Skip to main content

Home/ Advanced Concepts Team/ Group items tagged Intelligence

Rss Feed Group items tagged

Guido de Croon

Will robots be smarter than humans by 2029? - 2 views

  •  
    Nice discussion about the singularity. Made me think of drinking coffee with Luis... It raises some issues such as the necessity of embodiment, etc.
  • ...9 more comments...
  •  
    "Kurzweilians"... LOL. Still not sold on embodiment, btw.
  •  
    The biggest problem with embodiment is that, since the passive walkers (with which it all started), it hasn't delivered anything really interesting...
  •  
    The problem with embodiment is that it's done wrong. Embodiment needs to be treated like big data. More sensors, more data, more processing. Just putting a computer in a robot with a camera and microphone is not embodiment.
  •  
    I like how he attacks Moore's Law. It always looks a bit naive to me if people start to (ab)use it to make their point. No strong opinion about embodiment.
  •  
    @Paul: How would embodiment be done RIGHT?
  •  
    Embodiment has some obvious advantages. For example, in the vision domain many hard problems become easy when you have a body with which you can take actions (like looking at an object you don't immediately recognize from a different angle) - a point already made by researchers such as Aloimonos.and Ballard in the end 80s / beginning 90s. However, embodiment goes further than gathering information and "mental" recognition. In this respect, the evolutionary robotics work by for example Beer is interesting, where an agent discriminates between diamonds and circles by avoiding one and catching the other, without there being a clear "moment" in which the recognition takes place. "Recognition" is a behavioral property there, for which embodiment is obviously important. With embodiment the effort for recognizing an object behaviorally can be divided between the brain and the body, resulting in less computation for the brain. Also the article "Behavioural Categorisation: Behaviour makes up for bad vision" is interesting in this respect. In the field of embodied cognitive science, some say that recognition is constituted by the activation of sensorimotor correlations. I wonder to which extent this is true, and if it is valid for extremely simple creatures to more advanced ones, but it is an interesting idea nonetheless. This being said, if "embodiment" implies having a physical body, then I would argue that it is not a necessary requirement for intelligence. "Situatedness", being able to take (virtual or real) "actions" that influence the "inputs", may be.
  •  
    @Paul While I completely agree about the "embodiment done wrong" (or at least "not exactly correct") part, what you say goes exactly against one of the major claims which are connected with the notion of embodiment (google for "representational bottleneck"). The fact is your brain does *not* have resources to deal with big data. The idea therefore is that it is the body what helps to deal with what to a computer scientist appears like "big data". Understanding how this happens is key. Whether it is the problem of scale or of actually understanding what happens should be quite conclusively shown by the outcomes of the Blue Brain project.
  •  
    Wouldn't one expect that to produce consciousness (even in a lower form) an approach resembling that of nature would be essential? All animals grow from a very simple initial state (just a few cells) and have only a very limited number of sensors AND processing units. This would allow for a fairly simple way to create simple neural networks and to start up stable neural excitation patterns. Over time as complexity of the body (sensors, processors, actuators) increases the system should be able to adapt in a continuous manner and increase its degree of self-awareness and consciousness. On the other hand, building a simulated brain that resembles (parts of) the human one in its final state seems to me like taking a person who is just dead and trying to restart the brain by means of electric shocks.
  •  
    Actually on a neuronal level all information gets processed. Not all of it makes it into "conscious" processing or attention. Whatever makes it into conscious processing is a highly reduced representation of the data you get. However that doesn't get lost. Basic, low processed data forms the basis of proprioception and reflexes. Every step you take is a macro command your brain issues to the intricate sensory-motor system that puts your legs in motion by actuating every muscle and correcting every step deviation from its desired trajectory using the complicated system of nerve endings and motor commands. Reflexes which were build over the years, as those massive amounts of data slowly get integrated into the nervous system and the the incipient parts of the brain. But without all those sensors scattered throughout the body, all the little inputs in massive amounts that slowly get filtered through, you would not be able to experience your body, and experience the world. Every concept that you conjure up from your mind is a sort of loose association of your sensorimotor input. How can a robot understand the concept of a strawberry if all it can perceive of it is its shape and color and maybe the sound that it makes as it gets squished? How can you understand the "abstract" notion of strawberry without the incredibly sensible tactile feel, without the act of ripping off the stem, without the motor action of taking it to our mouths, without its texture and taste? When we as humans summon the strawberry thought, all of these concepts and ideas converge (distributed throughout the neurons in our minds) to form this abstract concept formed out of all of these many many correlations. A robot with no touch, no taste, no delicate articulate motions, no "serious" way to interact with and perceive its environment, no massive flow of information from which to chose and and reduce, will never attain human level intelligence. That's point 1. Point 2 is that mere pattern recogn
  •  
    All information *that gets processed* gets processed but now we arrived at a tautology. The whole problem is ultimately nobody knows what gets processed (not to mention how). In fact an absolute statement "all information" gets processed is very easy to dismiss because the characteristics of our sensors are such that a lot of information is filtered out already at the input level (e.g. eyes). I'm not saying it's not a valid and even interesting assumption, but it's still just an assumption and the next step is to explore scientifically where it leads you. And until you show its superiority experimentally it's as good as all other alternative assumptions you can make. I only wanted to point out is that "more processing" is not exactly compatible with some of the fundamental assumptions of the embodiment. I recommend Wilson, 2002 as a crash course.
  •  
    These deal with different things in human intelligence. One is the depth of the intelligence (how much of the bigger picture can you see, how abstract can you form concept and ideas), another is the breadth of the intelligence (how well can you actually generalize, how encompassing those concepts are and what is the level of detail in which you perceive all the information you have) and another is the relevance of the information (this is where the embodiment comes in. What you do is to a purpose, tied into the environment and ultimately linked to survival). As far as I see it, these form the pillars of human intelligence, and of the intelligence of biological beings. They are quite contradictory to each other mainly due to physical constraints (such as for example energy usage, and training time). "More processing" is not exactly compatible with some aspects of embodiment, but it is important for human level intelligence. Embodiment is necessary for establishing an environmental context of actions, a constraint space if you will, failure of human minds (i.e. schizophrenia) is ultimately a failure of perceived embodiment. What we do know is that we perform a lot of compression and a lot of integration on a lot of data in an environmental coupling. Imo, take any of these parts out, and you cannot attain human+ intelligence. Vary the quantities and you'll obtain different manifestations of intelligence, from cockroach to cat to google to random quake bot. Increase them all beyond human levels and you're on your way towards the singularity.
Isabelle DB

Evidence for a Collective Intelligence Factor in the Performance of Human Groups - 2 views

  •  
    What do you think of this one ?
  • ...2 more comments...
  •  
    Great! Women perhaps are not more intelligent as individuals, but now at least they have more collective intelligence... Interesting research topic, though, but I doubt that any of these results can be generalized to real live situations.
  •  
    Maybe by passing the message to ensure some men understand it would be their interest to have (more) women in their teams ? No problem at the ACT, this maybe why it works so well ? :-))
  •  
    Well, that's perhaps the reason, why meetings were always so f... boring while I was at ACT :D
  •  
    Lots more resources on collective intelligence: http://cci.mit.edu/
LeopoldS

JSTOR: The American Naturalist, Vol. 183, No. 3 (March 2014), pp. 376-383 - 2 views

shared by LeopoldS on 09 Mar 14 - No Cached
pandomilla liked it
  •  
    plant intelligence in action (even plants are more intelligent than our AI algorithm)
Thijs Versloot

Computer as smart as a 4-year-old? Researchers IQ test new artificial intelligence system - 0 views

  •  
    Artificial and natural knowledge researchers at the University of Illinois at Chicago have IQ-tested one of the best available artificial intelligence systems to see how intelligent it really is. Turns out it's about as smart as the average 4-year-old, they will report July 17 at the U.S. Artificial Intelligence Conference in Bellevue, Wash.
Dario Izzo

Miguel Nicolelis Says the Brain Is Not Computable, Bashes Kurzweil's Singularity | MIT ... - 9 views

  •  
    As I said ten years ago and psychoanalysts 100 years ago. Luis I am so sorry :) Also ... now that the commission funded the project blue brain is a rather big hit Btw Nicolelis is a rather credited neuro-scientist
  • ...14 more comments...
  •  
    nice article; Luzi would agree as well I assume; one aspect not clear to me is the causal relationship it seems to imply between consciousness and randomness ... anybody?
  •  
    This is the same thing Penrose has been saying for ages (and yes, I read the book). IF the human brain proves to be the only conceivable system capable of consciousness/intelligence AND IF we'll forever be limited to the Turing machine type of computation (which is what the "Not Computable" in the article refers to) AND IF the brain indeed is not computable, THEN AI people might need to worry... Because I seriously doubt the first condition will prove to be true, same with the second one, and because I don't really care about the third (brains is not my thing).. I'm not worried.
  •  
    In any case, all AI research is going in the wrong direction: the mainstream is not on how to go beyond Turing machines, rather how to program them well enough ...... and thats not bringing anywhere near the singularity
  •  
    It has not been shown that intelligence is not computable (only some people saying the human brain isn't, which is something different), so I wouldn't go so far as saying the mainstream is going in the wrong direction. But even if that indeed was the case, would it be a problem? If so, well, then someone should quickly go and tell all the people trading in financial markets that they should stop using computers... after all, they're dealing with uncomputable undecidable problems. :) (and research on how to go beyond Turing computation does exist, but how much would you want to devote your research to a non existent machine?)
  •  
    [warning: troll] If you are happy with developing algorithms that serve the financial market ... good for you :) After all they have been proved to be useful for humankind beyond any reasonable doubt.
  •  
    Two comments from me: 1) an apparently credible scientist takes Kurzweil seriously enough to engage with him in polemics... oops 2) what worries me most, I didn't get the retail store pun at the end of article...
  •  
    True, but after Google hired Kurzweil he is de facto being taken seriously ... so I guess Nicolelis reacted to this.
  •  
    Crazy scientist in residence... interesting marketing move, I suppose.
  •  
    Unfortunately, I can't upload my two kids to the cloud to make them sleep, that's why I comment only now :-). But, of course, I MUST add my comment to this discussion. I don't really get what Nicolelis point is, the article is just too short and at a too popular level. But please realize that the question is not just "computable" vs. "non-computable". A system may be computable (we have a collection of rules called "theory" that we can put on a computer and run in a finite time) and still it need not be predictable. Since the lack of predictability pretty obviously applies to the human brain (as it does to any sufficiently complex and nonlinear system) the question whether it is computable or not becomes rather academic. Markram and his fellows may come up with a incredible simulation program of the human brain, this will be rather useless since they cannot solve the initial value problem and even if they could they will be lost in randomness after a short simulation time due to horrible non-linearities... Btw: this is not my idea, it was pointed out by Bohr more than 100 years ago...
  •  
    I guess chaos is what you are referring to. Stuff like the Lorentz attractor. In which case I would say that the point is not to predict one particular brain (in which case you would be right): any initial conditions would be fine as far as any brain gets started :) that is the goal :)
  •  
    Kurzweil talks about downloading your brain to a computer, so he has a specific brain in mind; Markram talks about identifying neural basis of mental diseases, so he has at least pretty specific situations in mind. Chaos is not the only problem, even a perfectly linear brain (which is not a biological brain) is not predictable, since one cannot determine a complete set of initial conditions of a working (viz. living) brain (after having determined about 10% the brain is dead and the data useless). But the situation is even worse: from all we know a brain will only work with a suitable interaction with its environment. So these boundary conditions one has to determine as well. This is already twice impossible. But the situation is worse again: from all we know, the way the brain interacts with its environment at a neural level depends on his history (how this brain learned). So your boundary conditions (that are impossible to determine) depend on your initial conditions (that are impossible to determine). Thus the situation is rather impossible squared than twice impossible. I'm sure Markram will simulate something, but this will rather be the famous Boltzmann brain than a biological one. Boltzman brains work with any initial conditions and any boundary conditions... and are pretty dead!
  •  
    Say one has an accurate model of a brain. It may be the case that the initial and boundary conditions do not matter that much in order for the brain to function an exhibit macro-characteristics useful to make science. Again, if it is not one particular brain you are targeting, but the 'brain' as a general entity this would make sense if one has an accurate model (also to identify the neural basis of mental diseases). But in my opinion, the construction of such a model of the brain is impossible using a reductionist approach (that is taking the naive approach of putting together some artificial neurons and connecting them in a huge net). That is why both Kurzweil and Markram are doomed to fail.
  •  
    I think that in principle some kind of artificial brain should be feasible. But making a brain by just throwing together a myriad of neurons is probably as promising as throwing together some copper pipes and a heap of silica and expecting it to make calculations for you. Like in the biological system, I suspect, an artificial brain would have to grow from a small tiny functional unit by adding neurons and complexity slowly and in a way that in a stable way increases the "usefulness"/fitness. Apparently our brain's usefulness has to do with interpreting inputs of our sensors to the world and steering the body making sure that those sensors, the brain and the rest of the body are still alive 10 seconds from now (thereby changing the world -> sensor inputs -> ...). So the artificial brain might need sensors and a body to affect the "world" creating a much larger feedback loop than the brain itself. One might argue that the complexity of the sensor inputs is the reason why the brain needs to be so complex in the first place. I never quite see from these "artificial brain" proposals in how far they are trying to simulate the whole system and not just the brain. Anyone? Or are they trying to simulate the human brain after it has been removed from the body? That might be somewhat easier I guess...
  •  
    Johannes: "I never quite see from these "artificial brain" proposals in how far they are trying to simulate the whole system and not just the brain." In Artificial Life the whole environment+bodies&brains is simulated. You have also the whole embodied cognition movement that basically advocates for just that: no true intelligence until you model the system in its entirety. And from that you then have people building robotic bodies, and getting their "brains" to learn from scratch how to control them, and through the bodies, the environment. Right now, this is obviously closer to the complexity of insect brains, than human ones. (my take on this is: yes, go ahead and build robots, if the intelligence you want to get in the end is to be displayed in interactions with the real physical world...) It's easy to dismiss Markram's Blue Brain for all their clever marketing pronouncements that they're building a human-level consciousness on a computer, but from what I read of the project, they seem to be developing a platfrom onto which any scientist can plug in their model of a detail of a detail of .... of the human brain, and get it to run together with everyone else's models of other tiny parts of the brain. This is not the same as getting the artificial brain to interact with the real world, but it's a big step in enabling scientists to study their own models on more realistic settings, in which the models' outputs get to effect many other systems, and throuh them feed back into its future inputs. So Blue Brain's biggest contribution might be in making model evaluation in neuroscience less wrong, and that doesn't seem like a bad thing. At some point the reductionist approach needs to start moving in the other direction.
  •  
    @ Dario: absolutely agree, the reductionist approach is the main mistake. My point: if you take the reductionsit approach, then you will face the initial and boundary value problem. If one tries a non-reductionist approach, this problem may be much weaker. But off the record: there exists a non-reductionist theory of the brain, it's called psychology... @ Johannes: also agree, the only way the reductionist approach could eventually be successful is to actually grow the brain. Start with essentially one neuron and grow the whole complexity. But if you want to do this, bring up a kid! A brain without body might be easier? Why do you expect that a brain detached from its complete input/output system actually still works. I'm pretty sure it does not!
  •  
    @Luzi: That was exactly my point :-)
zoervleis

One Hundred Year Study on Artificial Intelligence (AI100) | - 1 views

shared by zoervleis on 06 Sep 16 - No Cached
  •  
    "The One Hundred Year Study on Artificial Intelligence, launched in the fall of 2014, is a long-term investigation of the field of Artificial Intelligence (AI) and its influences on people, their communities, and society." (...) "The report is designed to address four intended audiences. For the general public, it aims to provide an accessible, scientifically and technologically accurate portrayal of the current state of AI and its potential. For industry, the report describes relevant technologies and legal and ethical challenges, and may help guide resource allocation. The report is also directed to local, national, and international governments to help them better plan for AI in governance. Finally, the report can help AI researchers, as well as their institutions and funders, to set priorities and consider the ethical and legal issues raised by AI research and its applications."
johannessimon81

Weather patterns on Exoplanet detected - 1 views

  •  
    so it took us 70% of the time Earth is in the habitable zone to develop, would this be normal or could it be much faster? In other words, would all forms of life that started on a planet that originated at a 'similar' point in time like us, be equally far developed?
  •  
    That is actually quite tricky to estimate rly. If for no other reason than the fact that all of the mass extinctions we had over the Earth's history basically reset the evolutionary clock. Assuming 2 Earths identical in every way but one did not have the dinosaur wipe-out impact, that would've given non-impact Earth 60million years to evolve a potential dinosaur intelligent super race.
  •  
    The opposite might be true - or might not be ;-). Since usually the rate of evolution increases after major extinction events the chance is higher to produce 'intelligent' organisms if these events happen quite frequently. Usually the time of rapid evolution is only a few million years - so Earth is going quite slow. Certainly extinction events don't reset the evolutionary clock - if they would never have happened Earth gene pool would probably be quite primitive. By the way: dinosaurs were a quite diverse group and large dinosaurs might well have had cognitive abilities that come close to whales or primates - the difference to us might be that we have hands to manipulate our environment and vocal cords to communicate in very diverse ways. Modern dinosaur (descendents), i.e. birds, contain some very intelligent species - especially with respect to their body size and weight.
Juxi Leitner

TED Talk: The roots of plant intelligence [video] - Holy Kaw! - 3 views

  •  
    even being so used to italians that accent is hilarious
  • ...1 more comment...
  •  
    this video is fantastic!! reminds me a lot of a discussion we had in the team some years ago on the communication of fungus ....
  •  
    how comes that they did not apply to our Ariadna?
  •  
    maybe we should have a second look at multiple roots as networks
Eduardo Martin Moraud

Forecasting Brain Science and its impact on technology - 3 views

  •  
    For those sceptics about the use of neuroscience: A 20min talk (by a computer scientist!) about brain science and its use to build intelligent technology
  •  
    so what does he sell? 22' without saying anything? Just "intelligence is prediction" - great but what are you gonna do mate?
  •  
    I do not think his intention is to sell anything... Just to make people (from a non neuroscience background) aware that brain science will have an impact on technology. Also: I am a firm believer in that "prediction"defines intelligence, as he states, and that making machines that behave in such a way is the way to go :) (the talk is from 2003 btw :p)
ESA ACT

Web of Fate | Share your future - 0 views

  •  
    A social experiment that harnesses the collective intelligence of the web to visualize and uncover hidden relationships among future events.
evo ata

Future Human Evolution - 1 views

  •  
    Scientific and speculative articles about the future of human evolution regarding to artificial intelligence, genetic engineering, transhumanism, nanotechnology, space colonization, time travel, life extension and human enhancement
Juxi Leitner

StarCraft AI Competition | Expressive Intelligence Studio - 4 views

  •  
    The Expressive Intelligence Studio at UC Santa Cruz will be hosting a StarCraft competition: This competition enables academic researchers to evaluate their AI systems in a robust commercial RTS environment. The final matches will be held live with commentary. Exhibition matches will also be held between skilled human players and the top performing bots.
Thijs Versloot

Artificially-intelligent Robot Scientist 'Eve' could boost search for new drugs - 4 views

  •  
    Eve, an artificially-intelligent 'robot scientist' could make drug discovery faster and much cheaper, say researchers writing in the Royal Society journal Interface. The team has demonstrated the success of the approach as Eve discovered that a compound shown to have anti-cancer properties might also be used in the fight against malaria.
  •  
    Unfortunately, "make drug discovery faster and much cheaper" actually means "increase profit margin for pharmaceutical companies"...
Daniel Hennes

Google Just Open Sourced the Artificial Intelligence Engine at the Heart of Its Online ... - 2 views

  •  
    TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
  •  
    And the interface even looks a bit less retarded than theano
Juxi Leitner

U.S. Spies See Superhumans, Instant Cities by 2030 | Danger Room | Wired.com - 1 views

  •  
    how the us intelligence community forecasts tech development into 2030
jcunha

Accelerated search for materials with targeted properties by adaptive design - 0 views

  •  
    There has been much recent interest in accelerating materials discovery. High-throughput calculations and combinatorial experiments have been the approaches of choice to narrow the search space. The emphasis has largely been on feature or descriptor selection or the use of regression tools, such as least squares, to predict properties. The regression studies have been hampered by small data sets, large model or prediction uncertainties and extrapolation to a vast unexplored chemical space with little or no experimental feedback to validate the predictions. Thus, they are prone to be suboptimal. Here an adaptive design approach is used that provides a robust, guided basis for the selection of the next material for experimental measurements by using uncertainties and maximizing the 'expected improvement' from the best-so-far material in an iterative loop with feedback from experiments. It balances the goal of searching materials likely to have the best property (exploitation) with the need to explore parts of the search space with fewer sampling points and greater uncertainty.
jcunha

The world's first demonstration of spintronics-based artificial intelligence - 2 views

  •  
    Researchers at Tohoku University have, for the first time, successfully demonstrated the basic operation of spintronics-based artificial neural network.
LeopoldS

Peter Higgs: I wouldn't be productive enough for today's academic system | Science | Th... - 1 views

  •  
    what an interesting personality ... very symathetic Peter Higgs, the British physicist who gave his name to the Higgs boson, believes no university would employ him in today's academic system because he would not be considered "productive" enough.

    The emeritus professor at Edinburgh University, who says he has never sent an email, browsed the internet or even made a mobile phone call, published fewer than 10 papers after his groundbreaking work, which identified the mechanism by which subatomic material acquires mass, was published in 1964.

    He doubts a similar breakthrough could be achieved in today's academic culture, because of the expectations on academics to collaborate and keep churning out papers. He said: "It's difficult to imagine how I would ever have enough peace and quiet in the present sort of climate to do what I did in 1964."

    Speaking to the Guardian en route to Stockholm to receive the 2013 Nobel prize for science, Higgs, 84, said he would almost certainly have been sacked had he not been nominated for the Nobel in 1980.

    Edinburgh University's authorities then took the view, he later learned, that he "might get a Nobel prize - and if he doesn't we can always get rid of him".

    Higgs said he became "an embarrassment to the department when they did research assessment exercises". A message would go around the department saying: "Please give a list of your recent publications." Higgs said: "I would send back a statement: 'None.' "

    By the time he retired in 1996, he was uncomfortable with the new academic culture. "After I retired it was quite a long time before I went back to my department. I thought I was well out of it. It wasn't my way of doing things any more. Today I wouldn't get an academic job. It's as simple as that. I don't think I would be regarded as productive enough."

    Higgs revealed that his career had also been jeopardised by his disagreements in the 1960s and 7
  •  
  •  
    interesting one - Luzi will like it :-)
Tom Gheysens

'Spooky action' builds a wormhole between 'entangled' quantum particles - 2 views

  •  
    anna, this is your shit ;) ...and they mentione albert einstein so it has to be an intelligent and good finding :)
  • ...2 more comments...
  •  
    Somewhat longer explanation.. I am still completely ignorant on this level.. http://news.sciencemag.org/physics/2013/12/link-between-wormholes-and-quantum-entanglement
  •  
    Yeah I've actually been reading up on this - its linked to a previous post by Thijs on experiments NASA are carrying out with quantum teleportation.
  •  
    and?
  •  
    and?
1 - 20 of 115 Next › Last »
Showing 20 items per page