Skip to main content

Home/ OARS funding Engineering/ Group items matching "behavior" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

Science of Behavior Change: Revision Applications for Use-inspired Research to Optimize Adherence, Behavior Change Interventions, and Outcomes (R34) - 0 views

  •  
    Supported by the NIH Common Fund (Common Fund) Science of Behavior Change (SOBC) Program, this Funding Opportunity Announcement (FOA) solicits competitive revision (formerly known as a competitive supplement) applications to NIH-supported clinical trials awarded as research project R34 grants. The goal of the SOBC Program is to advance a mechanisms-focused, experimental medicine approach to Behavior change research. Funded projects in the SOBC Research Network (https://commonfund.nih.gov/Behaviorchange/fundedresearch) have developed experimental manipulations, assays, and/or measures (hereafter referred to as assays for brevity) to support an experimental medicine approach to Behavior change research. The SOBC Measures Repository is accessible from the SOBC Research Network Open Science Framework (OSF) page at https://osf.io/zp7b4. The goal of this FOA is to accelerate the adaptation, validation, and translation of SOBC Research Network assays for use in ongoing clinical trials. This FOA calls for the integration of SOBC Research Network assays into active NIH-supported clinical trials of drugs, devices, procedures, or Behavior modifications. As such, the active NIH-supported clinical trial used to respond to this FOA does not have to be a Behavior change trial or identify Behavior change as a primary outcome. The integration of SOBC Research Network assays into ongoing clinical trials will accelerate the development of interventions and experimental manipulations that have been shown to engage specific mechanisms of Behavior change and the development of assays that verify engagement of those Behavior change targets.
MiamiOH OARS

Smart and Connected Health | NSF - National Science Foundation - 0 views

  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

Graduate Research Fellowship Program in the Social and Behavioral Sciences - 0 views

  •  
    The NIJ Graduate Research Fellowship (GRF) program in Social and Behavioral Sciences is open to doctoral students in all social and Behavioral science disciplines. This program provides awards to accredited academic institutions to support graduate research leading to doctoral degrees in areas that are relevant to ensuring public safety, preventing and controlling crime, and ensuring the fair and impartial administration of criminal justice in the United States. NIJ invests in doctoral education by supporting academic institutions that sponsor students who demonstrate the potential to successfully complete doctoral degree programs in disciplines relevant to the mission of NIJ and who are in the final stages of graduate study. Applicants sponsoring doctoral students are eligible to apply only (1) if the doctoral student'‚ƒƒ™s degree program is a Social and Behavioral Science discipline and (2) if the student's proposed dissertation research has direct implications for criminal justice policy and practice in the United States.
MiamiOH OARS

Topics in Biological, Physiological, and Behavioral Adaptations to Spaceflight: Integrated One Year - 0 views

  •  
    NASA's Human Research Program (HRP) has released solicited research response area NRA 80JSC017N0001-BPBA "Topics in Biological, Physiological, and Behavioral Adaptations to Spaceflight: Integrated One Year Mission Project and Other Opportunities" that solicits applied research in support of HRP goals and objectives. The first topic in the solicitation is for proposals in the area of Analyses of the Temporal Nature of Human Adaptation to Long-Duration Low-Earth Orbit Missions. HRP has a requirement for sufficient crewmember experience at one year in spaceflight to demonstrate the presence or absence of unacceptable deleterious physiological, psychological and medical effects of spaceflight on human health and performance beyond the experience base of six-month expeditions and to permit extrapolation to early interplanetary expeditions with durations of up to two to three years. Therefore, HRP is proposing an integrated One-Year Mission Project on the International Space Station (ISS) consisting of five one-year missions five standard-duration six-month missions paralleling the year-long expeditions, and five short-duration crew vehicle exchange expeditions lasting up to two months to occur at the mid-point of each 1YM. Proposals are solicited by NASA in the additional areas of Biological, Physiological, and Behavioral Functions of Mice during Partial (0 - 1) G-Exposures Provided by Centrifugation on the International Space Station; Novel Spaceflight-Associated Neuro-Ocular Syndrome Hypotheses and Countermeasures; Medical Countermeasures Targeting Multiple Tissues at Risk from Exposure to Space Radiation; Individual and Team Problem-Solving Skills Training for Exploration Missions; Sensory Stimulation for Cognitive and Behavioral Health; and Human Capabilities Assessments for Autonomous Missions (HCAAM) Virtual NASA Specialized Center of Research.
MiamiOH OARS

Smart and Connected Health (SCH) (nsf13543) - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

Smart and Connected Health (SCH) (nsf16601) | NSF - National Science Foundation - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
MiamiOH OARS

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
MiamiOH OARS

Biological Control - 0 views

  •  
    The objective of the DARPA Biological Control program is to build new capabilities for the control of biological systems across scales - from nanometers to centimeters, seconds to weeks, and biomolecules to populations of organisms - using embedded controllers made of biological parts to program system-level behavior. This program will apply and advance existing control theory to design and implement generalizable biological control strategies analogous to conventional control engineering, for example, for mechanical and electrical systems. The resulting advances in fundamental understanding and capabilities will create new opportunities for engineering biology. Specifically, the Biological Control program will demonstrate tools to rationally design and implement multiscale, closed-loop control of biological systems, through the development of biological controllers, testbeds to evaluate control of system-level behavior, and theory and models to predict and design effective control strategies. The resulting capabilities will be inherently generalizable to a variety of biological systems. Successful teams will integrate and apply these capabilities to demonstrate a practical proof-of-principle biological solution to a proposer-defined application relevant to the U.S. Department of Defense (DoD).
  •  
    The objective of the DARPA Biological Control program is to build new capabilities for the control of biological systems across scales - from nanometers to centimeters, seconds to weeks, and biomolecules to populations of organisms - using embedded controllers made of biological parts to program system-level behavior. This program will apply and advance existing control theory to design and implement generalizable biological control strategies analogous to conventional control engineering, for example, for mechanical and electrical systems. The resulting advances in fundamental understanding and capabilities will create new opportunities for engineering biology. Specifically, the Biological Control program will demonstrate tools to rationally design and implement multiscale, closed-loop control of biological systems, through the development of biological controllers, testbeds to evaluate control of system-level behavior, and theory and models to predict and design effective control strategies. The resulting capabilities will be inherently generalizable to a variety of biological systems. Successful teams will integrate and apply these capabilities to demonstrate a practical proof-of-principle biological solution to a proposer-defined application relevant to the U.S. Department of Defense (DoD).
MiamiOH OARS

Collaborative Sciences Award - 0 views

  •  
    To foster innovative collaborative approaches to research projects that propose novel pairings of investigators from at least two broadly disparate disciplines. The proposal must focus on the collaborative relationship, such that the scientific objectives could not be achieved without the efforts of at least two co-principal investigators and their respective disciplines. The combination and integration of studies may be inclusive of basic, clinical, population, behavioral, and/or translational research. Projects must include at least one Co-PI from a field outside cardiovascular disease and stroke. This award is also intended to foster collaboration between established and early- or mid-career investigators. Applications by existing collaborators are permitted, provided that the proposal is for a new and novel idea or approach that has not been funded before. Multidisciplinary research broadly related to cardiovascular function, cardiovascular disease, and stroke, or to related clinical, basic science, bioengineering, biotechnology, or public health problems. Proposals are encouraged from all basic science disciplines as well as epidemiological, behavioral, community and clinical investigations that bear on cardiovascular and stroke problems. AHA awards are open to the array of academic and health professionals. This includes but is not limited to all academic disciplines (biology, chemistry, engineering, mathematics, technology, physics, etc.) and all health-related professions (physicians, nurses, advanced practice nurses, pharmacists, dentists, physical and occupational therapists, statisticians, nutritionists, behavioral scientists, health attorneys, engineers, etc.).
MiamiOH OARS

Modeling Social Behavior (R01) - 0 views

  •  
    This Funding Opportunity Announcement (FOA) encourages applications for developing and testing innovative theories and computational, mathematical, or engineering approaches to deepen our understanding of complex social behavior. This research will examine phenomena at multiple scales to address the emergence of collective behaviors that arise from individual elements or parts of a system working together. Emergence can also describe the functioning of a system within the context of its environment. Often properties we associate with a system itself are in actuality properties of the relationships and interactions between a system and its environment. This FOA will support research that explores the often complex and dynamic relationships among the parts of a system and between the system and its environment in order to understand the system as a whole.
MiamiOH OARS

Medical Rehabilitation Research Resource (P2C) - 0 views

  •  
    This Funding Opportunity Announcement (FOA) invites grant applications from institutions/organizations that propose to build research infrastructure to promote external collaboration with the medical rehabilitation community. The aim of this FOA is to create a national network of research cores that provide access to collateral expertise in biomedical, behavioral, engineering, and/or psychosocial fields that is particularly relevant to medical rehabilitation research. We are particularly interested in supporting infrastructure programs in clinical trial design, engineering and the environment, individualized medical rehabilitation and dynamic reassessment, and applied behavioral supports for rehabilitation research and healthy outcomes. However, other areas of expertise may be proposed provided they offer unique research opportunities and have potential for promoting medical rehabilitation research and improving outcomes for people with disabilities. In response to this FOA, applicants should propose a program of research resources and collaborative opportunities in a specific research domain. This may be accomplished through a workshops, written material, and websites, consultations, collaborations, and pilot funding. In addition, the research core may support activities within the grantee institution related to technique development, adaptation, and validation. To accomplish the aims of the FOA, applicants may propose collaborations to other institutional sites, provided that they cover the appropriate administrative and logistical issues.
MiamiOH OARS

nsf.gov - Funding - Resilient Interdependent Infrastructure Processes and Systems - US National Science Foundation (NSF) - 0 views

  •  
    The goals of the Resilient Interdependent Infrastructure Processes and Systems (RIPS) solicitation are (1) to foster an interdisciplinary research community that discovers new knowledge for the design and operation of infrastructures as processes and services  (2) to enhance the understanding and design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions and failures from any cause, natural, technological, or malicious, and (3) to create the knowledge for innovation in ICIs to advance society with new goods and services. The objectives of this solicitation are: Create theoretical frameworks and multidisciplinary computational models of interdependent infrastructure systems, processes and services, capable of analytical prediction of complex behaviors, in response to system and policy changes. Synthesize new approaches to increase resilience, interoperations, performance, and readiness in ICIs. Understand organizational, social, psychological, legal, political and economic obstacles to improving ICI's, and identifying strategies for overcoming those obstacles. The RIPS solicitation seeks proposals with transformative ideas that will ensure ICIs services are effective, efficient, dependable, adaptable, resilient, safe, and secure.  Successful proposals are expected to study multiple infrastructures focusing on them as interdependent systems that deliver services, enabling a new interdisciplinary paradigm in infrastructure research.  Proposals that do not broadly integrate across the cyber-physical, engineering and social, behavioral and economic (SBE) sciences may be returned without review. 
MiamiOH OARS

Civil Infrastructure Systems - 0 views

  •  
    The Civil Infrastructure Systems (CIS) program supports research leading to the engineering of infrastructure systems for resilience and sustainability without excluding other key performance issues. Areas of interest include intra- and inter-physical, information and behavioral dependencies of infrastructure systems, infrastructure management, construction engineering, and transportation systems. Special emphasis is on the design, construction, operation, and improvement of infrastructure networks with a focus on systems engineering and design, performance management, risk analysis, life-cycle analysis, modeling and simulation, behavioral and social considerations not excluding other methodological areas or the integration of methods.This program does not encourage research proposals primarily focused on structural engineering, materials or sensors that support infrastructure system design, extreme event modeling, hydrological engineering, and climate modeling, since they do not fall within the scope of the CIS program. Researchers focused in these areas are encouraged to contact the Infrastructure Management and Extreme Events (IMEE), Geotechnical Engineering (GTE), Hazard Mitigation and Structural Engineering (HSME), Structural Materials and Mechanics (SMM), or the Sensors and Sensing Systems (SSS) program within CMMI. Additionally, researchers may consider contacting the Hydrologic Sciences program in the Earth Sciences Division (EAR) or the Physical and Dynamic Meteorology (PDM) program in the Atmospheric and Geospace Sciences Division (AGS) of the Directorate for Geosciences.
MiamiOH OARS

Secure and Trustworthy Cyberspace Frontiers - 0 views

  •  
    Society's overwhelming reliance on this complex cyberspace, however, has exposed its fragility and vulnerabilities that defy existing cyber-defense measures; corporations, agencies, national infrastructure and individuals continue to suffer cyber-attacks. Achieving a truly secure cyberspace requires addressing both challenging scientific and engineering problems involving many components of a system, and vulnerabilities that stem from human behaviors and choices. Examining the fundamentals of security and privacy as a multidisciplinary subject can lead to fundamentally new ways to design, build and operate cyber systems, protect existing infrastructure, and motivate and educate individuals about cybersecurity. The Secure and Trustworthy Cyberspace (SaTC) program welcomes proposals that address cybersecurity and privacy, and draw on expertise in one or more of these areas: computing, communication and information sciences; engineering; economics; education; mathematics; statistics; and social and behavioral sciences. Proposals that advance the field of cybersecurity and privacy within a single discipline or interdisciplinary efforts that span multiple disciplines are both encouraged.
MiamiOH OARS

nsf.gov - Funding - Civil Infrastructure Systems - US National Science Foundation (NSF) - 0 views

  •  
    The Civil Infrastructure Systems (CIS) program supports research leading to the engineering of infrastructure systems for resilience and sustainability without excluding other key performance issues.  Areas of interest include intra- and inter-physical, information and behavioral dependencies of infrastructure systems, infrastructure management, construction engineering, and transportation systems.  Special emphasis is on the design, construction, operation, and improvement of infrastructure networks with a focus on systems engineering and design, performance management, risk analysis, life-cycle analysis, modeling and simulation, behavioral and social considerations not excluding other methodological areas or the integration of methods. This program does not encourage research proposals primarily focused on structural engineering, materials or sensors that support infrastructure system design, extreme event modeling, hydrological engineering, and climate modeling, since they do not fall within the scope of the CIS program.
MiamiOH OARS

nsf.gov - Funding - Design of Engineering Material Systems - US National Science Foundation (NSF) - 0 views

  •  
    The Design of Engineering Material Systems (DEMS) program supports fundamental research intended to lead to new paradigms of design, development, and insertion of advanced engineering material systems.  Fundamental research that develops and creatively integrates theory, processing/manufacturing, data/informatics, experimental, and/or computational approaches with rigorous engineering design principles, approaches, and tools to enable the accelerated design and development of materials is welcome.    Research proposals are sought that strive to develop systematic scientific methodologies to tailor the behavior of material systems in ways that are driven by performance metrics and incorporate processing/manufacturing.  While an emphasis on a specific material system may be appropriate to provide the necessary project focus, techniques developed should transcend materials systems.  Ultimately it is expected that research outcomes will be methodologies to enable the discovery of materials systems with new properties and behavior, and enable their rapid insertion into engineering systems. Proposals that focus on modeling, simulation, and prediction of material performance (even when research is coupled with experiments for validation or guidance) without an intellectual emphasis on design are not appropriate for this program and should be submitted to other disciplinary programs.
MiamiOH OARS

Critical Resilient Interdependent Infrastructure Systems and Processes - 0 views

  •  
    Critical infrastructures are the mainstay of our nation's economy, security and health. These infrastructures are interdependent. They are linked to individual preferences and community needs. For example, the electrical power system depends on the delivery of fuels to power generating stations through transportation services, the production of those fuels depends in turn on the use of electrical power, and those fuels are needed by the transportation services. Social networks, interactions, and policies can enable or hinder the successful creation of resilient complex adaptive systems. The goals of the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) solicitation are to: (1) foster an interdisciplinary research community of engineers, computer and computational scientists and social and behavioral scientists, that creates new approaches and engineering solutions for the design and operation of infrastructures as processes and services; (2) enhance the understanding and design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions and failures from any cause, natural, technological, or malicious; (3) create the knowledge for innovation in ICIs so that they safely, securely, and effectively expand the range of goods and services they enable; and (4) improve the effectiveness and efficiency with which they deliver existing goods and services.
  •  
    Critical infrastructures are the mainstay of our nation's economy, security and health. These infrastructures are interdependent. They are linked to individual preferences and community needs. For example, the electrical power system depends on the delivery of fuels to power generating stations through transportation services, the production of those fuels depends in turn on the use of electrical power, and those fuels are needed by the transportation services. Social networks, interactions, and policies can enable or hinder the successful creation of resilient complex adaptive systems. The goals of the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) solicitation are to: (1) foster an interdisciplinary research community of engineers, computer and computational scientists and social and behavioral scientists, that creates new approaches and engineering solutions for the design and operation of infrastructures as processes and services; (2) enhance the understanding and design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions and failures from any cause, natural, technological, or malicious; (3) create the knowledge for innovation in ICIs so that they safely, securely, and effectively expand the range of goods and services they enable; and (4) improve the effectiveness and efficiency with which they deliver existing goods and services.
MiamiOH OARS

Smart and Connected Health - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. 
MiamiOH OARS

Anticipating the Environmental Impacts and Behavioral Drivers of Deep Decarbonization | Research Grants | US EPA - 0 views

  •  
    The U.S. Environmental Protection Agency (EPA), as part of its Science to Achieve Results (STAR) program, is seeking applications proposing research that will contribute to an improved ability to understand and anticipate the public health and environmental impacts and behavioral drivers of significant changes in energy production and consumption in the United States, particularly those changes associated with advancing toward the deep decarbonization necessary to achieve national and international climate change mitigation objectives and avoid the most significant health, environmental, and economic impacts of climate change. The proposed research is intended to contribute to the development of new insights and predictive tools related to the multimedia, life-cycle impacts of the decarbonization of electricity generation; the electrification of end uses; the adoption of low-carbon emitting, renewable fuels; and the adoption of energy efficiency measures. The proposed research is also intended to contribute to an improved understanding of the drivers of individual, firm (i.e. business), and community decisions that affect energy consumption patterns, including decisions about the adoption of new technologies and energy efficiency measures.
1 - 20 of 191 Next › Last »
Showing 20 items per page