Skip to main content

Home/ OARS funding Engineering/ Group items tagged behavior

Rss Feed Group items tagged

MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates. The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems. Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability. Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

Design of Engineering Material Systems - 0 views

  •  
    The Design of Engineering Material Systems (DEMS) program supports fundamental research intended to lead to new paradigms of design, development, and insertion of advanced engineering material systems. Fundamental research that develops and creatively integrates theory, processing/manufacturing, data/informatics, experimental, and/or computational approaches with rigorous engineering design principles, approaches, and tools to enable the accelerated design and development of materials is welcome. Research proposals are sought that strive to develop systematic scientific methodologies to tailor the behavior of material systems in ways that are driven by performance metrics and incorporate processing/manufacturing. While an emphasis on a specific material system may be appropriate to provide the necessary project focus, techniques developed should transcend materials systems. Ultimately it is expected that research outcomes will be methodologies to enable the discovery of materials systems with new properties and behavior, and enable their rapid insertion into engineering systems.Proposals that focus on modeling, simulation, and prediction of material performance (even when research is coupled with experiments for validation or guidance) without an intellectual emphasis on design are not appropriate for this program and should be submitted to other disciplinary programs.
MiamiOH OARS

Secure and Trustworthy Cyberspace - 0 views

  •  
    Achieving a truly secure cyberspace requires addressing both challenging scientific and engineering problems involving many components of a system, and vulnerabilities that stem from human behaviors and choices. Examining the fundamentals of security and privacy as a multidisciplinary subject can lead to fundamentally new ways to design, build and operate cyber systems, protect existing infrastructure, and motivate and educate individuals about cybersecurity. The goals of the SaTC program are aligned with theFederal Cybersecurity Research and Development Strategic Plan (RDSP) and the National Privacy Research Strategy (NPRS) to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.The SaTC program welcomes proposals that address cybersecurity and privacy, and draw on expertise in one or more of these areas: computing, communication and information sciences; engineering; economics; education; mathematics; statistics; and social and behavioral sciences. Proposals that advance the field of cybersecurity and privacy within a single discipline or interdisciplinary efforts that span multiple disciplines are both encouraged.
MiamiOH OARS

Smart and Autonomous Systems - 0 views

  •  
    The Smart and Autonomous Systems (S&AS) program focuses on Intelligent Physical Systems (IPS) that are capable of robust, long-term autonomy requiring minimal or no human operator intervention in the face of uncertain, unanticipated, and dynamically changing situations. IPS are systems that combine perception, cognition, communication, and actuation to operate in the physical world. Examples include, but are not limited to, robotic platforms, self-driving vehicles, underwater exploration vehicles, and smart grids. Most current IPS operate in pre-programmed ways and in a limited variety of contexts. They are largely incapable of handling novel situations, or of even understanding when they are outside their areas of expertise. To achieve robust, long-term autonomy, however, future IPS need to be aware of their capabilities and limitations and to adapt their behaviors to compensate for limitations and/or changing conditions. To foster such intelligent systems, the S&AS program supports research in four main aspects of IPS: cognizant, taskable, adaptive, and ethical. Cognizant IPS exhibit high-level awareness of their own capabilities and limitations, anticipating potential failures and re-planning accordingly. Taskable IPS can interpret high-level, possibly vague, instructions, planning out and executing concrete actions that are dependent on the particular context in which the system is operating. Adaptive IPS can change their behaviors over time, learning from their own experiences and those of other entities, such as other IPS or humans, and from instruction or observation. Ethical IPS should adhere to a system of societal and legal rules, taking those rules into account when making decisions. Each of these research areas requires the IPS to be knowledge-rich, employing a variety of representation and reasoning mechanisms, such as semantic, probabilistic, commonsense, and meta-reasoning.
MiamiOH OARS

Critical Resilient Interdependent Infrastructure Systems and Processes FY17 (CRISP) (ns... - 0 views

  •  
    The CRISP solicitation seeks to fund projects likely to produce new knowledge that can contribute to making ICI services more effective, efficient, dependable, adaptable, resilient, safe, and secure, taking into account the human systems in which they are embedded. Successful proposals are expected to study multiple infrastructures focusing on them as interdependent systems that deliver services, enabling a new interdisciplinary paradigm in infrastructure research. To meet the interdisciplinary criterion, proposals must broadly integrate across engineering, computer, information and computational science, and the social, behavioral and economic sciences.
  •  
    The CRISP solicitation seeks to fund projects likely to produce new knowledge that can contribute to making ICI services more effective, efficient, dependable, adaptable, resilient, safe, and secure, taking into account the human systems in which they are embedded. Successful proposals are expected to study multiple infrastructures focusing on them as interdependent systems that deliver services, enabling a new interdisciplinary paradigm in infrastructure research. To meet the interdisciplinary criterion, proposals must broadly integrate across engineering, computer, information and computational science, and the social, behavioral and economic sciences.
MiamiOH OARS

Innovative Approaches to Studying Cancer Communication in the New Media Environment (R0... - 0 views

  •  
    This Funding Opportunity Announcement (FOA) invites applications that seek to apply one or more innovative methodologies in communication research across the cancer control continuum, from prevention, early detection, diagnosis, treatment, and survivorship, to end of life. Applications to this FOA should utilize one or more of the following analytic approaches, methods, and data sources, including but not limited to social media data mining, Natural Language Processing (NLP) techniques, online social network analysis, crowdsourcing research tools (e.g., mTurk), online search data, Ecological Momentary Assessment, neuroscience and biobehavioral approaches to communication, and geographic information systems. Studies should assess outcomes related to cancer prevention and control (e.g., knowledge, attitudes, beliefs, perceived risk, decision making in screening and treatment, information inequalities, social support, shared decision making, persuasion, caregiving, behavioral intentions, preventive behaviors, and policy support, among others). Also listed under R21
MiamiOH OARS

Critical Resilient Interdependent Infrastructure Systems and Processes | NSF - National... - 0 views

  •  
    This CRISP 2.0 solicitation responds both to national needs on the resilience of critical infrastructures and to increasing NSF emphasis on transdisciplinary research. In this context, the solicitation is one element of the NSF-wide Risk and Resilience activity, with the overarching goal of advancing knowledge in support of improvement of the nation's infrastructure resilience. The devastating effects of recent disasters such as Hurricanes Harvey, Irma and Maria have underscored that a great deal remains to be done. In addition, CRISP 2.0 is aligned with the NSF-wide frontier thinking on convergence, characterized as "deep integration of knowledge, techniques, and expertise from multiple fields to form new and expanded frameworks for addressing scientific and societal challenges and opportunities". The Directorate of Engineering and the Directorate of Social, Behavioral, and Economic Sciences therefore jointly invest in the CRISP 2.0 solicitation to stimulate the integration of engineering, and social, behavioral and economic sciences to foster new paradigms and domains in interdependent critical infrastructures.
MiamiOH OARS

Particulate and Multiphase Processes - 0 views

  •  
    The Particulate and Multiphase Processes program is part of the Transport Phenomena cluster, which also includes 1) the Combustion and Fire Systems program; 2) the Fluid Dynamics program; and 3) the Thermal Transport Processes program. The goal of the Particulate and Multiphase Processes program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, unique characteristics of active fluids, and self assembly/directed-assembly processes that involve particulates. The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems. Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability. Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

Understanding and Modifying Temporal Dynamics of Coordinated Neural Activity (R01) - 0 views

  •  
    This funding opportunity supports projects that test whether modifying electrophysiological patterns during behavior can improve cognitive, affective, or social processing. Applications must use experimental designs that incorporate active manipulations to address at least one, and ideally more, of the following topics: (1) in animals or humans, determine which parameters of neural coordination, when manipulated in isolation, improve particular aspects of cognitive, affective, or social processing; (2) in animals or humans, determine how particular abnormalities at the genomic, molecular, or cellular levels affect the systems-level coordination of electrophysiological patterns during behavior; (3) determine whether in vivo, systems-level electrophysiological changes in behaving animals predict analogous electrophysiological and cognitive improvements in healthy persons or clinical populations; and (4) use biologically-realistic computational models that include systems-level aspects to understand the function and mechanisms by which oscillatory and other electrophysiological patterns unfold across the brain to impact cognitive, affective, or social processing.
MiamiOH OARS

Diet and Physical Activity Assessment Methodology (R01 Clinical Trial Optional) - 0 views

  •  
    This Funding Opportunity Announcement (FOA) encourages innovative research to enhance the quality of measurements of dietary intake and physical activity. Applications submitted under this FOA are encouraged to include development of: novel assessment approaches; better methods to evaluate instruments; assessment tools for culturally diverse populations or various age groups, including children and older adults; improved technology or applications of existing technology; statistical methods/modeling to improve assessment and/or to correct for measurement errors or biases; methods to investigate the multidimensionality of diet and physical activity behavior through pattern analysis; or integrated measurement of diet and physical activity along with the environmental context of such behaviors.
MiamiOH OARS

nsf.gov - Funding - Infrastructure Management and Extreme Events - US National Science ... - 0 views

  •  
    The IMEE program focuses on the impact of large-scale hazards on civil infrastructure and society and on related issues of preparedness, response, mitigation, and recovery.  The program supports research to integrate multiple issues from engineering, social, behavioral, political, and economic sciences.  It supports fundamental research on the interdependence of civil infrastructure and society, development of sustainable infrastructures, and civil infrastructure vulnerability and risk reduction.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The purpose of this FOA is to seek, identify and support bold and innovative approaches to broaden graduate and postdoctoral training, such that training programs reflect the range of career options that trainees (regardless of funding source) ultimately may pursue and that are required for a robust biomedical, behavioral, social and clinical research enterprise. Collaborations with non-academic partners are encouraged to ensure that experts from a broad spectrum of research and research-related careers contribute to coursework, rotations, internships or other forms of exposure. This program will establish a new paradigm for graduate and postdoctoral training; awardee institutions will work together to define needs and share best practices.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling.
MiamiOH OARS

A--Broad Agency Announcement (BAA) through the Naval Facilities Command for the Living ... - 0 views

  •  
    The Naval Facilities Command, through the Living Marine Resources applied science program (LMR), is soliciting pre-proposals for efforts related to any one of the six (6) themes listed below.  1. Data and Tools for the Assessment and Mitigation of Effects from Construction Noise (LMR N-0001-13).  2. Passive Acoustic Monitoring (PAM) Technology Demonstrations (LMR N-0006-13). 3. Behavioral Responses to Navy Sound Sources (LMR N-0011-13).  4. Hearing and Auditory System Information for Hearing-Based Risk Criteria (N-0012-13).  5. Demonstration and Evaluation of Platform-Independent Improvements to Automated Signal Processing of Passive Acoustic Monitoring (PAM) Data (LMR N0020-13).  6. Capability Development for Hearing Data Collection (LMR N0029-13).
MiamiOH OARS

nsf.gov - Funding - Interdisciplinary Research in Hazards and Disasters - US National S... - 0 views

  •  
    Hazards SEES seeks research projects that will productively cross the boundaries of the atmospheric and geospace, earth, and ocean sciences; computer and information science; cyberinfrastructure; engineering; mathematics and statistics; and social, economic, and behavioral sciences. Successful proposals will integrate across these multiple disciplines to promote research that advances new paradigms that contribute to creating a society resilient to hazards. Hazards SEES intends to transform hazards and disaster research by fostering the development of interdisciplinary research that allows for appropriately targeted data collection, integration, and management; modeling (including predictive models for real-time decision making); visualization and simulation; data analytics and data-driven discovery; real-time sensing; cross-cutting knowledge development; and synthesis of applicable models and theory. 
MiamiOH OARS

nsf.gov - Funding - Smart and Connected Health - US National Science Foundation (NSF) - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling.
MiamiOH OARS

Secure and Trustworthy Cyberspace | NSF - National Science Foundation - 0 views

  •  
    The SaTC program welcomes proposals that address cybersecurity and privacy, and draw on expertise in one or more of these areas: computing, communication and information sciences; engineering; economics; education; mathematics; statistics; and social and behavioral sciences. Proposals that advance the field of cybersecurity and privacy within a single discipline or interdisciplinary efforts that span multiple disciplines are both encouraged.
MiamiOH OARS

Integrative Strategies for Understanding Neural and Cognitive Systems - 0 views

  •  
    The complexities of brain and behavior pose fundamental questions in many areas of science and engineering, drawing intense interest across a broad spectrum of disciplinary perspectives while eluding explanation by any one of them. Rapid advances within and across disciplines are leading to an increasingly interconnected fabric of theories, models, empirical methods and findings, and educational approaches, opening new opportunities to understand complex aspects of neural and cognitive systems through integrative multidisciplinary approaches. This program calls for innovative, integrative, boundary-crossing proposals that can best capture those opportunities. NSF seeks proposals that are bold, risky, and transcend the perspectives and approaches typical of single-discipline research efforts
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
‹ Previous 21 - 40 of 191 Next › Last »
Showing 20 items per page