Skip to main content

Home/ OARS funding Engineering/ Group items matching ""wireless technology"" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

Spectrum and Wireless Innovation enabled by Future Technologies (SW... - 0 views

  •  
    The National Science Foundation's Directorates for Engineering (ENG), Computer and Information Science and Engineering (CISE), Mathematical and Physical Sciences (MPS), and Geosciences (GEO) are coordinating efforts to identify new concepts and ideas on Spectrum and Wireless Innovation enabled by Future Technologies (SWIFT). A key aspect of this new solicitation is its focus on effective spectrum utilization and/or coexistence techniques, especially with passive uses, which have received less attention from researchers. Coexistence is when two or more applications use the same frequency band at the same time and/or at the same location, yet do not adversely affect one another. Coexistence is especially difficult when at least one of the spectrum users is passive, i.e., not transmitting any radio frequency (RF) energy. Examples of coexisting systems may include passive and active systems (e.g., radio astronomy and 5G wireless communication systems) or two active systems (e.g., weather radar and Wi-Fi). Breakthrough innovations are sought on both the wireless communication hardware and the algorithmic/protocol fronts through synergistic teamwork. The goal of these research projects may be the creation of new technology or significant enhancements to existing wireless infrastructure, with an aim to benefit society by improving spectrum utilization, beyond mere spectrum efficiency. The SWIFT program seeks to fund collaborative team research that transcends the traditional boundaries of individual disciplines.
1More

Spectrum and Wireless Innovation enabled by Future Technologies (SWIFT) (nsf20537) | NS... - 0 views

  •  
    The National Science Foundation's Directorates for Engineering (ENG), Computer and Information Science and Engineering (CISE), Mathematical and Physical Sciences (MPS), and Geosciences (GEO) are coordinating efforts to identify new concepts and ideas on Spectrum and Wireless Innovation enabled by Future Technologies (SWIFT). A key aspect of this new solicitation is its focus on effective spectrum utilization and/or coexistence techniques, especially with passive uses, which have received less attention from researchers. Coexistence is when two or more applications use the same frequency band at the same time and/or at the same location, yet do not adversely affect one another. Coexistence is especially difficult when at least one of the spectrum users is passive, i.e., not transmitting any radio frequency (RF) energy. Examples of coexisting systems may include passive and active systems (e.g., radio astronomy and 5G wireless communication systems) or two active systems (e.g., weather radar and Wi-Fi). Breakthrough innovations are sought on both the wireless communication hardware and the algorithmic/protocol fronts through synergistic teamwork. The goal of these research projects may be the creation of new technology or significant enhancements to existing wireless infrastructure, with an aim to benefit society by improving spectrum utilization, beyond mere spectrum efficiency. The SWIFT program seeks to fund collaborative team research that transcends the traditional boundaries of individual disciplines.
1More

NSF/Intel Partnership on Information-Centric Networking in Wireless Edge Networks | NSF... - 0 views

  •  
    Next-generation wireless networks, utilizing a wide swath of wireless spectrum and an array of novel technologies in the wired and wireless domains, are on the cusp of unleashing a broadband revolution with promised peak bit rates of tens of gigabits per second and latencies of less than a millisecond. Such innovations will make possible a new set of applications such as autonomous vehicles, industrial robotics, tactile Internet applications, virtual and augmented reality, and dense Internet of Things (IoT) deployments. A key requirement of these applications is fast information response time that is invariant as a function of the bandwidth demanded, users/devices supported, and data generated, of which low-latency wireless access time is only one component. Intrinsic security, seamless mobility, scalable content caching, and discovery/distribution services are also essential for such applications. This solicitation seeks unique data network architectures featuring an information plane using an Information-Centric Networking (ICN) approach and addressing discovery, movement, delivery, management, and protection of information within a network, along with the abstraction of an underlying communication plane creating opportunities for new efficiencies and optimizations across communications technologies that could also address latency and scale requirements.
1More

About the Wireless Innovation Project - Vodafone Americas Foundation - 0 views

  •  
    The Vodafone Wireless Innovation Project™ (the "competition") seeks to identify and fund the best innovations using wireless related technology to address critical social issues around the world. Project proposals must demonstrate significant advancement in the field of wireless-related technology applied to social benefit use. The competition is open to projects from universities and nonprofit organizations based in the United States. Although organizations must be based in the United States, projects may operate and help people outside of the United States.
1More

NineSights Community - Request for Proposal: 2aUnderwater Optical Wireless Communicati... - 0 views

  •  
    The Client aims at establishing automatic and labor-saving inspection system of subsea facilities by introducing robots. Currently, underwater robots are navigated and controlled by transmitting signals, via cables, from the ships. This wire communication method limits operating area of robots and can be susceptible to troubles, such as cable tangling and destabilization of robotic performance by the influence of tidal currents. In addition, acoustic communication is utilized for detecting locations of robots, but its transmission speed and quality are not competent.   Optical wireless communication technology has potential for high-speed and high-capacity communication under the sea, therefore the Client expects it can improve underwater operation and control of robots dramatically. By building medium- to long-term partnership with organizations that possess these technologies, the Client aims to establish embeddable wireless communication technology between robots under the sea as their initial target.   Furthermore, establishment of communication technology capable of navigation signal transmission to underwater robots from an onshore / offshore base (i.e. from a ship) is their ultimate target.
1More

Ideas Lab: Cross-cutting Initiative in CubeSat Innovations - 0 views

  •  
    CubeSat constellations and swarms have been identified as a new paradigm for space-based measurements to address high-priority science questions in multiple disciplines. However, the full potential of CubeSat constellations and swarms for scientific studies has not yet been realized because of: i) the limitations of some of the existing key CubeSat technology, ii) knowledge gaps in the design and optimization of CubeSat technology for swarms and constellations, and iii) the increasing cost of more sophisticated CubeSat technology. The technology challenges include high bandwidth communications in CubeSat-to-CubeSat and CubeSat-to-ground scenarios, circuits and sensors miniaturization, on-board signal processing, and power generation. The vision of a satellite mission consisting of 10-100 CubeSats will require focused investment and development in a myriad of CubeSat-related technologies to build a cost-effective constellation or swarm of CubeSats. This will require transformative approaches for designing and building CubeSat subsystems and sensors, and innovative production approaches that will reduce the cost of implementing large-scale constellation missions.Spectrum allocations for data transmission and possible electromagnetic interference between or within constellations of CubeSats are issues that also will need to be considered. This solicitation describes an Ideas Lab focused onCubeSat Innovations to push the envelope of space-based research capabilities by simultaneously developing enabling technologies in several domains, including propulsion systems, sensor design, electronic circuits, antennas, satellite-to-ground and satellite-to-satellite communications and wireless networking, and power management. The vision of this Ideas Lab is to support research and engineering technology development efforts that will lead to new science missions in geospace and atmospheric sciences using self-organizing CubeSat constellations/swarms.
1More

nsf.gov - Funding - Small Business Innovation Research Program Phase I Solicitation FY-... - 0 views

  •  
    The Small Business Innovation Research (SBIR) Program stimulates technological innovation in the private sector by strengthening the role of small business concerns in meeting Federal research and development needs, increasing the commercial application of federally supported research results, and fostering and encouraging participation by socially and economically disadvantaged and women-owned small businesses. The topics, listed below, are detailed on the SBIR/STTR topics homepage: Educational Technologies and Applications (EA) Information and Communication Technologies (IC) Semiconductors (S) and Photonic (PH) Devices and Materials Electronic Hardware, Robotics and Wireless Technologies (EW) Advanced Manufacturing and Nanotechnology (MN) Advanced Materials and Instrumentation (MI) Chemical and Environmental Technologies (CT) Biological Technologies (BT) Smart Health (SH) and Biomedical (BM) Technologies
1More

US-EU Internet Core & Edge Technologies - 0 views

  •  
    : The Division of Computer and Network Systems (CNS) within the National Science Foundation's (NSF) Directorate for Computer and Information Science and Engineering (CISE) supports research and education activities that seek to develop a better understanding of the fundamental properties of computer and network systems. The Networking Technology and Systems (NeTS) program in the CNS division supports transformative research on fundamental scientific and technological advances leading to the development of Next Generation Internet (NGI) and Advanced Wireless Networking (AWN) systems and technologies. NSF/CISE and the European Commission’s (EC) Directorate General for Communication Networks, Content and Technology (DG CONNECT) seek to enable US and European Union (EU) researchers to collaborate to address compelling research challenges in NGI and AWN.
1More

Vodafone Americas Foundation™ Call for Entries for Tenth Annual Wireless Inno... - 0 views

  •  
    The mobile or wireless solution must have the potential to solve a problem in the areas of access to education, health, access to communication, economic development, and the environment/disaster relief. The project must be at a stage of research where an advanced prototype or field/market test can occur during the award period, and the technology should have the potential for replication and large-scale impact. Applicants also should have a business plan or basic framework for financial sustainability and rollout.
1More

Computer and Network Systems (CNS): Core Programs (nsf17570) | NSF - National Science F... - 0 views

  •  
    Computer systems support a broad range of applications and technologies that seamlessly integrate with human users. While many key building blocks of computer systems are today commercial technologies, the challenge ahead is to envision new technologies, as well as to combine existing technologies, software, and sensing systems into the computer systems of the future that will span wearable computing, the Internet of Things (IoT), "Smart Cities," intelligent transportation systems, personalized healthcare, and beyond. Such computer systems will require new, innovative, and visionary approaches to hardware, wired and wireless communications, consideration of human-computer interactions, and new programming languages and compilers that are limited only by the imagination. They will need to be reliable in the presence of unreliable components, adaptive to changing environments, capable of supporting high-throughput applications and large-scale data storage and processing, and able to meet performance and energy objectives for applications ranging from very low-power embedded systems to large high-performance computing systems. Furthermore, computer systems of the future will need to provide mechanisms for ensuring security and privacy.
1More

US-EU Internet Core & Edge Technologies (ICE-T) (nsf18535) | NSF - National Science Fou... - 0 views

  •  
    The Division of Computer and Network Systems (CNS) within the National Science Foundation's (NSF) Directorate for Computer and Information Science and Engineering (CISE) supports research and education activities that seek to develop a better understanding of the fundamental properties of computer and network systems. The Networking Technology and Systems (NeTS) program in the CNS division supports transformative research on fundamental scientific and technological advances leading to the development of Next Generation Internet (NGI) and Advanced Wireless Networking (AWN) systems and technologies.
2More

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
1More

A--Research and Development to Advance Better Use of the Electromagnetic Spectrum - W15... - 0 views

  •  
    The Army Contracting Command - New Jersey (ACC-NJ), on behalf of The Department of Defense (DOD) is releasing this special notice to inform interested parties of an interest in establishing a Section 845 Other Transaction (OTA) agreement with an eligible entity or group of entities to develop and mature technologies and support policy development to enable advanced approaches to electromagnetic spectrum use. This initiative will support possible needs across the government and industry, in alignment with the National Information Technology R&D (NITRD)/Wireless Spectrum R&D (WSRD) Senior Steering Group (SSG) mission to promote collaboration among government, industry and academia. The purpose of this effort is to identify areas of Research & Development/Prototyping (R&D/PROTOTYPING) of vital importance to the Department's ability to maintain access to the Electromagnetic Spectrum (EMS). The Government is seeking to facilitate optimal application of SRF funds in developing technologies that enable both spectrum sharing and more efficient spectrum use.
1More

Addressing Systems Challenges through Engineering Teams - 0 views

  •  
    The Electrical, Communications and Cyber Systems Division (ECCS) supports enabling and transformative engineering research at the nano, micro, and macro scales that fuels progress in engineering system applications with high societal impact. This includes fundamental engineering research underlying advanced devices and components and their seamless penetration in power, controls, networking, communications or cyber systems. The research is envisioned to be empowered by cutting-edge computation, synthesis, evaluation, and analysis technologies and is to result in significant impact for a variety of application domains in healthcare, homeland security, disaster mitigation, telecommunications, energy, environment, transportation, manufacturing, and other systems-related areas. ECCS also supports new and emerging research areas encompassing 5G and Beyond Spectrum and Wireless Technologies, Quantum Information Science, Artificial Intelligence, Machine Learning, and Big Data. ECCS, through its ASCENT program, offers its engineering community the opportunity to address research issues and answer engineering challenges associated with complex systems and networks that are not achievable by a single principal investigator or by short-term projects and can only be achieved by interdisciplinary research teams. ECCS envisions a connected portfolio of transformative and integrative projects that create synergistic links by investigators across its three ECCS clusters: Communications, Circuits, and Sensing-Systems (CCSS), Electronics, Photonics and Magnetic Devices (EPMD), and Energy, Power, Control, and Networks (EPCN), yielding novel ways of addressing challenges of engineering systems and networks. ECCS seeks proposals that are bold and ground-breaking, transcend the perspectives and approaches typical of disciplinary research efforts, and lead to disruptive technologies and methods or enable significant improvement in quality of life.
1More

Sony Focused Research Award - 0 views

  •  
    Global research and development at Sony enables us to foster innovative ideas, which could ultimately lead to future technology advancements and company growth. In order to speed up and expand the creation of new ideas, we would like to partner with universities. This partnership will help cultivate advanced concepts and fertilize our own research and development. The Sony Faculty Innovation Award provides up to $100K in funds to conduct pioneering research in the areas of visualization; computer vision; machine learning; robotics; communications and networking; RF sensing; audio; speech and natural language processing; human computer interaction; mobility; system software; and LSI and hardware.
1More

Addressing Systems Challenges through Engineering Teams (ASCENT) (nsf20511) | NSF - Nat... - 0 views

  •  
    The Electrical, Communications and Cyber Systems Division (ECCS) supports enabling and transformative engineering research at the nano, micro, and macro scales that fuels progress in engineering system applications with high societal impact. This includes fundamental engineering research underlying advanced devices and components and their seamless penetration in power, controls, networking, communications or cyber systems. The research is envisioned to be empowered by cutting-edge computation, synthesis, evaluation, and analysis technologies and is to result in significant impact for a variety of application domains in healthcare, homeland security, disaster mitigation, telecommunications, energy, environment, transportation, manufacturing, and other systems-related areas. ECCS also supports new and emerging research areas encompassing 5G and Beyond Spectrum and Wireless Technologies, Quantum Information Science, Artificial Intelligence, Machine Learning, and Big Data.
1More

Addressing Systems Challenges through Engineering Teams | NSF - National Science Founda... - 0 views

  •  
    The Electrical, Communications and Cyber Systems Division (ECCS) supports enabling and transformative engineering research at the nano, micro, and macro scales that fuels progress in engineering system applications with high societal impact. This includes fundamental engineering research underlying advanced devices and components and their seamless penetration in power, controls, networking, communications or cyber systems. The research is envisioned to be empowered by cutting-edge computation, synthesis, evaluation, and analysis technologies and is to result in significant impact for a variety of application domains in healthcare, homeland security, disaster mitigation, telecommunications, energy, environment, transportation, manufacturing, and other systems-related areas. ECCS also supports new and emerging research areas encompassing 5G and Beyond Spectrum and Wireless Technologies, Quantum Information Science, Artificial Intelligence, Machine Learning, and Big Data.
1More

Addressing Systems Challenges through Engineering Teams (ASCENT) (nsf20511) | NSF - Nat... - 0 views

  •  
    The Electrical, Communications and Cyber Systems Division (ECCS) supports enabling and transformative engineering research at the nano, micro, and macro scales that fuels progress in engineering system applications with high societal impact. This includes fundamental engineering research underlying advanced devices and components and their seamless penetration in power, controls, networking, communications or cyber systems. The research is envisioned to be empowered by cutting-edge computation, synthesis, evaluation, and analysis technologies and is to result in significant impact for a variety of application domains in healthcare, homeland security, disaster mitigation, telecommunications, energy, environment, transportation, manufacturing, and other systems-related areas. ECCS also supports new and emerging research areas encompassing 5G and Beyond Spectrum and Wireless Technologies, Quantum Information Science, Artificial Intelligence, Machine Learning, and Big Data.
1More

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    Proposals for potential FY14 Exploratory Development/Applied Research (Budget category 6.2) projects are sought under the following focus areas: 1. Low-profile conformal multi-band (e.g., X/Ku/Ka) multi-beam digital phased array antennas with reduced beam squint and low side lobes and scan loss; 2. Transformative concepts/designs (arrays, waveform, signal processing etc.) to enhance performance and aperture size/power efficiency in high bandwidth troposcatter communications; 3. Passive wavelength filter technologies for the 450-550 nm blue-green underwater communications receiver (band-pass widths as applicable to a variety of laser/LED sources), with wide field-of-view (> +-20 degrees), low insertion loss and high isolation; 4. Innovative concepts and approaches for spectrum co-existence (underlay/overlay, spatio-temporal/spectral management and deconfliction) of military waveforms with commercial wireless communications; 5. Dynamic network (traffic) scheduling, throughput and robustness enhancement codes/algorithms/protocols under nonstationary channel conditions; and 6. Machine learning algorithm/protocol and techniques for autonomous network management ONR is also receptive to highly innovative ideas in other general communications and networking areas that are not within the designated focus areas above, but nonetheless are important to the Navy/Marine Corps, as determined under the synopsis section above.
1More

Cybersecurity Innovation for Cyberinfrastructure (CICI) | NSF - National Science Founda... - 0 views

  •  
    Advancements in data-driven scientific research depend on trustworthy and reliable cyberinfrastructure. Researchers rely on a variety of networked technologies and software tools to achieve their scientific goals. These may include local or remote instruments, wireless sensors, software programs, operating systems, database servers, high-performance computing, large-scale storage, and other critical infrastructure connected by high-speed networking. This complex, distributed, interconnected global cyberinfrastructure ecosystem presents unique cybersecurity challenges. NSF-funded scientific instruments, sensors and equipment are specialized, highly-visible assets that present attractive targets for both unintentional errors and malicious activity; untrustworthy software or a loss of integrity of the data collected by a scientific instrument may mean corrupt, skewed or incomplete results. Furthermore, often data-driven research, e.g., in the medical field or in the social sciences, requires access to private information, and exposure of such data may cause financial, reputational and/or other damage.
1 - 20 of 27 Next ›
Showing 20 items per page