Skip to main content

Home/ OARS funding Engineering/ Group items tagged astronomy

Rss Feed Group items tagged

MiamiOH OARS

Management and Operations of the Arecibo Observatory | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) hereby solicits proposals to manage and operate the Arecibo Observatory (AO). The AO is a multidisciplinary research and education facility. AO's cornerstone research instrument is a 305-meter diameter fixed spherical reflector, located on approximately 120 acres of U.S. Federal Government-owned land near Arecibo, Puerto Rico. AO conducts research in passive radio astronomy, solar system radar astronomy, and space and atmospheric sciences.
MiamiOH OARS

Applications Invited for Sigma Xi Student Science and Engineering Research Grants | RFP... - 0 views

  •  
    Sigma Xi, a society of research scientists and engineers that rewards excellence in research and cooperation among scientists in all fields, has been providing undergraduate and graduate students with valuable educational experiences and financial support for more than eighty years. By encouraging close working relationships between students and faculty, the society promotes scientific achievement through hands-on learning. Through the Sigma Xi Grants-in-Aid of Research program, the society awards grants of up to $1,000 to students from all areas of the sciences and engineering. Designated funds from the National Academy of Sciences allow for grants of up to $5,000 for astronomy research and $2,500 for vision-related research. Funding can support travel expenses or nonstandard laboratory equipment necessary to complete a specific research project. While membership in Sigma Xi is not a requirement for applying for funding, approximately 75 percent of Grants-in-Aid of Research funds are restricted for use by dues-paying student members or students whose project advisor is a dues-paying member. Students from any country are eligible to receive funding. Complete program guidelines and application instructions are available on the Sigma Xi Web site.
MiamiOH OARS

Faculty Development in the Space Sciences | NSF - National Science Foundation - 0 views

  •  
    The Geospace Section of the Division of Atmospheric and Geospace Sciences is pleased to offer awards for the creation of new tenure-track faculty positions within the intellectual disciplines which comprise the space sciences to ensure the health and vitality of solar and space sciences on university teaching faculties. The aim of these awards is to integrate research topics in solar and space physics into basic physics, astronomy, electrical engineering, geoscience, meteorology, computer science, and applied mathematics programs, and to develop space physics graduate programs capable of training the next generation of leaders in this field. Space Science is interdisciplinary in nature and the Faculty Development in the Space Sciences awardees will be expected to establish partnerships within the university community.  NSF funding will support the entire academic year salary and benefits of the newly recruited tenure-track faculty member for a duration of up to five years with a total award amount not to exceed $1,500,000.
MiamiOH OARS

Advanced Technologies and Instrumentation | NSF - National Science Foundation - 0 views

  •  
    The Advanced Technologies and Instrumentation (ATI) program provides grants to support the development and construction of state-of-the-art astronomical detectors and instruments for the visible, infrared, submillimeter, and radio regions of the spectrum.  Successful proposals will involve the application of new hardware and software technology and/or innovative techniques in astronomical research in any of a broad range of fields, including (but not limited to) imaging instruments and spectrometers, semiconducting and superconducting detector arrays for astronomy, precision radial velocity hardware, polarization measurement hardware and techniques, correlator hardware, interferometric imaging, and adaptive optics.
  •  
    The Advanced Technologies and Instrumentation (ATI) program provides grants to support the development and construction of state-of-the-art astronomical detectors and instruments for the visible, infrared, submillimeter, and radio regions of the spectrum.  Successful proposals will involve the application of new hardware and software technology and/or innovative techniques in astronomical research in any of a broad range of fields, including (but not limited to) imaging instruments and spectrometers, semiconducting and superconducting detector arrays for astronomy, precision radial velocity hardware, polarization measurement hardware and techniques, correlator hardware, interferometric imaging, and adaptive optics.
MiamiOH OARS

Faculty Development in the Space Sciences - 0 views

  •  
    The Geospace Section of the Division of Atmospheric and Geospace Sciences, to ensure the health and vitality of solar and space sciences on university teaching faculties, is pleased to offer awards for the creation of new tenure-track faculty positions within the intellectual disciplines which comprise the space sciences. The aim of these awards is to integrate research topics in solar and space physics into basic physics, astronomy, electrical engineering, geoscience, meteorology, computer science, and applied mathematics programs, and to develop space physics graduate programs capable of training the next generation of leaders in this field. Space Science is interdisciplinary in nature and the Faculty Development in the Space Sciences awardees will be expected to establish partnerships within the university community.
MiamiOH OARS

Mid-Scale Innovations Program | NSF - National Science Foundation - 0 views

  •  
    A vigorous Mid-Scale Innovations Program (MSIP) was recommended by the 2010 Astronomy and Astrophysics Decadal Survey, citing "many highly promising projects for achieving diverse and timely science." As described in this solicitation, the Division of Astronomical Sciences has established a mid-scale program to support a variety of astronomical activities within a cost range up to $30M. This program will be formally divided into four subcategories: 1) limited term, self-contained science projects; 2) longer term mid-scale facilities; 3) development investments for future mid-scale and large-scale projects; and 4) community open access capabilities. The MSIP will emphasize both strong scientific merit and a well-developed plan for student training and involvement of a diverse workforce in instrumentation, facility development, or data management.
MiamiOH OARS

Spectrum Innovation Initiative: National Center for Wireless Spectrum Research - 0 views

  •  
    The worldwide growth of wireless communication, navigation, and telemetry has provided immense societal benefits including mobile broadband data, Internet of Things (IoT), mobile healthcare, and intelligent transportation systems. These and other applications including 5G and beyond wireless systems call for innovations that can circumvent the challenges of radio spectrum scarcity and interference and foster the growth of ubiquitous, high speed, low latency connectivity. Commercial applications like the above must operate in harmony with scientific uses such as research on radio astronomy, Earth and atmospheric sciences, and must not inhibit weather prediction, polar research, and other nationally vital activities, all of which are dependent upon access to the radio spectrum. The National Science Foundation (NSF) continues to support wireless spectrum research and the scientific uses of the electromagnetic spectrum through multiple programs that enable fast, accurate, dynamic coordination and usage of our limited spectrum resource. These programs have created an opportune ground to build and create a large center-based ecosystem for spectrum research, which is the target of this SII-Center program.
MiamiOH OARS

Spectrum and Wireless Innovation enabled by Future Technologies (SW... - 0 views

  •  
    The National Science Foundation's Directorates for Engineering (ENG), Computer and Information Science and Engineering (CISE), Mathematical and Physical Sciences (MPS), and Geosciences (GEO) are coordinating efforts to identify new concepts and ideas on Spectrum and Wireless Innovation enabled by Future Technologies (SWIFT). A key aspect of this new solicitation is its focus on effective spectrum utilization and/or coexistence techniques, especially with passive uses, which have received less attention from researchers. Coexistence is when two or more applications use the same frequency band at the same time and/or at the same location, yet do not adversely affect one another. Coexistence is especially difficult when at least one of the spectrum users is passive, i.e., not transmitting any radio frequency (RF) energy. Examples of coexisting systems may include passive and active systems (e.g., radio astronomy and 5G wireless communication systems) or two active systems (e.g., weather radar and Wi-Fi). Breakthrough innovations are sought on both the wireless communication hardware and the algorithmic/protocol fronts through synergistic teamwork. The goal of these research projects may be the creation of new technology or significant enhancements to existing wireless infrastructure, with an aim to benefit society by improving spectrum utilization, beyond mere spectrum efficiency. The SWIFT program seeks to fund collaborative team research that transcends the traditional boundaries of individual disciplines.
MiamiOH OARS

Mid-Scale Innovations Program in Astronomical Sciences (MSIP) (nsf17592) | NSF - Nation... - 0 views

  •  
    A vigorous Mid-Scale Innovations Program (MSIP) was recommended by the 2010 Astronomy and Astrophysics Decadal Survey, citing "many highly promising projects for achieving diverse and timely science." As described in this solicitation, the Division of Astronomical Sciences has established a mid-scale program to support a variety of astronomical activities within a cost range up to $30M. This program will be formally divided into four subcategories: 1) limited term, self-contained science projects; 2) longer term mid-scale facilities; 3) development investments for future mid-scale and large-scale projects; and 4) community open access capabilities. The MSIP will emphasize both strong scientific merit and a well-developed plan for student training and involvement of a diverse workforce in instrumentation, facility development, or data management.
MiamiOH OARS

Spectrum and Wireless Innovation enabled by Future Technologies (SWIFT) (nsf20537) | NS... - 0 views

  •  
    The National Science Foundation's Directorates for Engineering (ENG), Computer and Information Science and Engineering (CISE), Mathematical and Physical Sciences (MPS), and Geosciences (GEO) are coordinating efforts to identify new concepts and ideas on Spectrum and Wireless Innovation enabled by Future Technologies (SWIFT). A key aspect of this new solicitation is its focus on effective spectrum utilization and/or coexistence techniques, especially with passive uses, which have received less attention from researchers. Coexistence is when two or more applications use the same frequency band at the same time and/or at the same location, yet do not adversely affect one another. Coexistence is especially difficult when at least one of the spectrum users is passive, i.e., not transmitting any radio frequency (RF) energy. Examples of coexisting systems may include passive and active systems (e.g., radio astronomy and 5G wireless communication systems) or two active systems (e.g., weather radar and Wi-Fi). Breakthrough innovations are sought on both the wireless communication hardware and the algorithmic/protocol fronts through synergistic teamwork. The goal of these research projects may be the creation of new technology or significant enhancements to existing wireless infrastructure, with an aim to benefit society by improving spectrum utilization, beyond mere spectrum efficiency. The SWIFT program seeks to fund collaborative team research that transcends the traditional boundaries of individual disciplines.
MiamiOH OARS

Spectrum Innovation Initiative: National Center for Wireless Spectrum Research ... - 0 views

  •  
    The worldwide growth of wireless communication, navigation, and telemetry has provided immense societal benefits including mobile broadband data, Internet of Things (IoT), mobile healthcare, and intelligent transportation systems. These and other applications including 5G and beyond wireless systems call for innovations that can circumvent the challenges of radio spectrum scarcity and interference and foster the growth of ubiquitous, high speed, low latency connectivity. Commercial applications like the above must operate in harmony with scientific uses such as research on radio astronomy, Earth and atmospheric sciences, and must not inhibit weather prediction, polar research, and other nationally vital activities, all of which are dependent upon access to the radio spectrum. The National Science Foundation (NSF) continues to support wireless spectrum research and the scientific uses of the electromagnetic spectrum through multiple programs that enable fast, accurate, dynamic coordination and usage of our limited spectrum resource. These programs have created an opportune ground to build and create a large center-based ecosystem for spectrum research, which is the target of this SII-Center program.
MiamiOH OARS

ROSES 2017: X-ray Astronomy Recovery Mission (XARM) Participating Scientists - 0 views

  •  
    This ROSES NRA (NNH17ZDA001N) solicits basic and applied research in support of NASA's Science Mission Directorate (SMD). The NRA covers all aspects of basic and applied supporting research and technology in space and Earth sciences, including, but not limited to: theory, modeling, and analysis of SMD science data; aircraft, scientific balloon, sounding rocket, International Space Station, CubeSat and suborbital reusable launch vehicle investigations; development of experiment techniques suitable for future SMD space missions; development of concepts for future SMD space missions; development of advanced technologies relevant to SMD missions; development of techniques for and the laboratory analysis of both extraterrestrial samples returned by spacecraft, as well as terrestrial samples that support or otherwise help verify observations from SMD Earth system science missions; determination of atomic and composition parameters needed to analyze space data, as well as returned samples from the Earth or space; Earth surface observations and field campaigns that support SMD science missions; development of integrated Earth system models; development of systems for applying Earth science research data to societal needs; and development of applied information systems applicable to SMD objectives and data. Awards range from under $100K per year for focused, limited efforts (e.g., data analysis) to more than $1M per year for extensive activities (e.g., development of science experiment hardware). The funds available for awards in each program element offered in ROSES-2017 range from less than one to several million dollars, which allows for selection from a few to as many as several dozen proposals, depending upon the program objectives and the submission of proposals of merit.
1 - 12 of 12
Showing 20 items per page