Skip to main content

Home/ About The Indian Ocean/ Group items tagged Maharashtra

Rss Feed Group items tagged

Jérôme OLLIER

Distribution Pattern of the Benthic Meiofaunal Community Along the Depth Gradient of th... - 0 views

  •  
    The continental margin harbors a variety of habitats that support incredible biodiversity and the function of their oceans' ecosystems. The meiofauna is considered a significant component of the benthic faunal community from the polar to the tropical regions. The meiofaunal community in the deep Indian Ocean, especially along the depth gradient, is poorly investigated. The present study aims to explore the benthic meiofaunal community structure along the depth gradients and its associated environment in the western Indian continental margin (WICM) and abyssal plain in the eastern Arabian Sea. Sediment samples were collected from seven different depths (111-3,918 m) along the WICM including the oxygen minimum zone (OMZ) and abyssal plain. A total of 22 taxa (groups) were encountered along the WICM. The nematodes (85%) were the most dominant taxa in all the depths, followed by copepods (11%), nauplii (5%), and polychaetes (1.36%). Our results suggest that (a) the organic matter has accumulated in OMZ sites; (b) a high amount of total organic carbon did not influence the meiofaunal density or biomass; (c) oxygen and depth gradients were significant drivers of the meiofaunal community, low levels of oxygen contributed to lower taxa diversity and density at 485 and 724 m depths; (d) a significant relationship of meiofaunal density and biomass with chloroplastic pigment equivalent (CPE) values indicates pelagic-benthic coupling. Copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans were affected by the low-oxygen conditions at the OMZ sites. Enhanced meiofaunal diversity, density, and biomass at deeper sites (non-OMZ-D) was attributed to increased abundance of copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans and were mostly concentrated on the surface sediment (0-4 cm) triggered by enhanced bottom-water oxygen and freshness of available food outside the OMZ except 3,918 m. Therefore, the present study showed the meiofaunal community
Jérôme OLLIER

Marine Macrobenthos of NorthWest India-Reviewing the Known and Unknown - @FrontMarineSci - 0 views

  •  
    Tropical ecosystems sustain higher biodiversity and face faster species extinction. However, baseline information of these areas is either inadequate or scattered due to various reasons. The 2,360 km long coast of North West India (NWI), is a heavily industrialized and urbanized zone. This coast with unique biogeographical and climatic features with two notified marine protected areas also supports rich biodiversity. This review was motivated by a need to construct a synoptic view on marine benthic ecology and functioning by consolidating available information of macrobenthos. Two thousand seventy-eight macrobenthic taxa belonging to 14 phyla were compiled from 147 references and were composed mostly by Polychaeta (n = 617), Gastropoda (n = 602), and Bivalvia (n = 216). Habitat wise, intertidal and subtidal zones were more intensely studied and contributed most to the diversity records. Sediment texture and salinity were the major drivers of macrobenthic community structure in the subtidal areas and estuaries, respectively. In the intertidal zones, zonation patterns related to the tidal levels and time of exposure were distinct with the high water zones being sparsely populated and lower intertidal zones sustaining higher species and functional diversities. All zones of NWI coast were distinctly impacted to various extent by anthropogenic activities affecting the resident macrobenthos. Decline in species richness and species substitution due to pollution were reported in urbanized zones. Non-monsoonal months favored a more conducive environment for the macrobenthic diversity and functionality. Hypoxia tolerant polychaete species mainly belonging to Spionidae and Cossuridae dominated during the low oxygen conditions of upwelling and OMZ zones of NWI. Inadequate identification and inconsistency of sampling methods were major deterrents for concluding trends of distributions. Suggestions for future macrobenthic research include focusing on lesser studied groups and are
Jérôme OLLIER

Via @Seasaver - This Cemetery is Dedicated to Marine Life That Has Been Killed by Plast... - 0 views

  •  
    This Cemetery is Dedicated to Marine Life That Has Been Killed by Plastic.
Jérôme OLLIER

Via @IAMSPOnlien - Indian Navy bans smartphones, social media on bases, ships - @Outloo... - 0 views

  •  
    Indian Navy bans smartphones, social media on bases, ships.
Jérôme OLLIER

#coronavirus - Aerosol Induced Changes in Sea Surface Temperature Over the Bay of Benga... - 0 views

  •  
    The role of COVID-19 pandemic lockdown in improving air quality was reported extensively for land regions globally. However, limited studies have explored these over oceanic areas close to high anthropogenic activities and emissions. The Bay of Bengal (BoB) basin is one such region adjacent to the highly populated South Asian region. We find that Aerosol Optical Depth (AOD) over the BoB declined by as much as 0.1 or 30% during the peak lockdown of April 2020 compared to long-term climatology during 2003-2019. Simultaneously, the sea surface temperature (SST) rose by 0.5-1.5°C over the central and north-western parts of the BoB with an average increase of 0.83°C. We show that up to 30% of this observed warming is attributable to reduced atmospheric aerosols. The study highlights the importance of anthropogenic emissions reduction due to COVID lockdown on short-term changes to SST over ocean basins with implications to regional weather.
‹ Previous 21 - 36 of 36
Showing 20 items per page