Skip to main content

Home/ OARS funding Engineering/ Group items matching ""data science"" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

Harnessing the Data Revolution (HDR): Institutes for Data-Intensive Research in Science... - 0 views

  •  
    NSF's Harnessing the Data Revolution (HDR) Big Idea is a national-scale activity to enable new modes of data-driven discovery that will allow fundamental questions to be asked and answered at the frontiers of science and engineering. Through this NSF-wide activity, HDR will generate new knowledge and understanding, and accelerate discovery and innovation. The HDR vision is realized through an interrelated set of efforts in:
1More

Semiconductor Synthetic Biology for Information Storage and Retrieval | NSF - National ... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II).  Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering.  Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies.  Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
1More

Semiconductor Synthetic Biology for Information Storage and Retrieval ... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II). Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering. Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies. Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
1More

Big Data Regional Innovation Hubs (BD Hubs) (nsf18598) | NSF - National Science Foundation - 0 views

  •  
    NSF's Directorate for Computer and Information Science and Engineering (CISE) initiated the National Network of Big Data Regional Innovation Hubs (BD Hubs) program in FY 2015 (NSF 15-562). Four Big Data Hubs (BD Hubs)-Midwest, Northeast, South, and West-were established, one in each of the four Census Regions of the United States [1]. The BD Hubs provide the ability to engage local or regional stakeholders, e.g., city, county, and state governments, local industry and non-profits, and regional academic institutions, in big data research, and permit a focus on regional issues. These collaborative activities and partnerships play a critical role in building and sustaining a successful national big data innovation ecosystem.
1More

Big Data Regional Innovation Hubs | NSF - National Science Foundation - 0 views

  •  
    NSF's Directorate for Computer and Information Science and Engineering (CISE) initiated the National Network of Big Data Regional Innovation Hubs (BD Hubs) program in FY 2015 (NSF 15-562). Four Big Data Hubs (BD Hubs)-Midwest, Northeast, South, and West-were established, one in each of the four Census Regions of the United States[1]. The BD Hubs provide the ability to engage local or regional stakeholders, e.g., city, county, and state governments, local industry and non-profits, and regional academic institutions, in big data research, and permit a focus on regional issues. These collaborative activities and partnerships play a critical role in building and sustaining a successful national big data innovation ecosystem.
1More

Centers of Excellence in Genomic Science (CEGS) (RM1) - 0 views

  •  
    The Centers of Excellence in Genomic Science (CEGS) program establishes academic Centers for advanced genome research.  Each CEGS grant supports a multi-investigator, interdisciplinary team to develop innovative genomic approaches to address a particular biomedical problem.  A CEGS project will address a critical issue in genomic science or genomic medicine, proposing a solution that would be a very substantial advance.  Thus, the research conducted at these Centers will entail substantial risk, balanced by outstanding scientific and management plans and very high potential payoff.  A CEGS will focus on the development of novel technological or computational methods for the production or analysis of comprehensive data sets, or on a particular genome-scale biomedical problem, or on other ways to develop and use genomic approaches for understanding biological systems and/or significantly furthering the application of genomic knowledge, data and methods towards clinical applications.  Exploiting its outstanding scientific plan and team, each CEGS will nurture genomic science at its institution by facilitating the interaction of investigators from different disciplines, and by providing training to new and experienced investigators, it will expand the pool of highly-qualified professional genomics scientists and engineers.
1More

Office of Advanced Cyberinfrastructure (OAC): Research Core Program (nsf18567) | NSF - ... - 0 views

  •  
    The Office of Advanced Cyberinfrastructure (OAC) supports translational research and education activities in all aspects of advanced cyberinfrastructure (CI) that lead to deployable, scalable, and sustainable systems capable of transforming science and engineering research. Advanced CI includes the spectrum of computational, data, software, networking, and security resources, tools, and services, along with the computational and data skills and expertise, that individually and collectively can transform science and engineering. OAC supports advanced CI research to address new CI frontiers for discovery leading to major innovations, and supports the development and deployment processes, as well as expert services, necessary for realizing the research CI that is critical to the advancement of all areas of science and engineering research and education.
1More

CubeSat-based Science Missions for Geospace and Atmospheric Research - 0 views

  •  
    Lack of essential observations from space is currently a major limiting factor in many areas of geospace andatmospheric research. Recent advances in sensor and spacecraft technolo­gies make it feasible to obtain key measurements from low-cost, small satellite missions. A particularly promising aspect of this development is the prospect for obtaining multi-point observations in space that are critical for addressing many outstanding problems in space and atmosphericsciences. Space-based measurements from small satellites also have great potential to advance discovery and understanding in geospace and atmospheric sciences in many other ways. To take full advantage of these developments, NSF is soliciting research proposals centered on small satellite missions. The overarching goal of the program is to support the development, construction, launch, operation, and data analysis of small satellite science missions to advancegeospace and atmospheric research. Equally important, it will provide essential opportunities to train the next generation of experimental space scientists and aerospace engineers. To facilitate launch of the satellites as secondary payloads on existing missions, the focus of the program is on CubeSat-based satellites. Launch of the satellites will mainly be through the standardized CubeSat deployment system, the Poly Picosatellite Orbital Deployer (P-POD). Launch of the P-PODS will be as auxiliary payloads on DOD, NASA, or commercial launches. This will be arranged after selection and is not part of this solicitation. This solicitation covers proposals for science missions to include satellite development, construction, testing and operation as well as data distribution and scientific analysis.
1More

Geospatial Cloud Analytics (GCA) - Federal Business Opportunities: Opportunities - 0 views

  •  
    The Defense Advanced Research Projects Agency (DARPA) is soliciting innovative proposals in the area of global scale, multimodal geospatial data cloud platform and analytics development. Proposed research should investigate innovative approaches that enable revolutionary advances in science, devices, or systems. Specifically excluded is research that primarily results in evolutionary improvements to the existing state of practice. GCA is a 24-month, three-phase program. At present, DARPA seeks innovative proposals covering the tasks in Phase 1 (6 month base effort) and Phase 2 (12 month costed option) of the program. Proposals must address both Phase 1 and Phase 2. Phase 3 will be the subject of a separate procurement. For Phases 1 and 2, DARPA seeks proposals in two technical areas (TAs). TA-1 (Scalable Geospatial Data Platform) will provide access to geospatial data and an extensible computing platform on which TA-2 performers can efficiently access and process massive amounts of curated geospatial data. TA-2 (Analytical Applications and Competitions) will create software for use in one or more of the analytics competitions (predicting food shortages, locating fracking construction detection, illegal fishing detection, open call) using data and platforms provided by TA-1 proposers. In Phase 1, DARPA anticipates making up to three awards for TA-1 and up to 16 awards for TA-2. A proposer may respond to one or both technical areas but a separate proposal is required for each TA. A TA-2 proposer can propose to one or more competition areas, using costed options if proposing to more than one competition.
1More

IRIS Research Awards | IRIS - 0 views

  •  
    The Institute for Research on Innovation and Science is accepting applications for its 2018 IRIS Awards, an annual program that supports researchers who use IRIS data to address questions about the social and economic returns of investments in research. Through the program, IRIS seeks to enable fundamental research on the results of public and private investments that support discovery, innovation, and education on the campuses of U.S. universities. Up to $15,000 for dissertations awards and up to $30,000 for early career and established researcher awards will be awarded to the recipient's institution. Funds can be used for personnel (e.g., research assistance, salaries, or stipend if recipient is a student), equipment, supplies, travel (may include travel mandated by the award), and other expenses (e.g., professional development and training). Awards may include 15 percent overhead or indirect costs to be paid as a part of the award total. Proposals must emphasize the use of IRIS data in projects that address open issues in the study of science and technology and science policy. Topics of particular interest include but are not limited to new methods to estimate social and economic return on investment for funding from various sources (federal, philanthropic, industrial, and institutional); the relationship between research training, career outcomes, and the downstream productivity of employers; the relationship between different funding sources and mechanisms and the structure and outcomes of collaboration within and across campuses; the distinctive contribution university research makes to regional economic development and resilience; and the effects different funding sources and mechanisms have on research teams and the productivity and efficiency of the academic research enterprise as a whole
1More

Campus Cyberinfrastructure (CC*) (nsf20507) | NSF - National Science Foundation - 0 views

  •  
    Science-driven requirements are the primary motivation for any proposed activity. Proposals will be evaluated on the strength of the science enabled (including research and education) as drivers for investment and innovation in data networking infrastructure, innovation and engineering. A common theme across all aspects of the CC* program is the critical importance of the partnership among campus-level CI experts, including the campus Information Technology (IT)/networking/data organization, contributing domain scientists, research groups, and educators necessary to engage in, and drive, new networking capabilities and approaches in support of scientific discovery. Proposals across the program should reflect and demonstrate this partnership on campus. Proposals will be evaluated on the strength of institutional partnerships, as they are expected to play a central role in developing and implementing the eventual network and data infrastructure upgrades.
1More

Critical Techniques, Technologies and Methodologies for Advancing Foundations and Appli... - 0 views

  •  
    The solicitation invites two categories of proposals: -Foundations (F): those developing or studying fundamental theories, techniques, methodologies, and technologies of broad applicability to big data problems, motivated by specific data challenges and requirements; and -Innovative Applications (IA): those engaged in translational activities that employ new big data techniques, methodologies, and technologies to address and solve problems in specific application domains. Projects in this category must be collaborative, involving researchers from domain disciplines and one or more methodological disciplines, e.g., computer science, statistics, mathematics, simulation and modeling, etc.
1More

CubeSat-based Science Missions for Geospace and Atmospheric Research (nsf18553) | NSF -... - 0 views

  •  
    Lack of essential observations from space is currently a major limiting factor in many areas of geospace and atmospheric research. Recent advances in sensor and spacecraft technologies make it feasible to obtain key measurements from low-cost, small satellite missions. A particularly promising aspect of this development is the prospect for obtaining multi-point observations in space that are critical for addressing many outstanding problems in space and atmospheric sciences. Space-based measurements from small satellites also have great potential to advance discovery and understanding in geospace and atmospheric sciences in many other ways. To take full advantage of these developments, NSF is soliciting research proposals centered on small satellite missions. The overarching goal of the program is to support the development, construction, launch, operation, and data analysis of small satellite science missions to advance geospace and atmospheric research. Equally important, it will provide essential opportunities to train the next generation of experimental space scientists and aerospace engineers.
1More

ROSES 2018: Planetary Major Equipment and Facilities - 0 views

  •  
    he National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) announces the release of its annual NASA Research Announcement (NRA), Research Opportunities in Space and Earth Sciences (ROSES) - 2018. ROSES is an omnibus NRA, with many individual program elements, each with its own due dates and topics. All together these cover the wide range of basic and applied supporting research and technology in space and Earth sciences supported by SMD. Awards will be made as grants, cooperative agreements, contracts, and inter- or intra-agency transfers, depending on the nature of the work proposed, the proposing organization, and/or program requirements. The typical period of performance for an award is three years, but some programs may allow up to five years and others specify shorter periods. Organizations of every type, domestic and foreign, Government and private, for profit and not-for-profit, may submit proposals without restriction on teaming arrangements. Note that it is NASA policy that all research involving non-U.S. organizations will be conducted on the basis of no exchange of funds. Awards range from under $100K per year for focused, limited efforts (e.g., data analysis) to more than $1M per year for extensive activities (e.g., development of hardware for science experiments and/or flight).
1More

Mid-Scale Innovations Program in Astronomical Sciences (MSIP) (nsf17592) | NSF - Nation... - 0 views

  •  
    A vigorous Mid-Scale Innovations Program (MSIP) was recommended by the 2010 Astronomy and Astrophysics Decadal Survey, citing "many highly promising projects for achieving diverse and timely science." As described in this solicitation, the Division of Astronomical Sciences has established a mid-scale program to support a variety of astronomical activities within a cost range up to $30M. This program will be formally divided into four subcategories: 1) limited term, self-contained science projects; 2) longer term mid-scale facilities; 3) development investments for future mid-scale and large-scale projects; and 4) community open access capabilities. The MSIP will emphasize both strong scientific merit and a well-developed plan for student training and involvement of a diverse workforce in instrumentation, facility development, or data management.
1More

Semiconductor Synthetic Biology for Information Processing and Storage Technologies | N... - 0 views

  •  
    New information technologies can be envisioned that are based on biological principles and that use biomaterials in the fabrication of devices and components; it is anticipated that these information technologies could enable stored data to be retained for more than 100 years and storage capacity to be 1,000 times greater than current capabilities. These could also facilitate compact computers that will operate with substantially lower power than today's computers. Research in support of these goals can have a significant impact on advanced information processing and storage technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, engineering, physics, chemistry, materials science, computer science, and information science that will enable heretofore-unanticipated breakthroughs as well as meet educational goals.
1More

Semiconductor Synthetic Biology for Information Storage and Retrieval - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II). Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering. Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies. Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
1More

Cybersecurity Innovation for Cyberinfrastructure (CICI) | NSF - National Science Founda... - 0 views

  •  
    Advancements in data-driven scientific research depend on trustworthy and reliable cyberinfrastructure. Researchers rely on a variety of networked technologies and software tools to achieve their scientific goals. These may include local or remote instruments, wireless sensors, software programs, operating systems, database servers, high-performance computing, large-scale storage, and other critical infrastructure connected by high-speed networking. This complex, distributed, interconnected global cyberinfrastructure ecosystem presents unique cybersecurity challenges. NSF-funded scientific instruments, sensors and equipment are specialized, highly-visible assets that present attractive targets for both unintentional errors and malicious activity; untrustworthy software or a loss of integrity of the data collected by a scientific instrument may mean corrupt, skewed or incomplete results. Furthermore, often data-driven research, e.g., in the medical field or in the social sciences, requires access to private information, and exposure of such data may cause financial, reputational and/or other damage.
2More

Chemical Measurement and Imaging | NSF - National Science Foundation - 0 views

  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
2More

International Research Network Connections | NSF - National Science Foundation - 0 views

  •  
    The International Research Network Connections (IRNC) program supports high-performance network connectivity required by international science and engineering research and education collaborations involving the NSF research community. NSF expects to make 1-2 awards to link U.S. research networks with peer networks in Europe and Africa and leverage existing international network connectivity. High-performance network connections funded by this program are intended to support science and engineering research and education applications, and preference will be given to solutions that provide the best economy of scale and demonstrate the ability to support the largest communities of interest with the broadest services. Funded projects will assist the U.S. research and education community by enabling state-of-the-art international network services and access to increased collaboration and data services. Through extended international network connections, additional research and production network services will be enabled, complementing those currently offered or planned by domestic research networks.
  •  
    The International Research Network Connections (IRNC) program supports high-performance network connectivity required by international science and engineering research and education collaborations involving the NSF research community. NSF expects to make 1-2 awards to link U.S. research networks with peer networks in Europe and Africa and leverage existing international network connectivity. High-performance network connections funded by this program are intended to support science and engineering research and education applications, and preference will be given to solutions that provide the best economy of scale and demonstrate the ability to support the largest communities of interest with the broadest services. Funded projects will assist the U.S. research and education community by enabling state-of-the-art international network services and access to increased collaboration and data services. Through extended international network connections, additional research and production network services will be enabled, complementing those currently offered or planned by domestic research networks.
« First ‹ Previous 61 - 80 of 217 Next › Last »
Showing 20 items per page