Skip to main content

Home/ Dr. Goodyear/ Group items tagged bactericidal

Rss Feed Group items tagged

Nathan Goodyear

Vitamin C Can Kill Multidrug-Resistant TB in the Lab - 0 views

  •  
    Vitamin C shown to be bactericidal to multi-drug resistant TB in vitro.  Whether in vivo studies duplicate this or not remains to be seen, but I would anticipate it will.
Nathan Goodyear

Bactericidal activities of plant essential oils an... [J Food Prot. 2002] - PubMed result - 0 views

  •  
    essential oils have broad spectrum activity against pathogenic bacteria
Nathan Goodyear

http://www.trjfas.org/pdf/issue_12_01/0121.pdf - 0 views

  •  
    Non-medical study finds that probiotics can be used to eliminate pathogenic bacteria.  These probiotics release bactericidal and/or bacteriostatic chemicals that can eradicate/control pathogenic and opportunistic bacteria in aquaculture.  This same logic should be applied to the Gut as well.
Nathan Goodyear

JCI - Inflammatory links between obesity and metabolic disease - 0 views

  • metainflammation
  • The chronic nature of obesity produces a tonic low-grade activation of the innate immune system that affects steady-state measures of metabolic homeostasis over time
  • It is clear that inflammation participates in the link between obesity and disease
  • ...25 more annotations...
  • Multiple inflammatory inputs contribute to metabolic dysfunction, including increases in circulating cytokines (10), decreases in protective factors (e.g., adiponectin; ref. 11), and communication between inflammatory and metabolic cells
  • adipose tissue macrophage (ATM)
  • well-known regulators of lipid metabolism and mitochondrial activity
  • increasing adiposity results in a shift in the inflammatory profile of ATMs as a whole from an M2 state to one in which classical M1 proinflammatory signals predominate (21–23).
  • The M2 activation state is intrinsically linked to the activity of PPARδ and PPARγ
  • Physiologic enhancement of the M2 pathways (e.g., eosinophil recruitment in parasitic infection) also appears to be capable of reducing metainflammation and improving insulin sensitivity (27).
  • Independent of obesity, hypothalamic inflammation can impair insulin release from β cells, impair peripheral insulin action, and potentiate hypertension (63–65).
  • inflammation in pancreatic islets can reduce insulin secretion and trigger β cell apoptosis leading to decreased islet mass, critical events in the progression to diabetes (33, 34)
  • Since an estimated excess of 20–30 million macrophages accumulate with each kilogram of excess fat in humans, one could argue that increased adipose tissue mass is de facto a state of increased inflammatory mass
  • JNK, TLR4, ER stress)
  • NAFLD is associated with an increase in M1/Th1 cytokines and quantitative increases in immune cells
  • Lipid infusion and a high-fat diet (HFD) activate hypothalamic inflammatory signaling pathways, resulting in increased food intake and nutrient storage (57)
  • DIO, metabolites such as diacylglycerols and ceramides accumulate in the hypothalamus and induce leptin and insulin resistance in the CNS (58, 59)
  • saturated FAs, which activate neuronal JNK and NF-κB signaling pathways with direct effects on leptin and insulin signaling (60)
  • Upon stimulation by LPS and IFN-γ, macrophages assume a classical proinflammatory activation state (M1) that generates bactericidal or Th1 responses typically associated with obesity
  • Maternal obesity is associated with endotoxemia and ATM accumulation that may affect the developing fetus (73)
  • Placental inflammation is a characteristic of maternal obesity
  • a risk factor for obesity in offspring, and involves inflammatory macrophage infiltration that can alter the maternal-fetal circulation (74
  • Of these PRRs, TLR4 has received the most attention, as this receptor can be activated by free FAs to generate proinflammatory signals and activate NF-κB
  • Nod-like receptor (NLR) family of PRRs
  • ceramides and sphingolipids
  • The adipokine adiponectin has long been recognized to have positive benefits on multiple cell types to promote insulin sensitivity and deactivate proinflammatory pathways.
  • adiponectin stimulates ceramidase activity and modulates the balance between ceramides and sphingosine-1-phosphate
  • Inhibition of ceramide production blocks the ability of saturated FAs to induce insulin resistance (101)
  • NF-κB, obesity also activates JNK in insulin-responsive tissues
  •  
    must read to see our current knowledge on the link between inflammation and obesity.
Nathan Goodyear

Intravenous Ascorbate as a Tumor Cytotoxic Chemotherapeutic Agent - 0 views

  • There is a 10 — 100-fold greater content of catalase in normal cells than in tumor cells
  • induce hydrogen peroxide generation
  • Ascorbic acid and its salts (AA) are preferentially toxic to tumor cells in vitro (6 — 13) and in vivo
  • ...36 more annotations...
  • related to intracellular hydrogen peroxide generation
  • only be obtained by intravenous administration of AA
  • Preferentially kills neoplastic cells
  • Is virtually non-toxic at any dosage
  • Does not suppress the immune system, unlike most chemotherapy agents
  • Increases animal and human resistance to infectious agents by enhancing lymphocyte blastogenesis, enhancing cellular immunity, strengthening the extracellular matrix, and enhancing bactericidal activity of neutrophils and modulation of complement protein
  • Strengthens the structural integrity of the extracellular matrix which is responsible for stromal resistance to malignant invasiveness
  • 1969, researchers at the NCI reported AA was highly toxic to Ehrlich ascites cells in vitro
  • In 1977, Bram et al reported preferential AA toxicity for several malignant melanoma cell lines, including four human-derived lines
  • Noto et al reported that AA plus vitamin K3 had growth inhibiting action against three human tumor cell lines at non-toxic levels
  • Metabolites of AA have also shown antitumor activity in vitro
  • The AA begins to reduce cell proliferation in the tumor cell line at the lowest concentration, 1.76 mg/dl, and is completely cytotoxic to the cells at 7.04 mg/dl
  • the normal cells grew at an enhanced rate at the low dosages (1.76 and 3.52 mg/dl)
  • preferential toxicity of AA for tumor cells. >95% toxicity to human endometrial adenocarcinoma and pancreatic tumor cells (ATCC AN3-CA and MIA PaCa-2) occurred at 20 and 30 mg/dl, respectively.
  • No toxicity or inhibition was demonstrated in the normal, human skin fibroblasts (ATCC CCD 25SK) even at the highest concentration of 50 mg/dl.
  • the use of very high-dose intravenous AA for the treatment of cancer was proposed as early as 1971
  • Cameron and Pauling have published extensive suggestive evidence for prolonged life in terminal cancer patients orally supplemented (with and without initial intravenous AA therapy) with 10 g/day of AA
  • AA, plasma levels during infusion were not monitored,
  • the long-term, oral dosage used in those experiments (10 g/day), while substantial and capable of producing immunostimulatory and extracellular matrix modulation effects, was not high enough to achieve plasma concentrations that are generally cytotoxic to tumor cells in culture
  • This low cytotoxic level of AA is exceedingly rare
  • 5 — 40 mg/dl of AA is required in vitro to kill 100% of tumor cells within 3 days. The 100% kill levels of 30 mg/dl for the endometrial carcinoma cells and 40 mg/dl for the pancreatic carcinoma cells in Figure 2 are typical
  • normal range (95% range) of 0.39-1.13 mg/dl
  • 1 h after beginning his first 8-h infusion of 115 g AA (Merit Pharmaceuticals, Los Angeles, CA), the plasma AA was 3.7 mg/dl and at 5 h was 19 mg/dl. During his fourth 8-h infusion, 8 days later, the 1 h plasma level was 158 mg/dl and 5 h was 185 mg/dl
  • plasma levels of over 100 mg/dl have been maintained in 3 patients for more than 5 h using continuous intravenous infusion
  • In rare instances of patients with widely disseminated and rapidly proliferating tumors, intravenous AA administration (10 — 45 g/day) precipitated widespread tumor hemorrhage and necrosis, resulting in death
  • Although the outcomes were disastrous in these cases, they are similar to the description of tumor-necrosis-factor-induced hemorrhage and necrosis in mice (52) and seem to demonstrate the ability of AA to kill tumor cells in vivo.
  • toxic effects of AA on one normal cell line were observed at 58.36 mg/dl and the lack of side effects in patients maintaining >100 mg/dl plasma levels
  • Although it is very rare, tumor necrosis, hemorrhage, and subsequent death should be the highest priority concern for the safety of intravenous AA for cancer patients.
  • Klenner, who reported no ill effects of dosages as high as 150 g intravenously over a 24-h period
  • Cathcart (55) who describes no ill effects with doses of up to 200 g/d in patients with various pathological conditions
  • following circumstances: renal insufficiency, chronic hemodialysis patients, unusual forms of iron overload, and oxalate stone formers
  • Screening for red cell glucose-6-phosphate dehydrogenase deficiency, which can give rise to hemolysis of red blood cells under oxidative stress (57), should also be performed
  • any cancer therapy should be started at a low dosage to ensure that tumor hemorrhage does not occur.
  • patient is orally supplementing between infusions
  • a scorbutic rebound effect can be avoided with oral supplementation. Because of the possibility of a rebound effect, measurement of plasma levels during the periods between infusions should be performed to ensure that no such effect takes place
  • Every effort should be made to monitor plasma AA levels when a patient discontinues intravenous AA therapy.
  •  
    Older study, 1995, but shows the long-standing evidence that IVC preferentially is cytotoxic to cancer cells.`
1 - 8 of 8
Showing 20 items per page