Skip to main content

Home/ OARS funding Engineering/ Group items matching "dynamics" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

Smart and Autonomous Systems - 0 views

  •  
    The Smart and Autonomous Systems (S&AS) program focuses on Intelligent Physical Systems (IPS) that are capable of robust, long-term autonomy requiring minimal or no human operator intervention in the face of uncertain, unanticipated, and dynamically changing situations. IPS are systems that combine perception, cognition, communication, and actuation to operate in the physical world. Examples include, but are not limited to, robotic platforms, self-driving vehicles, underwater exploration vehicles, and smart grids. Most current IPS operate in pre-programmed ways and in a limited variety of contexts. They are largely incapable of handling novel situations, or of even understanding when they are outside their areas of expertise. To achieve robust, long-term autonomy, however, future IPS need to be aware of their capabilities and limitations and to adapt their behaviors to compensate for limitations and/or changing conditions. To foster such intelligent systems, the S&AS program supports research in four main aspects of IPS: cognizant, taskable, adaptive, and ethical. Cognizant IPS exhibit high-level awareness of their own capabilities and limitations, anticipating potential failures and re-planning accordingly. Taskable IPS can interpret high-level, possibly vague, instructions, planning out and executing concrete actions that are dependent on the particular context in which the system is operating. Adaptive IPS can change their behaviors over time, learning from their own experiences and those of other entities, such as other IPS or humans, and from instruction or observation. Ethical IPS should adhere to a system of societal and legal rules, taking those rules into account when making decisions. Each of these research areas requires the IPS to be knowledge-rich, employing a variety of representation and reasoning mechanisms, such as semantic, probabilistic, commonsense, and meta-reasoning.
1More

Smart and Autonomous Systems (S&AS) (nsf18557) | NSF - National Science Foundation - 0 views

  •  
    The Smart and Autonomous Systems (S&AS) program focuses on Intelligent Physical Systems (IPS) that are capable of robust, long-term autonomy requiring minimal or no human operator intervention in the face of uncertain, unanticipated, and dynamically changing situations. IPS are systems that combine perception, cognition, communication, and actuation to operate in the physical world. Examples include, but are not limited to, robotic platforms, self-driving vehicles, underwater exploration vehicles, and smart grids. Most current IPS operate in pre-programmed ways and in a limited variety of contexts. They are largely incapable of handling novel situations, or of even understanding when they are outside their areas of expertise. To achieve robust, long-term autonomy, however, future IPS need to be aware of their capabilities and limitations and to adapt their behaviors to compensate for limitations and/or changing conditions.
1More

Geotechnical Engineering and Materials | NSF - National Science Foundation - 0 views

  •  
    The Geotechnical Engineering and Materials Program (GEM) supports fundamental research in soil and rock mechanics and dynamics in support of physical civil infrastructure systems. Also supported is research on improvement of the engineering properties of geologic materials for infrastructure use by mechanical, biological, thermal, chemical, and electrical processes. The Program supports the traditional areas of foundation engineering, earth structures, underground construction, tunneling, geoenvironmental engineering, and site characterization, as well as the emerging area of bio-geo engineering, for civil engineering applications, with emphasis on sustainable geosystems. Research related to the geotechnical engineering aspects of geothermal energy and geothermal heat pump systems is also supported. The GEM program encourages knowledge dissemination and technology transfer activities that can lead to broader societal benefit and implementation for provision of physical civil infrastructure. The Program also encourages research that explores and builds upon advanced computing techniques and tools to enable major advances in Geotechnical Engineering.
1More

Engineering for Natural Hazards | NSF - National Science Foundation - 0 views

  •  
    The Engineering for Natural Hazards (ENH) program supports fundamental research that advances knowledge for understanding and mitigating the impact of natural hazards on constructed civil infrastructure.  Natural hazards considered by the ENH program include earthquakes, windstorms (such as tornadoes and hurricanes), tsunamis, storm surge, and landslides.  The constructed civil infrastructure supported by the ENH program includes building systems, such as the soil-foundation-structure-envelope-nonstructural system, as well as the façade and roofing, and other structures, geostructures, and underground facilities, such as tunnels.  While research may focus on a single natural hazard, research that considers civil infrastructure performance over its lifetime in the context of multiple hazards, that is, a multi-hazard approach, is encouraged.  Research may integrate geotechnical, structural, and architectural engineering advances with discoveries in other science and engineering fields, such as earth and atmospheric sciences, materials science, mechanics of materials, dynamic systems and control, systems engineering, decision theory, risk analysis, high performance computational modeling and simulation, and social, behavioral, and economic sciences.  Multi-disciplinary and international collaborations are encouraged.  The ENH program encourages research integrated with knowledge dissemination and activities that can lead to broader societal benefit for reducing the impact of natural hazards on civil infrastructure.
1More

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    Description: The Communications, Circuits, and Sensing-Systems (CCSS) Program supports innovative research in circuit and system hardware and signal processing techniques. CCSS also supports system and network architectures for communications and sensing to enable the next-generation cyber-physical systems (CPS) that leverage computation, communication, and sensing integrated with physical domains. CCSS invests in micro- and nano-electromechanical systems (MEMS/NEMS), physical, chemical, and biological sensing systems, neurotechnologies, and communication & sensing circuits and systems. The goal is to create new complex and hybrid systems ranging from nano- to macro-scale with innovative engineering principles and solutions for a variety of applications including but not limited to healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS encourages research proposals based on emerging technologies and applications for communications and sensing such as high-speed communications of terabits per second and beyond, sensing and imaging covering microwave to terahertz frequencies, personalized health monitoring and assistance, secured wireless connectivity and sensing for the Internet of Things, and dynamic-data-enabled autonomous systems through real-time sensing and learning.
1More

STEWARDSHIP SCIENCE ACADEMIC ALLIANCES (SSAA) - 0 views

  •  
    The Office of Research, Development, Test, and Evaluation, under Defense Programs within the Department of Energy's (DOE) National Nuclear Security Administration (NNSA), announce their interest in receiving grant applications for new or renewal awards for research in the Stewardship Science Academic Alliances (SSAA) Program. The SSAA Program, established in 2002, was developed to support state-of-the-art research at U.S. academic institutions in areas of fundamental physical science and technology of relevance to the Stockpile Stewardship Program mission, with a focus on those areas not supported by other federal agencies. For purposes of this FOA, the research areas of interest are: properties of materials under extreme conditions and/or hydrodynamics (condensed matter physics and materials science, and fluid dynamics); low energy nuclear science; and radiochemistry.
1More

Smart and Autonomous Systems (S&AS) (nsf18557) | NSF - National Science Foundation - 0 views

  •  
    The Smart and Autonomous Systems (S&AS) program focuses on Intelligent Physical Systems (IPS) that are capable of robust, long-term autonomy requiring minimal or no human operator intervention in the face of uncertain, unanticipated, and dynamically changing situations. IPS are systems that combine perception, cognition, communication, and actuation to operate in the physical world. Examples include, but are not limited to, robotic platforms, self-driving vehicles, underwater exploration vehicles, and smart grids. Most current IPS operate in pre-programmed ways and in a limited variety of contexts. They are largely incapable of handling novel situations, or of even understanding when they are outside their areas of expertise. To achieve robust, long-term autonomy, however, future IPS need to be aware of their capabilities and limitations and to adapt their behaviors to compensate for limitations and/or changing conditions.
1More

Digital Infrastructure Research RFP - Ford Foundation - 0 views

  •  
    The Sloan and Ford Foundations would like to fund a set of research projects to further study these dynamics, with an eye toward better understanding the economics, maintenance and sustainability of digital infrastructure.
1More

Transport Phenomena Research at the International Space Station to Benefit Life on Earth - 0 views

  •  
    The Division of Chemical, Bioengineering and Environmental Transport (CBET) in the Engineering Directorate of the National Science Foundation (NSF) is partnering with The Center for the Advancement of Science in Space (CASIS) to solicit research projects in the general field of fluid dynamics, particulate and multiphase processes, combustion and fire systems,thermal transport processes, and nanoscale interactionsthat can utilize the International Space Station (ISS) National Lab to conduct research that will benefit life on Earth. Only U.S. entities including academic investigators, non-profit independent research laboratories and academic-commercial teams are eligible to apply.
1More

Research in the Formation of Engineers | NSF - National Science Foundation - 0 views

  •  
    The NSF Engineering (ENG) Directorate has launched a multi-year initiative, the Professional Formation of Engineers, to create and support an innovative and inclusive engineering profession for the 21st century. Professional Formation of Engineers (PFE) refers to the formal and informal processes and value systems by which people become engineers. It also includes the ethical responsibility of practicing engineers to sustain and grow the profession in order to improve quality of life for all peoples. The engineering profession must be responsive to national priorities, grand challenges, and dynamic workforce needs; it must be equally open and accessible to all.
1More

Combustion and Fire Systems - 0 views

  •  
    The Combustion and Fire Systemsprogram is part of the Transport Phenomena cluster, which also includes 1) the Fluid Dynamics program; 2) the Particulate and Multiphase Processes program; and 3) the Thermal Transport Processes program. The goal of theCombustion and Fire Systemsprogram is to advance energy conversion efficiency, improve energy security, enable cleaner environments, and enhance public safety. The program endeavors to createfundamental scientific knowledge that is needed for useful combustion applications and for mitigating the effects of fire.The program aims to identify and understand the controlling basic principles and to use that knowledge to create predictive capabilities for designing and optimizing practical combustion devices. Important outcomesfor this program include: broad-based tools - experimental, theoretical, andcomputational - that can be applied to a variety of problems in combustionand fire systems; science and technology for clean and efficient generation of power; discoveries that enable clean environments (for example, by reduction in combustion-generated pollutants); and enhanced public safety through research on fire growth, inhibition, and suppression.
1More

Research in the Formation of Engineers - 0 views

  •  
    The NSF Engineering (ENG) Directorate has launched a multi-year initiative, the Professional Formation of Engineers, to create and support an innovative and inclusive engineering profession for the 21st century. Professional Formation of Engineers (PFE) refers to the formal and informal processes and value systems by which people become engineers. It also includes the ethical responsibility of practicing engineers to sustain and grow the profession in order to improve quality of life for all peoples. The engineering profession must be responsive to national priorities, grand challenges, and dynamic workforce needs; it must be equally open and accessible to all. Professional Formation of Engineers includes, but is not limited, to: Introductions to the profession at any age; Development of deep technical and professional skills, knowledge, and abilities in both formal and informal settings/domains; Development of outlooks, perspectives, ways of thinking, knowing, and doing; Development of identity as an engineer and its intersection with other identities; and Acculturation to the profession, its standards, and norms.
1More

NSF/Intel Partnership on Machine Learning for Wireless Networking Systems (MLWiNS) (nsf... - 0 views

  •  
    This program seeks to accelerate fundamental, broad-based research on wireless-specific machine learning (ML) techniques, towards a new wireless system and architecture design, which can dynamically access shared spectrum, efficiently operate with limited radio and network resources, and scale to address the diverse and stringent quality-of-service requirements of future wireless applications. In parallel, this program also targets research on reliable distributed ML by addressing the challenge of computation over wireless edge networks to enable ML for wireless and future applications. Model-based approaches for designing the wireless network stack have proven quite efficient in delivering the networks in wide use today; research enabled by this program is expected to identify realistic problems that can be best solved by ML and to address fundamental questions about expected improvements from using ML over model-based methods.
1More

Signals in the Soil - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
1More

D.2 Transformational Tools and Technologies (TTT) Project - 0 views

  •  
    The Transformational Tools and Technologies (TTT) Project advances state-of-the-art computational and experimental tools and technologies that are vital to aviation applications in the six strategic thrusts. The project develops new computer-based tools, computational fluid dynamics models, and associated scientific knowledge that will provide first-of-a-kind capabilities to analyze, understand, and predict aviation concept performance. These revolutionary tools will be applied to accelerate NASA's research and the community's design and introduction of advanced concepts. The Project also explores technologies that are broadly critical to advancing ARMD strategic outcomes. Such technologies include the understanding of new types of strong and lightweight materials, innovative controls techniques, and experimental methods. The TTT Materials and Structures Discipline emphasizes improved multifunctional and high temperature materials for airframe and engine application, as well as integrated multiscale modeling and simulation tool development to improve validated first-principles materials and structural modeling.
1More

Spectrum Innovation Initiative: National Center for Wireless Spectrum Research - 0 views

  •  
    The worldwide growth of wireless communication, navigation, and telemetry has provided immense societal benefits including mobile broadband data, Internet of Things (IoT), mobile healthcare, and intelligent transportation systems. These and other applications including 5G and beyond wireless systems call for innovations that can circumvent the challenges of radio spectrum scarcity and interference and foster the growth of ubiquitous, high speed, low latency connectivity. Commercial applications like the above must operate in harmony with scientific uses such as research on radio astronomy, Earth and atmospheric sciences, and must not inhibit weather prediction, polar research, and other nationally vital activities, all of which are dependent upon access to the radio spectrum. The National Science Foundation (NSF) continues to support wireless spectrum research and the scientific uses of the electromagnetic spectrum through multiple programs that enable fast, accurate, dynamic coordination and usage of our limited spectrum resource. These programs have created an opportune ground to build and create a large center-based ecosystem for spectrum research, which is the target of this SII-Center program.
1More

Signals in the Soil (SitS) (nsf20548) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
1More

NSF/DOE Partnership in Basic Plasma Science and Engineering (nsf16564) | NSF - National... - 0 views

  •  
    The specific areas of interest are: 1. HED Hydrodynamics 2. Radiation-Dominated dynamics and Material Properties 3. Magnetized HED Plasma Physics 4. Nonlinear Optics of Plasmas and Laser-Plasma Interactions 5. Relativistic HED Plasmas and Intense Beam Physics 6. Warm Dense Matter 7. High-Z, Multiply Ionized HED Atomic Physics 8. Diagnostics for HED Laboratory Plasmas Proposed research efforts can include experimental, theoretical, and/or computational science. Applications integrating experiments, theory, and simulation are encouraged. Grant applications are sought in the following subfields and crosscutting areas of HED laboratory plasmas, as described in the Report of the 2009 Workshop on Basic Research Needs for High-Energy-Density Laboratory Physics.
1More

Office of Naval Research (ONR) Navy and Marine Corps Department of Defense University R... - 0 views

  •  
    1. Lithium-ion Battery Safety. Safety concerns continue to hamper full adoption of lithium-ion batteries for defense systems, despite significant research investments by the government and the private sector. This Defense initiative will advance promising lithium-ion battery safety technologies at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: improved electrolytes; stable high-energy anodes and cathodes; cell components and structures that enhance safety and reliability (e.g. use of electrode coatings and electrolyte additives); safety optimization through battery and battery module design and packaging; and battery management and state of health techniques that prevent and/or mitigate catastrophic failure. 2. Electrical Grid Reliability, Resiliency and Security. Both the defense and commercial sectors recognize the ever-growing criticality to enhance electrical grid reliability, resiliency and security through innovation at the component and system levels. This Defense initiative will advance relevant electrical grid innovations at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: advanced electrical power generation, transmission and distribution hardware and software; physical cyber secured industrial controls hardware and software; effective control of microgrids supporting high-dynamic loads; electrical grid protocols and controls to maintain secured operations of critical infrastructure under adverse conditions; hardening of e
1More

Thermal Transport Processes | NSF - National Science Foundation - 0 views

  •  
    The Thermal Transport Processes program is part of the Transport Phenomena cluster, which includes also 1) Combustion and Fire Systems; 2) Fluid Dynamics; and 3) Particulate and Multiphase Processes. The Thermal Transport Processes (TTP) program supports engineering research projects that lay the foundation for new discoveries in thermal transport phenomena. These projects should either develop new fundamental knowledge or combine existing knowledge in thermoDynamics, fluid mechanics, and heat and mass transfer to probe new areas of innovation. The program seeks transformative projects with the potential for improving our basic understanding, predictability and application of thermal transport processes. Projects should articulate the contribution(s) to the fundamental knowledge supporting thermal transport processes and state clearly the potential application(s) impact when appropriate. Projects that combine analytical, experimental and numerical efforts, geared toward understanding, modeling and predicting thermal phenomena, are of great interest. Collaborative and interdisciplinary proposals for which the main contribution is in thermal transport processes fundamentals are also encouraged.
« First ‹ Previous 61 - 80 of 90 Next ›
Showing 20 items per page