Skip to main content

Home/ Dr. Goodyear/ Group items tagged drug resistance

Rss Feed Group items tagged

Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutr... - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Hyperthermia and Chemotherapy - Holland-Frei Cancer Medicine - NCBI Bookshelf - 0 views

  •  
    Brief review from book on severe hyperthermia and chemotherapy: The mechanisms that underlie the synergy may include (1) increased cellular uptake of drug, (2) increased oxygen radical production, and (3) increased DNA damage and inhibition of repair; potential use of HT with many drugs is its ability to reverse, at least partially, drug resistance
Nathan Goodyear

Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic... - 0 views

  • Recent reports indicate that a certain ROS concentration is required for high-dose vitamin C to induce cytotoxicity in cancer cells.
  • The generation of ascorbyl- and H2O2 radicals by PAA increases ROS stress in cancer cells
  • In this study, we report that PAA is efficacious in killing MM cells in vitro and in vivo models, which generated levels of 20–40 mM ascorbate and 500 nM ascorbyl radicals after intraperitoneal administration of 4 g ascorbate per kilogram of body weight (Chen et al., 2008Chen et al., 2008), in xenograft MM mice
  • ...33 more annotations...
  • These data suggest that PAA may show a therapeutic advantage to blood cancers vs solid tumors because of the communication between tumor cells and blood plasma
  • These results strongly suggest that the mechanism of PAA killing of MM cells is indeed iron-dependent
  • These results suggest that PAA administration in SMM may be able to prevent progression to symtomatic MM
  • A recent study by Yun and colleagues demonstrated that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH, but spares normal cells
  • RAS family genes show the most frequent mutations in MM. KRAS, NRAS and BRAF are mutated in 22%, 20% and 7% of MM samples
  • the disease stage rather than the mutation of RAS and/or BRAF is the major predictive factor for PAA sensitivity in MM treatment
  • Other molecular mechanisms including ATP depletion and ATM-AMPK signaling have been reported to explain PAA-induced cell death
  • our pilot study also suggested that PAA could overcome drug resistance to bortezomib in MM cells
  • Our findings complement reported studies and further address the mechanism of action using clinical samples in which we observed that PAA killed tumor cells with high iron content, suggesting that iron might be the initiator of PAA cytotoxicity
  • combination of PAA with standard therapeutic drugs, such as melphalan, may significantly reduce the dose of melphalan needed
  • Combined treatment of reduced dose melphalan with PAA achieved a significantly longer progression-free survival than the same dose of melphalan alone.
  • These data also suggest that the bone marrow suppression induced by high-dose melphalan can be ameliorated by the combination of PAA with lower dose of melphalan because of the lack of toxicity of PAA on normal cells with low iron content.
  • if creatinine clearance is <30 mL/min, high dose ascorbic acid should be not administrated.
  • In MM preclinical and clinical studies, ascorbate was used as an adjunct drug and showed controversial results (Harvey et al., 2009, Perrone et al., 2009, Held et al., 2013, Sharma et al., 2012, Nakano et al., 2011, Takahashi, 2010, Sharma et al., 2009, Qazilbash et al., 2008). However, none of these tests used pharmacological doses of ascorbate and intravenous administration
  • Multiple myeloma (MM) is a plasma cell neoplasm.
  • Cameron and Pauling reported that high doses of vitamin C increased survival of patients with cancer
  • pharmacologically dosed ascorbic acid (PAA) 50–100 g (Chen et al., 2008, Padayatty et al., 2004, Hoffer et al., 2008, Padayatty et al., 2006, Welsh et al., 2013), administered intravenously, has potent anti-cancer activity and its role as anti-cancer therapy is being studied at the University of Iowa and in other centers
  • In the presence of catalytic metal ions like iron, PAA administered intravenously exerts pro-oxidant effects leading to the formation of highly reactive oxygen species (ROS), resulting in cell death
  • the labile iron pool (LIP) is significantly elevated in MM cells
  • The survival of CD138+ cells in vitro was significantly decreased following PAA treatment in all 9 MM
  • In contrast, no significant change of cell viability was observed in CD138− BM cells from the same patients
  • The same effect of PAA was also observed in the SMM patients
  • no response to PAA was detected in CD138+ cells from the 2 MGUS patients
  • the combination of melphalan plus PAA showed greater tumor burden reduction than each drug alone, suggesting a synergistic activity between these two drugs
  • Both catalase and NAC protect cells from oxidative damage
  • cells pretreated with NAC and catalase became resistant to PAA even at high doses
  • adding deferoxamine (DFO), an iron chelator, to OCI-MY5 cells before PAA treatment was also sufficient to prevent PAA-induced cellular death
  • iron is essential for PAA to achieve its anti-cancer activity
  • PAA induced early necrosis (Fig. 3Fig. 3A, 60 min) followed by late apoptosis
  • results further indicated that PAA induced mitochondria-mediated apoptosis
  • PAA by reacting with LIP and generating ROS induces mitochondria-mediated apoptosis in which AIF1 cleavage is important for cell death.
  • ROS and H2O2 are well known factors mediating PAA-induced cancer cell death
  • PAA was sensitive to all 9 MMs and 2 SMMs
  •  
    animal study finds high-dose, pharmacologic vitamin C found to kill multiple myeloma cells via pro-oxidant effect found in similar studies in dealing with different cancers.
Nathan Goodyear

Oncotarget | Vitamin C and Doxycycline: A synthetic lethal combination therapy targetin... - 0 views

  • These eight distinct cancer types included: DCIS, breast (ER(+) and ER(-)), ovarian, prostate, lung, and pancreatic carcinomas, as well as melanoma and glioblastoma. Doxycycline was also effective in halting the propagation of primary cultures of CSCs from breast cancer patients, with advanced metastatic disease (isolated from ascites fluid and/or pleural effusions)
  • Doxycycline behaves as a strong radio-sensitizer, successfully overcoming radio-resistance in breast CSCs
  • cancer cells can indeed escape the effects of Doxycycline, by reverting to a purely glycolytic phenotype. Fortunately, the metabolic inflexibility conferred by this escape mechanism allows Doxycycline-resistant (DoxyR) CSCs to be more effectively targeted with many other metabolic inhibitors, including Vitamin C, which functionally blocks aerobic glycolysis
  • ...36 more annotations...
  • Vitamin C inhibits GAPDH (a glycolytic enzyme) and depletes the cellular pool of glutathione, resulting in high ROS production and oxidative stress
  • DoxyR CSCs are between 4- to 10-fold more susceptible to the effects of Vitamin C
  • Doxycycline and Vitamin C may represent a new synthetic lethal drug combination for eradicating CSCs, by ultimately targeting both mitochondrial and glycolytic metabolism
  • inhibiting their propagation in the range of 100 to 250 µM
  • metabolic flexibility in cancer cells allows them to escape therapeutic eradication, leading to chemo- and radio-resistance
  • used doxycycline to pharmacologically induce metabolic inflexibility in CSCs, by chronically inhibiting mitochondrial biogenesis
  • This treatment resulted in a purely glycolytic population of surviving cancer cells
  • DoxyR cells are mainly glycolytic
  • MCF7 cells survive and develop Doxycycline-resistance, by adopting a purely glycolytic phenotype
  • Cancer stem cells (CSCs) are thought to be the “root cause” of tumor recurrence, distant metastasis and therapy-resistance
  • the conserved evolutionary similarities between aerobic bacteria and mitochondria, certain classes of antibiotics inhibit mitochondrial protein translation, as an off-target side-effect
  • Vitamin C was more potent than 2-DG; it inhibited DoxyR CSC propagation by > 90% at 250 µM and 100% at 500 µM
  • IC-50
  • DoxyR CSCs are between 4- to 10-fold more sensitive to Vitamin C than control MCF7 CSCs
  • Berberine, which is a naturally occurring antibiotic that also behaves as an OXPHOS inhibitor
  • treatment with Berberine effectively inhibited the propagation of the DoxyR CSCs by > 50% at 1 µM and > 80% at 10 µM.
  • Doxycycline, a clinically approved antibiotic, induces metabolic stress in cancer cells. This allows the remaining cancer cells to be synchronized towards a purely glycolytic phenotype, driving a form of metabolic inflexibility
  • Doxycycline-driven aerobic glycolysis
  • new synthetic lethal strategy for eradicating CSCs, by employing i) Doxycycline (to target mitochondria) and ii) Vitamin C (to target glycolysis)
  • Doxycycline inhibits mitochondrial biogenesis and OXPHOS,
  • hibits glycolytic metabolism by targeting and inhibiting the enzyme GAPDH
  • CSCs act as the main promoter of tumor recurrence and patient relapse
  • a metabolic shift from oxidative to glycolytic metabolism represents an escape mechanism for breast cancer cells chronically-treated with a mitochondrial stressor like Doxycycline, as mitochondrial dys-function leads to a stronger dependence on glucose
  • Vitamin C has been demonstrated to selectively kill cancer cells in vitro and to inhibit tumor growth in experimental mouse models
  • many of these actions have been attributed to the ability of Vitamin C to act as a glycolysis inhibitor, by targeting GAPDH and depleting the NAD pool
  • here we show that DoxyR CSCs are more vulnerable to the inhibitory effects of Vitamin C, at 4- to 10-fold lower concentrations, between 100 to 250 μM
  • concurrent use of Vitamin C, with standard chemotherapy, reduces tumor recurrence and patient mortality
  • after oral administration, Vitamin C plasma levels reach concentrations of ~70-220 μM
  • intravenous administration results in 30- to 70- fold higher plasma concentrations of Vitamin C
  • pro-oxidant activity results from Vitamin C’s action on metal ions, which generates free radicals and hydrogen peroxide, and is associated with cell toxicity
  • it has been shown that high-dose Vitamin C is more cytotoxic to cancer cells than to normal cells
  • This selectivity appears to be due to the higher catalase content observed in normal cells (~10-100 fold greater), as compared to tumor cells. Hence, Vitamin C may be regarded as a safe agent that selectively targets cancer cells
  • the concurrent use of Doxycycline and Vitamin C, in the context of this infectious disease, appeared to be highly synergistic in patients
  • Goc et al., 2016, showed that Doxycycline is synergistic in vitro with certain phytochemicals and micronutrients, including Vitamin C, in the in vitro killing of the vegetative spirochete form of Borrelia spp., the causative agent underlying Lyme disease
  • Doxycycline, an FDA-approved antibiotic, behaves as an inhibitor of mitochondrial protein translation
  • CSCs successfully escape from the anti-mitochondrial effects of Doxycycline, by assuming a purely glycolytic phenotype. Therefore, DoxyR CSCs are then more susceptible to other metabolic perturbations, because of their metabolic inflexibility
  •  
    Not especially new, but IV vitamin C + daily doxycycline found to kill cancer stem cells.
Nathan Goodyear

Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cel... - 0 views

  •  
    Nrf2 inhibition decreased chemoresistance to artesunate in Patients with head and neck cancer resistant to cisplatin.
Nathan Goodyear

Reversal of multidrug resistance by the anti-malaria drug artesunate in the esophageal ... - 0 views

  •  
    artesunate to reverse multi-drug resistance.
Nathan Goodyear

The Pharmacokinetics and Interactions of Ivermectin in Humans-A Mini-review - 0 views

  • This drug is extensively metabolized by human liver microsomes by cytochrome P450
  • cytochrome P-4503A4, converting the drug to at least 10 metabolites
  • its elimination half-life is around a day
  • ...12 more annotations...
  • second rise in plasma levels (mostly occurring between 6 and 12 h after the dose) suggesting an enterohepatic recycling of the drug
  • Ivermectin is exceptionally potent, with effective dosages levels that are unusually low.
  • the optimal dose of ivermectin is 150 μg/kg, but the frequency of administration is still controversial, ranging from 150 μg/kg once to three times yearly.
  • high lipid solubility of ivermectin, this compound is widely distributed within the body.
  • To interrupt the transmission of onchocerciasis in humans, the combination of ivermectin and doxycycline is highly effective as, in infested patients, the ingestion of the anthelmintic (200 μg/kg, single dose) and the antibacterial (100 mg/kg, daily for 6 weeks)
  • ivermectin interactions with another concurrently administered drugs can occur.
  • This issue becames important, as combination chemotherapy is being used with increasing frequency as resistance to antiparasitic agents is becoming more widespread.
  • haematomatous swellings
  • prothrombin times were significantly above baseline by one week to one month after drug ingestion, suggesting an antagonist effect against vitamin K
  • bleeding disorders were not found in 15,000 patients treated with ivermectin (150 μg/kg)
  • prolonged prothrombin ratios were observed in 148 subjects given ivermectin orally. Although no patients suffered bleeding complications, factor II and VII levels were reduced in most of them, suggesting interference with vitamin K metabolism
  • Ivermectin has a minimal effect on coagulation and concern about mass treatment for this reason appears to be unjustified
  •  
    Review of Ivermectin as an anti-parasitic.
Nathan Goodyear

Vitamin C Can Kill Multidrug-Resistant TB in the Lab - 0 views

  •  
    Vitamin C shown to be bactericidal to multi-drug resistant TB in vitro.  Whether in vivo studies duplicate this or not remains to be seen, but I would anticipate it will.
Nathan Goodyear

Antiangiogenic Scheduling of Chemotherapy Improves Efficacy against Experimental Drug-r... - 0 views

  •  
    Though not called metronomic chemotherapy, that is exactly what this was, reduced angiogenesis in chemo resistant tumors in mouse model. In fact, the higher dose intensity chemotherapy was less effective
Nathan Goodyear

Potentiation of Melphalan Cytotoxicity in Human Ovarian Cancer Cell Lines by Glutathion... - 0 views

  •  
    glutathione levels inversely associated with drug resistance in the treatment of ovarian cancer.
wheelchairindia9

Tynor Hot and Cold Pack - 0 views

  •  
    Tynor Hot and Cold Pack is a convenient device to provide hot fomentation or cold compress. Hot fomentation of the injured or inflamed area enhances the threshold of pain and thus reduces the perception of pain. It has a synergistic effect along with pain relieving drugs. Raising temperature of the injured tissue also enhances the blood profusion and the healing process. Hot fomentation has a relaxing effect. Cold compress helps in reduction of inflammation in injuries, protects by slowing the metabolic rate around the tissue, reduce oedema and bleeding. Cold compress helps in immediately lowering fever, in very high fever conditions. It can be used after an acute injury or surgical procedure. No heat or cryo burns. Requires no holding. Reusable. Easy application. Appealing aesthetics. Tynor Hot and Cold Pack Features Multi functionality Reduce swelling and odema at the site of injury. Muscles spasm and pain. Headache and minor injuries. Versatile design Can be used as either cold or hot pack. Reusable in either hot & cold condition. Temperature range - Can be used from 0 Cº to 75Cº. Longer temperature retention time. Fabric cover ensures no cryo burns or hot skin burns. Physical features Non-toxic, and biodegradable. Gel remains soft and flexible upto 0 degree. Durable, and puncture resistant. Soft, "frost free" PVC cover. Flexible conforms to the body contours. Easy to clean and maintain. Excellent workmanship. Good aesthetics. Elastic belt Holds the pack against the body, No need to hold by hand. Enhances convenience. Tynor Hot and Cold Pack Measurements
fnfdoc

Tuberculosis Symptoms And Cure | Your Health Our Priority - 0 views

  •  
    Tuberculosis or simply TB is a spreadable disease caused by Mycobacterium tuberculosis. This organism has a hard, waxy cell wall that makes it highly resistant to unfavorable environments and drugs. It evades the mucus lining of the windpipe and enters the lungs.
  •  
    The goal of treating Tuberculosis is to protect the patient from possible disability and death. Another objective is to reduce the spread of Tuberculosis infection to others. TB may be a stubborn infection but with the right measures at the right time, it can be cured.
Nathan Goodyear

Ivermectin: enigmatic multifaceted 'wonder' drug continues to surprise and exceed expec... - 0 views

  • The avermectins are known to possess pronounced antitumor activity
  • Over the past few years, there have been steadily increasing reports that ivermectin may have varying uses as an anti-cancer agent, as it has been shown to exhibit both anti-cancer and anti-cancer stem cell properties
  • In human ovarian cancer and NF2 tumor cell lines, high-dose ivermectin inactivates protein kinase PAK1 and blocks PAK1-dependent growth
  • ...13 more annotations...
  • PAK1 is essential for the growth of more than 70% of all human cancers, including breast, prostate, pancreatic, colon, gastric, lung, cervical and thyroid cancers, as well as hepatoma, glioma, melanoma, multiple myeloma and for neurofibromatosis tumors
  • Ivermectin suppresses breast cancer by activating cytostatic autophagy, disrupting cellular signaling in the process, probably by reducing PAK1 expression
  • Cancer stem cells are a key factor in cancer cells developing resistance to chemotherapies and these results indicate that a combination of chemotherapy agents plus ivermectin could potentially target and kill cancer stem cells, a paramount goal in overcoming cancer
  • Triple-negative breast cancers, which lack estrogen, progesterone and HER2 receptors, account for 10–20% of breast cancers and are associated with poor prognosis
  • Ivermectin addition led to transcriptional modulation of genes associated with epithelial–mesenchymal transition and maintenance of a cancer stem cell phenotype in triple-negative breast cancers cells, resulting in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo
  • Ivermectin-induced cytostatic autophagy also leads to suppression of tumor growth in breast cancer xenografts, causing researchers to believe there is scope for using ivermectin to inhibit breast cancer cell proliferation and that the drug is a potential treatment for breast cancer
  • ivermectin synergizes with the chemotherapy agents cytarabine and daunorubicin to induce cell death in leukemia cells
  • Ivermectin inhibits proliferation and increases apoptosis of various human cancers
  • Activation of WNT-TCF signaling is implicated in multiple diseases, including cancers of the lungs and intestine,
  • A new screening system has found that ivermectin inhibits the expression of WNT-TCF targets
  • It represses the levels of C-terminal β-catenin phosphoforms and of cyclin D1 in an okadaic acid-sensitive manner, indicating its action involves protein phosphatases
  • In vivo, ivermectin selectively inhibits TCF-dependent, but not TCF-independent, xenograft growth without side effects
  • ivermectin has an exemplary safety record, it could swiftly become a useful tool as a WNT-TCF pathway response blocker to treat WNT-TCF-dependent diseases, encompassing multiple cancers.117
  •  
    Ivermectin shows promise and usefullness in several cancer types.  This is a review article.
Nathan Goodyear

Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells - 0 views

  • cancer stem cells may also contribute to tumor formation, metastasis, and treatment resistance
  • Studies have shown that some agents (such as metformin) can selectively target cancer stem cells and that dietary polyphenols, curcumin, peperine, and sulforaphane, which are derived from broccoli/broccoli sprouts, are able to target breast cancer stem cells via inhibition of the Wnt signaling, which affects mammosphere size and colony formation
  • niclosamide inhibits tumor growth and reduces tumor weight
  • ...8 more annotations...
  • Niclosamide treatment inhibited the expression of cyclin D1, Hes1, and PTCH by 33%, 57%, and 79%, respectively
  • The mechanism via which niclosamide, a protonophoric anthelmintic drug, induces stem-like-cell-specific toxicity in breast cancer is interesting. It is an old drug that has been used to treat tapeworms in animals
  • Niclosamide is known to uncouple mitochondrial oxidative phosphorylation during tapeworm killing
  • A screening of autophagy modulators revealed that niclosamide is a novel inhibitor of mTORC1 signaling
  • A recent work also demonstrated that niclosamide induces the apoptosis of myelogenous leukemic cells via the inactivation of NF-kappaB and reactive oxygen species generation
  • Niclosamide was also reported to inhibit Wnt signaling [31]–[33] in colon cancer cells
  • Our recent work demonstrated that niclosamide disrupts multiple metabolic pathways in ovarian-cancer-initiating cells
  • The present study showed that niclosamide treatment resulted in the downregulation of target genes involved in the self-renewal of cancer stem-like cells and inhibited breast SPS
  •  
    Old ant-parasitic, niclosamide, found to down-regulate cancer stem cell activity.
Nathan Goodyear

Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2... - 0 views

  • Chen et al. have revealed that ascorbate at pharmacologic concentrations (0.3–20 mM) achieved only by intravenously (i.v.) administration selectively kills a variety of cancer cell lines in vitro, but has little cytotoxic effect on normal cells.
  • Ascorbic acid (the reduced form of vitamin C) is specifically transported into cells by sodium-dependent vitamin C transporters (SVCTs)
  • SVCT-1 is predominantly expressed in epithelial tissues
  • ...41 more annotations...
  • whereas the expression of SVCT-2 is ubiquitous
  • differential sensitivity to VC may result from variations in VC flow into cells, which is dependent on SVCT-2 expression.
  • high-dose VC significantly impaired both the tumorspheres initiation (Fig. 4d, e) and the growth of established tumorspheres derived from HCC cells (Fig. 4f, g) in a time-dependent and dose-dependent manner.
  • Hepatocellular carcinoma (HCC)
  • The antioxidant, N-acetyl-L-cysteine (NAC), preventing VC-induced ROS production (a ROS scavenger), completely restored the viability and colony formation among VC-treated cells
  • DNA double-strand damage was found following VC treatment
  • DNA damage was prevented by NAC
  • Interestingly, the combination of VC and cisplatin was even more effective in reducing tumor growth and weight
  • Consistent with the in vitro results, stemness-related genes expressions in tumor xenograft were remarkably reduced after VC or VC+cisplatin treatment, whereas conventional cisplatin therapy alone led to the increase of CSCs
  • VC is one of the numerous common hepatoprotectants.
  • Interestingly, at extracellular concentrations greater than 1 mM, VC induces strong cytotoxicity to cancer cells including liver cancer cells
  • we hypothesized that intravenous VC might reduce the risk of recurrence in HCC patients after curative liver resection.
  • Intriguingly, the 5-year disease-free survival (DFS) for patients who received intravenous VC was 24%, as opposed to 15% for no intravenous VC-treated patients
  • Median DFS time for VC users was 25.2 vs. 18 months for VC non-users
  • intravenous VC use is linked to improved DFS in HCC patients.
  • In this study, based on the elevated expression of SVCT-2, which is responsible for VC uptake, in liver CSCs, we revealed that clinically achievable concentrations of VC preferentially eradicated liver CSCs in vitro and in vivo
    • Nathan Goodyear
       
      the authors here made similar mistakes to the Mayo authors i.e. under doses here in this study.  They dosed at only 2 grams IVC.  A woefully low dose of IVC.
  • Additionally, we found that intravenous VC reduced the risk of post-surgical HCC progression in a retrospective cohort study.
    • Nathan Goodyear
       
      positive results despite a low dose used.
    • Nathan Goodyear
       
      Their comfort zone was 1mM.  They should have targeted 20-40 mM.
  • Three hundred thirty-nine participants (55.3%) received 2 g intravenous VC for 4 or more days after initial hepatectomy
  • As the key protein responsible for VC uptake in the liver, SVCT-2 played crucial roles in regulating the sensitivity to ascorbate-induced cytotoxicity
  • we also observed that SVCT-2 was highly expressed in human HCC samples and preferentially elevated in liver CSCs
  • SVCT-2 might serve as a potential CSC marker and therapeutic target in HCC
  • CSCs play critical roles in regulating tumor initiation, relapse, and chemoresistance
  • we revealed that VC treatment dramatically reduced the self-renewal ability, expression levels of CSC-associated genes, and percentages of CSCs in HCC, indicating that CSCs were more susceptible to VC-induced cell death
  • as a drug for eradicating CSCs, VC may represent a promising strategy for treatment of HCC, alone or particularly in combination with chemotherapeutic drugs
  • In HCC, we found that VC-generated ROS caused genotoxic stress (DNA damage) and metabolic stress (ATP depletion), which further activated the cyclin-dependent kinase inhibitor p21, leading to G2/M phase cell cycle arrest and caspase-dependent apoptosis in HCC cells
  • we demonstrated a synergistic effect of VC and chemotherapeutic drug cisplatin on killing HCC both in vitro and in vivo
  • Intravenous VC has also been reported to reduce chemotherapy-associated toxicity of carboplatin and paclitaxel in patients,38 but the specific mechanism needs further investigation
    • Nathan Goodyear
       
      so, exclude the benefit to patients until the exact mechanism of action, which will never be fully elicited?!?!?
  • Our retrospective cohort study also showed that intravenous VC use (2 g) was related to the improved DFS in HCC patients after initial hepatectomy
    • Nathan Goodyear
       
      Terribly inadequate dose.  Target is 20-40 mM which other studies have found occur with 50-75 grams of IVC.
  • several clinical trials of high-dose intravenous VC have been conducted in patients with advanced cancer and have revealed improved quality of life and prolonged OS
  • high-dose VC was not toxic to immune cells and major immune cell subpopulations in vivo
  • high recurrence rate and heterogeneity
  • tumor progression, metastasis, and chemotherapy-resistance
  • SVCT-2 was highly expressed in HCC samples in comparison to peri-tumor tissues
  • high expression (grade 2+/3+) of SVCT-2 was in agreement with poorer overall survival (OS) of HCC patients (Fig. 1c) and more aggressive tumor behavior
  • SVCT-2 is enriched in liver CSCs
  • these data suggest that SVCT-2 is preferentially expressed in liver CSCs and is required for the maintenance of liver CSCs.
  • pharmacologic concentrations of plasma VC higher than 0.3 mM are achievable only from i.v. administration
  • The viabilities of HCC cells were dramatically decreased after exposure to VC in dose-dependent manner
  • VC and cisplatin combination further caused cell apoptosis in tumor xenograft
  • These results verify that VC inhibits tumor growth in HCC PDX models and SVCT-2 expression level is associated with VC response
  • qPCR and IHC analysis demonstrated that expression levels of CSC-associated genes and percentages of CSCs in PDXs dramatically declined after VC treatment, confirming the inhibitory role of VC in liver CSCs
  •  
    IV vitamin C in vitro and in vivo found to "preferentially" eradicate cancer stem cells.  In addition, IV vitamin C was found to be adjunctive to chemotherapy, found to be hepatoprotectant.  This study also looked at SVCT-2, which is the transport protein important in liver C uptake.
Nathan Goodyear

Quercetin Suppresses Drug-Resistant Spheres via the p38 MAPK-Hsp27 Apoptotic Pathway in... - 0 views

  •  
    Quercetin found to inhibit HSP27 expression
Nathan Goodyear

Epithelial‐to‐mesenchymal transition (EMT) to sarcoma in recurrent lung adeno... - 0 views

  • facilitates the dissemination of cancer cells to distant organs. In addition to facilitating metastasis, EMT is thought to generate cancer stem cells (CSCs), which are generally resistant to apoptosis and to standard chemotherapeutic drugs and radiotherapy
  • IL‐6, which enhances TGF‐β‐induced EMT changes in NSCLC
  • aside from TGF‐β and Snail, several other signalling pathways including Notch, Wnt, and integrin are known to activate EMT through transcriptional repression of E‐cadherin
  • ...4 more annotations...
  • increasing evidence that treatment with chemotherapy or chemoradiotherapy can induce EMT in NSCLC which in turn is thought to generate CSCs which are generally resistant to such treatments
  • cisplatin has been shown to increase the release of Interleukin‐6 (IL‐6) and expression of transforming growth factor beta (TGF‐β)
  • EMT confers an invasive phenotype and
  • IL‐6 serves to block apoptosis in cells
  •  
    Chemotherapy causes EMT.
1 - 20 of 46 Next › Last »
Showing 20 items per page