounds great for the introduction (The authors used Calcite as birefringent material)
santecarloni

Broadband graphene polarizer : Nature Photonics : Nature Publishing Group - 0 views

  •  
    Graphene miracles
  •  
    Actually since this graphene hype started, being more or less a physics laic, I keep wondering how much of these promised miracles will in fact be delivered? Any chance for an expert's opinion?
jmlloren

Cheap and easy-to-make perovskite films rival silicon for efficiency. - 11 views

I just wanted to put another paper in this context: http://science.sciencemag.org/content/324/5923/63.short Solar cells based on Oxides, in particular BiFeO3. The key point here, is that while hali...

solar cells technology

started by fichbio on 09 Mar 16 1 follow-up, last by jmlloren on 11 Mar 16
jcunha liked it
Thijs Versloot

Putting 1.6TB on a DVD sized disk using muliplexed optical recording @Nature - 0 views

  •  
    Multiplexed optical recording provides an unparalleled approach to increasing the information density beyond 1012 bits per cm3 (1 Tbit cm-3) by storing multiple, individually addressable patterns within the same recording volume. Although wavelength, polarization and spatial dimension have all been exploited for multiplexing, these approaches have never been integrated into a single technique that could ultimately increase the information capacity by orders of magnitude.
Athanasia Nikolaou

Nature Paper: Rivers and streams release more CO2 than previously believed - 6 views

  •  
    Another underestimated source of CO2, are turbulent waters. "The stronger the turbulences at the water's surface, the more CO2 is released into the atmosphere. The combination of maps and data revealed that, while the CO2 emissions from lakes and reservoirs are lower than assumed, those from rivers and streams are three times as high as previously believed." Alltogether the emitted CO2 equates to roughly one-fifth of the emissions caused by humans. Yet more stuff to model...
  • ...10 more comments...
  •  
    This could also be a mechanism to counter human CO2 emission ... the more we emit, the less turbulent rivers and stream, the less CO2 is emitted there ... makes sense?
  •  
    I guess there is a natural equilibrium there. Once the climate warms up enough for all rivers and streams to evaporate they will not contribute CO2 anymore - which stops their contribution to global warming. So the problem is also the solution (as always).
  •  
    "The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally." It is another source of CO2 this one, and the turbulence in the rivers is independent of our emissions in CO2 and just facilitates the process of releasing CO2 waters. Dario, if I understood correct you have in mind a finite quantity of CO2 that the atmosphere can accomodate, and to my knowledge this does not happen, so I cannot find a relevant feedback there. Johannes, H2O is a powerful greenhouse gas :-)
  •  
    Nasia I think you did not get my point (a joke, really, that Johannes continued) .... by emitting more CO2 we warm up the planet thus drying up rivers and lakes which will, in turn emit less CO2 :) No finite quantity of CO2 in the atmosphere is needed to close this loop ... ... as for the H2O it could just go into non turbulent waters rather than staying into the atmosphere ...
  •  
    Really awkward joke explanation: I got the joke of Johannes, but maybe you did not get mine: by warming up the planet to get rid of the rivers and their problems, the water of the rivers will be accomodated in the atmosphere, therefore, the greenhouse gas of water.
  •  
    from my previous post: "... as for the H2O it could just go into non turbulent waters rather than staying into the atmosphere ..."
  •  
    I guess the emphasis is on "could"... ;-) Also, everybody knows that rain is cold - so more water in the atmosphere makes the climate colder.
  •  
    do you have the nature paper also? looks like very nice, meticulous typically german research lasting over 10 years with painstakingly many researchers from all over the world involved .... and while important the total is still only 20% of human emissions ... so a variation in it does not seem to change the overall picture
  •  
    here is the nature paper : http://www.nature.com/nature/journal/v503/n7476/full/nature12760.html I appreciate Johannes' and Dario's jokes, since climate is the common ground that all of us can have an opinion, taking honours from experiencing weather. But, the same as if I am trying to make jokes for material science, or A.I. I take a high risk of failing(!) :-S Water is a greenhouse gas, rain rather releases latent heat to the environment in order to be formed, Johannes, nice trolling effort ;-) Between this and the next jokes to come, I would stop to take a look here, provided you have 10 minutes: how/where rain forms http://www.scribd.com/doc/58033704/Tephigrams-for-Dummies
  •  
    omg
  •  
    Nasia, I thought about your statement carefully - and I cannot agree with you. Water is not a greenhouse gas. It is instead a liquid. Also, I can't believe you keep feeding the troll! :-P But on a more topical note: I think it is an over-simplification to call water a greenhouse gas - water is one of the most important mechanisms in the way Earth handles heat input from the sun. The latent heat that you mention actually cools Earth: solar energy that would otherwise heat Earth's surface is ABSORBED as latent heat by water which consequently evaporates - the same water condenses into rain drops at high altitudes and releases this stored heat. In effect the water cycle is a mechanism of heat transport from low altitude to high altitude where the chance of infrared radiation escaping into space is much higher due to the much thinner layer of atmosphere above (including the smaller abundance of greenhouse gasses). Also, as I know you are well aware, the cloud cover that results from water condensation in the troposphere dramatically increases albedo which has a cooling effect on climate. Furthermore the heat capacity of wet air ("humid heat") is much larger than that of dry air - so any advective heat transfer due to air currents is more efficient in wet air - transporting heat from warm areas to a natural heat sink e.g. polar regions. Of course there are also climate heating effects of water like the absorption of IR radiation. But I stand by my statement (as defended in the above) that rain cools the atmosphere. Oh and also some nice reading material on the complexities related to climate feedback due to sea surface temperature: http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1993)006%3C2049%3ALSEOTR%3E2.0.CO%3B2
  •  
    I enjoy trolling conversations when there is a gain for both sides at the end :-) . I had to check upon some of the facts in order to explain my self properly. The IPCC report states the greenhouse gases here, and water vapour is included: http://www.ipcc.ch/publications_and_data/ar4/wg1/en/faq-2-1.html Honestly, I read only the abstract of the article you posted, which is a very interesting hypothesis on the mechanism of regulating sea surface temperature, but it is very localized to the tropics (vivid convection, storms) a region of which I have very little expertise, and is difficult to study because it has non-hydrostatic dynamics. The only thing I can comment there is that the authors define constant relative humidity for the bottom layer, supplied by the oceanic surface, which limits the implementation of the concept on other earth regions. Also, we may confuse during the conversation the greenhouse gas with the Radiative Forcing of each greenhouse gas: I see your point of the latent heat trapped in the water vapour, and I agree, but the effect of the water is that it traps even as latent heat an amount of LR that would otherwise escape back to space. That is the greenhouse gas identity and an image to see the absorption bands in the atmosphere and how important the water is, without vain authority-based arguments that miss the explanation in the end: http://www.google.nl/imgres?imgurl=http://www.solarchords.com/uploaded/82/87-33833-450015_44absorbspec.gif&imgrefurl=http://www.solarchords.com/agw-science/4/greenhouse--1-radiation/33784/&h=468&w=458&sz=28&tbnid=x2NtfKh5OPM7lM:&tbnh=98&tbnw=96&zoom=1&usg=__KldteWbV19nVPbbsC4jsOgzCK6E=&docid=cMRZ9f22jbtYPM&sa=X&ei=SwynUq2TMqiS0QXVq4C4Aw&ved=0CDkQ9QEwAw
Thijs Versloot

Dolphin inspired radar #biomimicry - 2 views

  •  
    The device, like dolphins, sends out two pulses in quick succession to allow for a targeted search for semiconductor devices, cancelling any background "noise",
  • ...1 more comment...
  •  
    and it sends out two pulses of opposite polarity, in succession, such that a semiconductor changes the negative to a positive one, amplifying the returning signal. Very interesting. Maybe we can combine different frequencies for identifying a single variable in earth observation. We already use more that one frequencies but for identifying one variable each.
  •  
    Could it be used to measure ocean acidification? I found a study that links sound wave propagation with ocean acidity. Maybe we are able to do such measurement from space even? "Their paper, "Unanticipated consequences of ocean acidification: A noisier ocean at lower pH," published last week in the journal Geophysical Research Letters, found that fossil fuels are turning up the ocean's volume. Since the beginning of the Industrial Revolution, the overall pH of the world's oceans has dropped by about 0.1 units, with more of the changes concentrated closer to the poles. The authors found that sound absorption has decreased by 15 percent in parts of the North Atlantic and by 10 percent throughout the Atlantic and Pacific"
  •  
    The last time I asked an oceanographer for the use of acoustic waves, she said it is still a bit problematic method to take into account its data, but we were referring to measuring ocean circulation. It may be more conclusive for PH measurements, though. The truth is that there is a whole underwater network with pulse emmitters/receivers covering the North Atlantic basin, remnant infrastructure for spying activities in the WW2 and in the cold war, that stays unexploited. We should look more into this idea
jmlloren

Exotic matter : Insight : Nature - 5 views

shared by jmlloren on 03 Aug 10 - Cached
LeopoldS liked it
  •  
    Trends in materials and condensed matter. Check out the topological insulators. amazing field.
  • ...12 more comments...
  •  
    Aparently very interesting, will it survive the short hype? Relevant work describing mirror charges of topological insulators and the classical boundary conditions were done by Ismo and Ari. But the two communities don't know each other and so they are never cited. Also a way to produce new things...
  •  
    Thanks for noticing! Indeed, I had no idea that Ari (don't know Ismo) was involved in the field. Was it before Kane's proposal or more recently? What I mostly like is that semiconductors are good candidates for 3D TI, however I got lost in the quantum field jargon. Yesterday, I got a headache trying to follow the Majorana fermions, the merons, skyrnions, axions, and so on. Luzi, are all these things familiar to you?
  •  
    Ismo Lindell described in the early 90's the mirror charge of what is now called topological insulator. He says that similar results were obtained already at the beginning of the 20th century... Ismo Lindell and Ari Sihvola in the recent years discussed engineering aspects of PEMCs (perfect electro-megnetic conductors,) which are more or less classical analogues of topological insulators. Fundamental aspects of PEMCs are well knwon in high-energy physics for a long time, recent works are mainly due to Friedrich Hehl and Yuri Obukhov. All these works are purely classical, so there is no charge quantisation, no considerations of electron spin etc. About Majorana fermions: yes, I spent several years of research on that topic. Axions: a topological state, of course, trivial :-) Also merons and skyrnions are topological states, but I'm less familiar with them.
  •  
    "Non-Abelian systems1, 2 contain composite particles that are neither fermions nor bosons and have a quantum statistics that is far richer than that offered by the fermion-boson dichotomy. The presence of such quasiparticles manifests itself in two remarkable ways. First, it leads to a degeneracy of the ground state that is not based on simple symmetry considerations and is robust against perturbations and interactions with the environment. Second, an interchange of two quasiparticles does not merely multiply the wavefunction by a sign, as is the case for fermions and bosons. Rather, it takes the system from one ground state to another. If a series of interchanges is made, the final state of the system will depend on the order in which these interchanges are being carried out, in sharp contrast to what happens when similar operations are performed on identical fermions or bosons." wow, this paper by Stern reads really weired ... any of you ever looked into this?
  •  
    C'mon Leopold, it's as trivial as the topological states, AKA axions! Regarding the question, not me!
  •  
    just looked up the wikipedia entry on axions .... at least they have some creativity in names giving: "In supersymmetric theories the axion has both a scalar and a fermionic superpartner. The fermionic superpartner of the axion is called the axino, the scalar superpartner is called the saxion. In some models, the saxion is the dilaton. They are all bundled up in a chiral superfield. The axino has been predicted to be the lightest supersymmetric particle in such a model.[24] In part due to this property, it is considered a candidate for the composition of dark matter.[25]"
  •  
    Thank's Leopold. Sorry Luzi for being ironic concerning the triviality of the axions. Now, Leo confirmed me that indeed is a trivial matter. I have problems with models where EVERYTHING is involved.
  •  
    Well, that's the theory of everything, isn't it?? Seriously: I don't think that theoretically there is a lot of new stuff here. Topological aspects of (non-Abelian) theories became extremely popular in the context of string theory. The reason is very simple: topological theories are much simpler than "normal" and since string theory anyway is far too complicated to be solved, people just consider purely topological theories, then claiming that this has something to do with the real world, which of course is plainly wrong. So what I think is new about these topological insulators are the claims that one can actually fabricate a material which more or less accurately mimics a topological theory and that these materials are of practical use. Still, they are a little bit the poor man's version of the topological theories fundamental physicists like to look at since electrdynamics is an Abelian theory.
  •  
    I have the feeling, not the knowledge, that you are right. However, I think that the implications of this light quantum field effects are great. The fact of being able to sustain two currents polarized in spin is a technological breakthrough.
  •  
    not sure how much I can contribute to your apparently educated debate here but if I remember well from my work for the master, these non-Abelian theories were all but "simple" as Luzi puts it ... and from a different perspective: to me the whole thing of being able to describe such non-Abelian systems nicely indicates that they should in one way or another also have some appearance in Nature (would be very surprised if not) - though this is of course no argument that makes string theory any better or closer to what Luzi called reality ....
  •  
    Well, electrodynamics remains an Abelian theory. From the theoretical point of view this is less interesting than non-Abelian ones, since in 4D the fibre bundle of a U(1) theory is trivial (great buzz words, eh!) But in topological insulators the point of view is slightly different since one always has the insulator (topological theory), its surrounding (propagating theory) and most importantly the interface between the two. This is a new situation that people from field and string theory were not really interested in.
  •  
    guys... how would you explain this to your gran mothers?
  •  
    *you* tried *your* best .... ??
Luís F. Simões

Inferring individual rules from collective behavior - 2 views

  •  
    "We fit data to zonal interaction models and characterize which individual interaction forces suffice to explain observed spatial patterns." You can get the paper from the first author's website: http://people.stfx.ca/rlukeman/research.htm
  •  
    PNAS? Didnt strike me as sth very new though... We should refer to it in the roots study though: "Social organisms form striking aggregation patterns, displaying cohesion, polarization, and collective intelligence. Determining how they do so in nature is challenging; a plethora of simulation studies displaying life-like swarm behavior lack rigorous comparison with actual data because collecting field data of sufficient quality has been a bottleneck." For roots it is NO bottleneck :) Tobias was right :)
  •  
    Here they assume all relevant variables influencing behaviour are being observed. Namely, the relative positions and orientations of all ducks in the swarm. So, they make movies of the swarm's movements, process them, and them fit the models to that data. In the roots, though we can observe the complete final structure, or even obtain time-lapse movies showing how that structure came out to be, getting the measurements of all relevant soil variables (nitrogen, phosphorus, ...) throughout the soil, and over time, would be extremely difficult. So I guess a replication of the kind of work they did, but for the roots, would be hard. Nice reference though.
pacome delva

A New Spin on Electronics - 0 views

  • Incorporating both the magnetic leads and the underlying semiconductor, a spintronics circuit could hold its memory when turned off, as the magnetic elements remain magnetized. Manipulating spin could also require far less power than steering charges does, says Ron Jansen of the University of Twente in Enschede, Netherlands. Some physicists even aspire to create a spooky quantum connection called "entanglement" between spin-polarized currents to make a quantum computer that could crack problems that stymie an ordinary one.
Thijs Versloot

A Groundbreaking Idea About Why Life Exists - 1 views

  •  
    Jeremy England, a 31-year-old assistant professor at the Massachusetts Institute of Technology, has derived a mathematical formula that he believes explains this capacity. The formula, based on established physics, indicates that when a group of atoms is driven by an external source of energy (like the sun or chemical fuel) and surrounded by a heat bath (like the ocean or atmosphere), it will often gradually restructure itself in order to dissipate increasingly more energy. This could mean that under certain conditions, matter inexorably acquires the key physical attribute associated with life. The simulation results made me think of Jojo's attempts to make a self-assembling space structure. Seems he may have been on the right track, just not thinking big enough
  •  
    :-P Thanks Thijs... I do not agree with the premise of the article that a possible correlation of energy dissipation in living systems and their fitness means that one is the cause for the other - it may just be that both go hand-in-hand because of the nature of the world that we live in. Maybe there is such a drive for pre-biotic systems (like crystals and amino acids), but once life as we know it exists (i.e., heredity + mutation) it is hard to see the need for an amendment of Darwin's principles. The following just misses the essence of Darwin: "If England's approach stands up to more testing, it could further liberate biologists from seeking a Darwinian explanation for every adaptation and allow them to think more generally in terms of dissipation-driven organization. They might find, for example, that "the reason that an organism shows characteristic X rather than Y may not be because X is more fit than Y, but because physical constraints make it easier for X to evolve than for Y to evolve." Darwin's principle in its simplest expression just says that if a genome is more effective at reproducing it is more likely to dominate the next generation. The beauty of it is that there is NO need for a steering mechanism (like maximize energy dissipation) any random set of mutations will still lead to an increase of reproductive effectiveness. BTW: what does "better at dissipating energy" even mean? If I run around all the time I will have more babies? Most species that prove to be very successful end up being very good at conserving energy: trees, turtles, worms. Even complexity of an organism is not a recipe for evolutionary success: jellyfish have been successful for hundreds of millions of years while polar bears are seem to be on the way out.
1 - 13 of 13
Showing 20 items per page