Skip to main content

Home/ OARS funding Engineering/ Group items tagged hardware

Rss Feed Group items tagged

2More

Advanced Technologies and Instrumentation | NSF - National Science Foundation - 0 views

  •  
    The Advanced Technologies and Instrumentation (ATI) program provides grants to support the development and construction of state-of-the-art astronomical detectors and instruments for the visible, infrared, submillimeter, and radio regions of the spectrum.  Successful proposals will involve the application of new hardware and software technology and/or innovative techniques in astronomical research in any of a broad range of fields, including (but not limited to) imaging instruments and spectrometers, semiconducting and superconducting detector arrays for astronomy, precision radial velocity hardware, polarization measurement hardware and techniques, correlator hardware, interferometric imaging, and adaptive optics.
  •  
    The Advanced Technologies and Instrumentation (ATI) program provides grants to support the development and construction of state-of-the-art astronomical detectors and instruments for the visible, infrared, submillimeter, and radio regions of the spectrum.  Successful proposals will involve the application of new hardware and software technology and/or innovative techniques in astronomical research in any of a broad range of fields, including (but not limited to) imaging instruments and spectrometers, semiconducting and superconducting detector arrays for astronomy, precision radial velocity hardware, polarization measurement hardware and techniques, correlator hardware, interferometric imaging, and adaptive optics.
1More

Electronics Resurgence Initiative: Page 3 Investments Architectures Thrust - 0 views

  •  
    The purpose of this amendment is to correct a typographical error in the abstract details on page 41. See the attached conformed BAA with changes highlighted in yellow. Amendment 01: The purpose of this amendment is to make administrative changes as highlighted in yellow in the attached.Original Synopsis Below:DARPA is soliciting innovative research proposals in the area of novel computing architectures. The Page 3 Architectures thrust of the Electronics Resurgence Initiative (ERI) seeks to demonstrate heterogeneous computing systems that provide the performance advantages of specialized processors, while maintaining the programmability of general purpose processors.The goal of the Software Defined Hardware (SDH) program is to build runtime-reconfigurable hardware and software that enables near ASIC performance without sacrificing programmability for data-intensive algorithms. SDH will create a hardware/software system that allows data-intensive algorithms to run at near ASIC efficiency without the cost, development time or single application limitations associated with ASIC development. The overall goal of the Domain-specific System on Chip (DSSoC) program is to develop a heterogeneous SoC comprised of many cores that mix general-purpose processors, special-purpose processors, hardware accelerators, memory, and input/output (I/O). DSSoC seeks to enable rapid development of multi-application systems through a single programmable device.
1More

Real-Time Machine Learning (RTML) | NSF - National Science Foundation (nsf19566) - 0 views

  •  
    The need to process large data sets arising in many practical problems require real-time learning from data streams makes high-performance hardware necessary, and yet the very nature of these problems, along with currently known algorithms for addressing them, imposes significant hardware challenges. Current versions of deep-learning algorithms operate by using millions of parameters whose optimal values need to be determined for good performance in real time on high-performance hardware. Conversely, the availability of fast hardware implementations can enable fuller use of Bayesian techniques, attractive for their ability to quantify prediction uncertainty and thus give estimates of reliability and prediction breakdown. The abilities of ML systems to self-assess for reliability and predict their own breakdowns (and also recover without significant ill effects) constitute critical areas for algorithm development as autonomous systems become widely deployed in both decision support and embodied AI agents. Only with attention to these challenges can we construct systems that are robust when they encounter novel situations or degradation and failure of sensors.
1More

NSF/Intel Partnership on Computer Assisted Programming for Heterogeneous Architectures ... - 0 views

  •  
    The NSF/Intel Partnership on Computer Assisted Programming for Heterogeneous Architectures (CAPA) aims to address the problem of effective software development for diverse hardware architectures through groundbreaking university research that will lead to a significant, measurable leap in software development productivity by partially or fully automating software development tasks that are currently performed by humans. The main research objectives for CAPA include programmer effectiveness, performance portability, and performance predictability. In order to address these objectives, CAPA seeks research proposals that explore (1) programming abstractions and/or methodologies that separate performance-related aspects of program design from how they are implemented; (2) program synthesis and machine learning approaches for automatic software construction that are demonstrably correct; (3) advanced hardware-based cost models and abstractions to support multi-target code generation and performance predictability for specified heterogeneous hardware architectures; and (4) integration of research results into principled software development practices.
1More

National Robotics Initiative 2.0: Ubiquitous Collaborative Robots - 0 views

  •  
    The goal of the National Robotics Initiative (NRI) is to support fundamental research that will accelerate the development and use of robots in the United States that work beside or cooperatively with people. The original NRI program focused on innovative robotics research that emphasized the realization of collaborative robots (co-robots) working in symbiotic relationships with human partners. The NRI-2.0 program significantly extends this theme to focus on issues of scalability: how teams of multiple robots and multiple humans can interact and collaborate effectively; how robots can be designed to facilitate achievement of a variety of tasks in a variety of environments, with minimal modification to the hardware and software; how robots can learn to perform more effectively and efficiently, using large pools of information from the cloud, other robots, and other people; and how the design of the robots’ hardware and software can facilitate large-scale, reliable operation
1More

National Robotics Initiative 2.0: Ubiquitous Collaborative Robots | NSF - National Scie... - 0 views

  •  
    The goal of the National Robotics Initiative (NRI) is to support fundamental research that will accelerate the development and use of robots in the United States that work beside or cooperatively with people. The original NRI program focused on innovative robotics research that emphasized the realization of collaborative robots (co-robots) working in symbiotic relationships with human partners. The NRI-2.0 program significantly extends this theme to focus on issues of scalability: how teams of multiple robots and multiple humans can interact and collaborate effectively; how robots can be designed to facilitate achievement of a variety of tasks in a variety of environments, with minimal modification to the hardware and software; how robots can learn to perform more effectively and efficiently, using large pools of information from the cloud, other robots, and other people; and how the design of the robots' hardware and software can facilitate large-scale, reliable operation. In addition, the program supports innovative approaches to establish and infuse robotics into educational curricula, advance the robotics workforce through education pathways, and explore the social, behavioral, and economic implications of our future with ubiquitous collaborative robots. Collaboration between academic, industry, non-profit, and other organizations is encouraged to establish better linkages between fundamental science and engineering and technology development, deployment and use. Well-justified international collaborations that add significant value to the proposed research and education activities will also be considered.
1More

The Chan Zuckerberg Initiative Imaging Scientists - 0 views

  •  
    The Chan Zuckerberg Initiative (CZI) seeks to support up to 10 Imaging Scientists who will work at the interface of biology, microscopy hardware, and imaging software at imaging centers across the United States. "Imaging Scientists" might be engineers, physicists, mathematicians, computer scientists, or biologists who have focused on technology development in either microscopy or data analysis fields. The primary goal of the program is to increase interactions between biologists and technology experts. The Imaging Scientists will have expertise in microscopy hardware and/or imaging software. A successful "Imaging Program" will employ an Imaging Scientist who: a) works collaboratively with experimental biologists on projects at the imaging center; b) participates in courses that disseminate advanced microscopy methods and analysis; c) trains students and postdocs in imaging technology; d) participates in a network of CZI Imaging Scientists to identify needs and drive advances in the imaging field; e) attends twice-yearly CZI scientific workshops and meetings in imaging and adjacent biomedical areas. Each grant will fund salary and fringe benefits for an Imaging Scientist at the center, a modest travel and teaching budget, plus 15% indirect costs. The award period is three years plus an additional two years if the Imaging Program passes a review at year three.
1More

US Special Operations Command Broad Agency Announcement - 0 views

  •  
    This BAA is intended to solicit extramural research and development ideas, and is issued under the provisions of the Competition in Contracting Act of 1984 (Public Law 98-369), as implemented in Federal Acquisition Regulation 6.102(d) (2) and 35.016. This announcement provides a general description of USSOCOM's research areas of interest, general information, evaluation and selection criteria, and proposal/application preparation instructions. In accordance with FAR 6.102, projects funded under this announcement must be for basic and applied research and that part of development not related to the development of a specific system or hardware procurement. Projects must be for scientific study and experimentation directed toward advancing the state-of-the-art or increasing knowledge or understanding. Projects that are for the development of a specific system or hardware procurement will not be considered. The selection process is highly competitive and the quantity of meaningful proposal/applications (both pre-proposal/pre-applications and full proposal/full applications) typically received exceed the number of awards that available funding can support. This BAA provides a general description of USSOCOM's research and development programs, including research areas of interest, evaluation and selection criteria, pre-proposal/pre-application and full proposal/application preparation instructions, and general administrative information. Specific submission information and additional administrative requirements can be found in the document titled "General Submission Instructions" available in Grants.gov along with this BAA.
1More

Quantum Testbed Pathfinder - 0 views

  •  
    The Department of Energy's (DOE) Office of Advanced Scientific Computing Research (ASCR) announces its interest in receiving applications to explore of the suitability of various implementations of quantum computing hardware for science applications. This foundational research will facilitate the development of device architectures well-suited for scientific applications of quantum computing and improve our understanding of the advantages and limitations of various approaches to quantum computing for science applications. The purpose of this FOA is to invite applications for foundational research in the following two areas: 1. Exploring the relationship between device architecture and application performance 2. Developing meaningful metrics for evaluating the suitability of quantum computing hardware for science applications Applications may address one or both of these themes. Proposed research should focus on devices that are already available or that become available during the term of the award rather than large-scale, high-fidelity, fault-tolerant machines. Funded teams will be expected to collaborate externally with researchers working to develop applications and algorithms that can expand the frontiers of scientific discovery. Funded teams will also be expected to participate in community engagement activities that support the growth of an active, integrated research community committed to the common goal of developing quantum computing resources for advancing scientific discovery. Topics that are out of scope include: development and optimization of quantum algorithms; development of new candidate qubit systems; schemes based on qubits that have not yet demonstrated high-fidelity gates; schemes to improve the performance and functionality of qubits; quantum transduction; quantum communication, networking, and key distribution; cryptography and cryptanalysis; and logical qubits beyond considerations given to scaling to ~10 qubit devices.
1More

National Robotics Initiative 2.0: Ubiquitous Collaborative Robots (NRI-2.0) (nsf19536) ... - 0 views

  •  
    The program supports four main research thrusts that are envisioned to advance the goal of ubiquitous co-robots: scalability, customizability, lowering barriers to entry, and societal impact. Topics addressing scalability include how robots can collaborate effectively with multiple humans or other robots; how robots can perceive, plan, act, and learn in uncertain, real-world environments, especially in a distributed fashion; and how to facilitate large-scale, safe, robust and reliable operation of robots in complex environments. Customizability includes how to enable co-robots to adapt to specific tasks, environments, or people, with minimal modification to hardware and software; how robots can personalize their interactions with people; and how robots can communicate naturally with humans, both verbally and non-verbally. Topics in lowering barriers to entry should focus on lowering the barriers for conducting fundamental robotics research and research on integrated robotics application. This may include development of open-source co-robot hardware and software, as well as widely-accessible testbeds. Outreach or using robots in educational programs do not, by themselves, lower the barriers to entry for robotics research. Topics in societal impact include fundamental research to establish and infuse robotics into educational curricula, advance the robotics workforce through education pathways, and explore the social, economic, ethical, and legal implications of our future with ubiquitous collaborative robots.
1More

Real-Time Machine Learning | NSF - National Science Foundation - 0 views

  •  
    A grand challenge in computing is the creation of machines that can proactively interpret and learn from data in real time, solve unfamiliar problems using what they have learned, and operate with the energy efficiency of the human brain. While complex machine-learning algorithms and advanced electronic hardware (henceforth referred to as 'hardware') that can support large-scale learning have been realized in recent years and support applications such as speech recognition and computer vision, emerging computing challenges require real-time learning, prediction, and automated decision-making in diverse domains such as autonomous vehicles, military applications, healthcare informatics and business analytics.
1More

EXPLORATION TECHNOLOGY DEMONSTRATION AND NATIONAL LAB UTILIZATION ENHANCEMENTSView Oppo... - 0 views

  •  
    The NRA is for the development of experiment hardware with enhanced capabilities; modification of existing hardware to enable increased efficiencies (crew time, power, etc.); development of tools that allow analyses of samples and specimens on orbit; enhanced ISS infrastructure capabilities (ex. Communications or data processing); and specific technology demonstration projects. Upon its release date this NRA will be available electronically through NSPIRES at http://nspires.nasaprs.com/external/ by selecting NASA Research Announcement: NNJ13ZBG001N.Participation is open to all categories of organizations, domestic, including industry, educational institutions, nonprofit organizations, NASA centers, and other Government agencies except for foreign entities.Proposal due dates are listed in the NRA. The electronic submission of each proposal's Cover Page/Proposal Summary/Budget Summary is required by the due date for proposal submission.Notwithstanding the posting of this opportunity at FedBizOpps.gov, nspires.nasaprs.com/external, or at both sites, NASA reserves the right to determine the appropriate award instrument for each proposal selected pursuant to this announcement.Designate the appropriate technical points of contact as appropriate, such as:Direct questions specifically regarding this solicitation to: Miyoshi J. Thompson, Contracting Officer, 2101 NASA Parkway, Houston, TX 77058; 281.244.1683; miyoshi.thompson-1@nasa.gov
1More

ROSBio Appendix E: Solicitation of Proposals to Conduct Research In Parabolic and Subor... - 0 views

  •  
    "Solicitation of Proposals to Conduct Research In Parabolic and Suborbital Flights" NASA Research Announcement (NRA) Appendix E - NNH16ZTT001N-PS NRA This National Aeronautics and Space Administration Research Announcement: "Solicitation of Proposals to Conduct Research In Parabolic and Suborbital Flights" is an Appendix to the NASA Omnibus Research Announcement ROSBio-2016 (NNH16ZTT001N NRA). This Appendix solicits proposals for Space Biology research projects that will use parabolic and/or suborbital flights to assess how biological systems respond during transient changes in gravity. Investigators may propose to use existing flight hardware or custom-designed equipment to study a diverse group of biological systems including cells, tissues, microorganisms, plants, or animals. Proposals must address Space Biology research emphases, visions, and goals identified in the ROSBio-2016 Omnibus NRA or in the Space Biology Science Plan 2016-2025, and/or recommendations from the Decadal Survey. NASA intends to make up to 5 awards for a maximum of three years each, with a total budget of $300K each (direct and indirect costs), which includes the flight(s), PI laboratory work, experiment-unique equipment/hardware, data acquisition and processing costs. Upon selection, the proposing investigator will be responsible for making all arrangements for the procurement of parabolic or sub-orbital flight opportunities and ensuring the availability of the proposed flight platform.
1More

Office of Naval Research (ONR) Navy and Marine Corps Department of Defense University R... - 0 views

  •  
    1. Lithium-ion Battery Safety. Safety concerns continue to hamper full adoption of lithium-ion batteries for defense systems, despite significant research investments by the government and the private sector. This Defense initiative will advance promising lithium-ion battery safety technologies at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: improved electrolytes; stable high-energy anodes and cathodes; cell components and structures that enhance safety and reliability (e.g. use of electrode coatings and electrolyte additives); safety optimization through battery and battery module design and packaging; and battery management and state of health techniques that prevent and/or mitigate catastrophic failure. 2. Electrical Grid Reliability, Resiliency and Security. Both the defense and commercial sectors recognize the ever-growing criticality to enhance electrical grid reliability, resiliency and security through innovation at the component and system levels. This Defense initiative will advance relevant electrical grid innovations at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: advanced electrical power generation, transmission and distribution hardware and software; physical cyber secured industrial controls hardware and software; effective control of microgrids supporting high-dynamic loads; electrical grid protocols and controls to maintain secured operations of critical infrastructure under adverse conditions; hardening of e
1More

Novel Function Based on Information Obtained from Human Faces - 0 views

  •  
    Hardware and/or software technologies to obtain the following kinds of information from a human face through cameras or other devices. Any types of measurement hardware including devices employing infrared, sonic, voice recognition or other technologies should be in the scope.
1More

National Robotics Initiative 2.0: Ubiquitous Collaborative Robots (NRI-2.0) (nsf18518) ... - 0 views

  •  
    The program supports four main research thrusts that are envisioned to advance the goal of ubiquitous co-robots: scalability, customizability, lowering barriers to entry, and societal impact. Topics addressing scalability include how robots can collaborate effectively with multiple humans or other robots; how robots can perceive, plan, act, and learn in uncertain, real-world environments, especially in a distributed fashion; and how to facilitate large-scale, safe, robust and reliable operation of robots in complex environments. Customizability includes how to enable co-robots to adapt to specific tasks, environments, or people, with minimal modification to hardware and software; how robots can personalize their interactions with people; and how robots can communicate naturally with humans, both verbally and non-verbally. Topics in lowering barriers to entry include development of open-source co-robot hardware and software, as well as widely-accessible testbeds. Topics in societal impact include fundamental research to establish and infuse robotics into educational curricula, advance the robotics workforce through education pathways, and explore the social, economic, ethical, and legal implications of our future with ubiquitous collaborative robots.
1More

National Robotics Initiative 2.0: Ubiquitous Collaborative Robots (NRI-2.0) (nsf18518) ... - 0 views

  •  
    The program supports four main research thrusts that are envisioned to advance the goal of ubiquitous co-robots: scalability, customizability, lowering barriers to entry, and societal impact. Topics addressing scalability include how robots can collaborate effectively with multiple humans or other robots; how robots can perceive, plan, act, and learn in uncertain, real-world environments, especially in a distributed fashion; and how to facilitate large-scale, safe, robust and reliable operation of robots in complex environments. Customizability includes how to enable co-robots to adapt to specific tasks, environments, or people, with minimal modification to hardware and software; how robots can personalize their interactions with people; and how robots can communicate naturally with humans, both verbally and non-verbally. Topics in lowering barriers to entry include development of open-source co-robot hardware and software, as well as widely-accessible testbeds. Topics in societal impact include fundamental research to establish and infuse robotics into educational curricula, advance the robotics workforce through education pathways, and explore the social, economic, ethical, and legal implications of our future with ubiquitous collaborative robots.
1More

Electronics Resurgence Initiative: Page 3 Investments Design Thrust - 0 views

  •  
    DARPA is soliciting innovative research proposals in the area of physical design of electronic circuits and systems. Proposed research should investigate innovative approaches that enable revolutionary advances in science, devices, or systems. The Design thrust of the Electronics Resurgence Initiative (ERI): Page 3 Investments will address today's System-On-Chip (SoC) design complexity and cost barriers, creating the environment needed for the next wave of US semiconductor innovation. Programs within this thrust will develop the algorithms and software required to realize a unified layout generator that will enable fully automated "no human in the loop" physical design of SoCs, system-in-packages (SiPs), and printed circuit boards (PCBs) in 24 hours. In parallel, programs will create the building blocks, validation methodologies, and infrastructure required for a scalable open source hardware ecosystem, bringing best practices in software to hardware design.
1More

National Robotics Initiative 2.0: Ubiquitous Collaborative Robots - 0 views

  •  
    The program supports four main research themes that are envisioned to advance the goal of ubiquitous co-robots:scalability,customizability,lowering barriers to entry, andsocietal impact,includinghuman safety. Topics addressingscalabilityinclude how robots can collaborate effectively with orders of magnitude more humans or other robots than is handled by the current state of the art; how robots can perceive, plan, act, and learn in uncertain, real-world environments, especially in a distributed fashion; and how to facilitate large-scale, safe, robust and reliable operation of robots in complex environments.Customizabilityincludes how to enable co-robots to adapt to specific different tasks, environments, or people, with minimal modification to hardware and software; how robots can personalize their interactions with people; and how robots can communicate naturally with humans, both verbally and non-verbally. Topics inlowering barriers to entryshould focus on lowering the barriers for conducting fundamental roboticsresearchand research on integrated robotics application. This may include development of open-source co-robot hardware and software, as well as widely-accessible testbeds. Outreach or using robots in educational programs do not, by themselves, lower the barriers to entry for robotics research. Topics insocietal impactinclude fundamental research to establish and infuse robotics into educational curricula, advance the robotics workforce through education pathways, and explore the social, economic, ethical, security, and legal implications of our future with ubiquitous collaborative robots.
1More

Principles and Practice of Scalable Systems - 0 views

  •  
    A key focus of the design of modern computing systems is performance and scalability, particularly in light of the limits of Moore's Law and Dennard scaling. To this end, systems are increasingly being implemented by composingheterogeneous computing componentsand continually changing memory systems as novel, performant hardware surfaces. Applications fueled by rapid stridesin machine learning, data analysis, and extreme-scale simulation are becoming more domain-specific and highly distributed. In this scenario, traditional boundaries between hardware-oriented and software-oriented disciplines increasingly are blurred.
1 - 20 of 64 Next › Last »
Showing 20 items per page