Skip to main content

Home/ About The Indian Ocean/ Group items tagged fluorescence

Rss Feed Group items tagged

Jérôme OLLIER

Fluorescence Characteristics of Chromophoric Dissolved Organic Matter in the Eastern In... - 0 views

  •  
    Comprising one of the major carbon pools on Earth, marine dissolved organic matter (DOM) plays an essential role in global carbon dynamics. The objective of this study was to better characterize DOM in the eastern Indian Ocean. To better understand the underlying mechanisms, seawater samples were collected in October and November of 2020 from sampling stations in three subregions: the mouth of the Bay of Bengal, Southern Sri Lanka, and Western Sumatra. We calculated and evaluated different hydrological parameters and organic carbon concentrations. In addition, we used excitation emission matrix (EEM) spectroscopy combined with parallel factor analysis (PARAFAC) to analyze the natural water samples directly. Parameters associated with chromophoric DOM did not behave conservatively in the study areas as a result of biogeochemical processes. We further evaluated the sources and processing of DOM in the eastern Indian Ocean by determining four fluorescence indices (the fluorescence index, the biological index, the humification index, and the freshness index β/α). Based on EEM-PARAFAC, we identified six components (five fluorophores) using the peak picking technique. Commonly occurring fluorophores were present within the sample set: peak A (humic-like), peak B (protein-like), peak C (humic-like), and peak T (tryptophan-like). The fluorescence intensity levels of the protein-like components (peaks B and T) were highest in the surface ocean and decreased with depth. In contrast, the ratio of the two humic-like components (peaks A and C) remained in a relatively narrow range in the bathypelagic layer compared to the surface layer, which indicates a relatively constant composition of humic-like fluorophores in the deep layer.
Jérôme OLLIER

Tiny crabs glow to stay hidden - KAUST Discovery - 0 views

  •  
    Symbiotic crabs use fluorescence to camouflage themselves in coral reefs.
Jérôme OLLIER

Via @Biomarine_fr @squamiferum - Endosymbiont population genomics sheds light on transm... - 0 views

  •  
    The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host's cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.
1 - 3 of 3
Showing 20 items per page