Skip to main content

Home/ OARS funding Engineering/ Group items tagged societal benefit

Rss Feed Group items tagged

MiamiOH OARS

Partnerships for Innovation - 0 views

  •  
    The NSF Partnerships for Innovation (PFI) Program within the Division of Industrial Innovation and Partnerships (IIP) offers researchers the opportunity to transform new knowledge into societal benefits through translational research and technology development efforts which catalyze partnerships to accelerate innovations that address significant societal needs. PFI has six broad goals: (1) identifying and supporting Foundation-sponsored research and technologies that have the potential for accelerated commercialization; (2) supporting prior or current Foundation-sponsored researchers, institutions of higher education, and non-profit organizations that partner with an institution of higher education to undertake proof-of-concept work, including the development of technology prototypes that are derived from NSF-funded research and have potential market value; (3) promoting sustainable partnerships between Foundation-funded institutions, industry, and other organizations within academia and the private sector with the purpose of accelerating the transfer of technology; (4) developing multi-disciplinary innovation ecosystems which involve and are responsive to the specific needs of academia and industry; (5) catalyzing professional development activities, mentoring, and best practices in entrepreneurship and technology translation for faculty, students and researchers; and (6) expanding the participation of women and individuals from underrepresented groups in innovation, technology translation, and entrepreneurship. T
MiamiOH OARS

Future of Work at the Human-Technology Frontier: Core Research - 0 views

  •  
    The specific objectives of the Future of Work at the Human-Technology Frontier program are to (1) facilitate convergent research that employs the joint perspectives, methods, and knowledge of computer science, design, engineering, learning sciences, research on education and workforce training, and social, behavioral, and economic sciences; (2) encourage the development of a research community dedicated to designing intelligent technologies and work organization and modes inspired by their positive impact on individual workers, the work at hand, the way people learn and adapt to technological change, creative and supportive workplaces (including remote locations, homes, classrooms, or virtual spaces), and benefits for social, economic, educational, and environmental systems at different scales; (3) promote deeper basic understanding of the interdependent human-technology partnership to advance societal needs by advancing design of intelligent work technologies that operate in harmony with human workers, including consideration of how adults learn the new skills needed to interact with these technologies in the workplace, and by enabling broad workforce participation, including improving accessibility for those challenged by physical or cognitive impairment; and (4) understand, anticipate, and explore ways of mitigating potential risks arising from future work at the human-technology frontier. Ultimately, this research will advance understanding of how technology and people interact, distribute tasks, cooperate, and complement each other in different specific work contexts of significant societal importance.
MiamiOH OARS

The Molly K. Macauley Award for Research Innovation and Advanced Analytics for Policy |... - 0 views

  •  
    We are seeking proposals for new research that will support and enhance the activities of the Consortium for the Valuation of Applications Benefits Linked to Earth Science (VALUABLES), a new consortium at RFF made possible through a partnership with the National Aeronautics and Space Administration (NASA). VALUABLES is focused on advancing innovative uses of existing methods and developing new techniques for valuing the information provided by Earth observations, especially those derived from satellites and aircraft. Any area in which Earth observations play a role may be addressed, including applications relating to human health, air quality, water resources, ecosystem services, natural disasters, food security and agriculture, wildland fires, energy, urban development, and transportation and infrastructure. However, the use of remotely sensed data must be a key component of the analysis. In addition, we especially welcome proposals that focus on evaluating the socioeconomic impacts of applications of Earth observations for solving pressing societal problems and that quantify, in monetary terms, the value of Earth observations in specific applications. In so doing, proposals should clearly describe how information from Earth observations makes improvements to decision making and the value of those improvements. Applicants may propose to quantify the private and/or social benefits of applications of Earth observations, including nonmarket benefits. The Macauley Award is open to researchers at US-based universities and nonprofit research institutions. Interdisciplinary research teams are preferred, and teams that involve both economists and Earth scientists are particularly encouraged.
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

Partnerships for Innovation (PFI) (nsf19506) | NSF - National Science Foundation - 0 views

  •  
    The Partnerships for Innovation (PFI) Program within the Division of Industrial Innovation and Partnerships (IIP) offers researchers from all disciplines of science and engineering funded by NSF the opportunity to perform translational research and technology development, catalyze partnerships and accelerate the transition of discoveries from the laboratory to the marketplace for societal benefit. PFI has five broad goals, as set forth by the American Innovation and Competitiveness Act of 2017 ("the Act", S.3084 - 114th Congress; Sec. 602. Translational Research Grants): (1) identifying and supporting NSF-sponsored research and technologies that have the potential for accelerated commercialization; (2) supporting prior or current NSF-sponsored investigators, institutions of higher education, and non-profit organizations that partner with an institution of higher education in undertaking proof-of-concept work, including the development of technology prototypes that are derived from NSF-sponsored research and have potential market value; (3) promoting sustainable partnerships between NSF-funded institutions, industry, and other organizations within academia and the private sector with the purpose of accelerating the transfer of technology; (4) developing multi-disciplinary innovation ecosystems which involve and are responsive to the specific needs of academia and industry; (5) providing professional development, mentoring, and advice in entrepreneurship, project management, and technology and business development to innovators.
MiamiOH OARS

Geotechnical Engineering and Materials | NSF - National Science Foundation - 0 views

  •  
    The Geotechnical Engineering and Materials Program (GEM) supports fundamental research in soil and rock mechanics and dynamics in support of physical civil infrastructure systems. Also supported is research on improvement of the engineering properties of geologic materials for infrastructure use by mechanical, biological, thermal, chemical, and electrical processes. The Program supports the traditional areas of foundation engineering, earth structures, underground construction, tunneling, geoenvironmental engineering, and site characterization, as well as the emerging area of bio-geo engineering, for civil engineering applications, with emphasis on sustainable geosystems. Research related to the geotechnical engineering aspects of geothermal energy and geothermal heat pump systems is also supported. The GEM program encourages knowledge dissemination and technology transfer activities that can lead to broader societal benefit and implementation for provision of physical civil infrastructure. The Program also encourages research that explores and builds upon advanced computing techniques and tools to enable major advances in Geotechnical Engineering.
MiamiOH OARS

Structural and Architectural Engineering - 0 views

  •  
    PD 15-1637, Structural and Architectural Engineering (SAE) program replaces Hazard Mitigation and Structural Engineering (HMSE) program. The overall goal of the Structural and Architectural Engineering (SAE) program is to evolve sustainable structures, such as buildings, that can be continuously occupied and /or operational during the structure??s useful life. The SAE program supports fundamental research for advancing knowledge and innovation in structural and architectural engineering that enables holistic approach to design, construction, operation, maintenance, retrofit, repair and end-of-life disposal of structures. For buildings, holistic approach incorporates the foundation-structure-envelope-nonstructural system, as well as the facade and roofing. Research topics of interest for sustainable structures include the following: strategies for structures that over their lifecycle are cost-effective, make efficient use of resources and energy, and incorporate sustainable structural and architectural materials; deterioration due to fatigue and corrosion; serviceability concerns due to large deflections and vibrations; and advances in physics-based computational modeling and simulation. Research is encouraged that integrates discoveries from other science and engineering fields, such as materials science, building science, mechanics of materials, dynamic systems and control, reliability, risk analysis, architecture, economics and human factors. The program also supports research in sustainable and holistic foundation-structure-envelope-nonstructural systems and materials as described in the following reports: ?? National Science and Technology Council, High Performance Buildings; Final Report: Federal R & D Agenda for Net Zero Energy, High-Performance Green Buildings. Building Technology Research and Development (BTRD) Subcommittee, OSTP, U.S. Government, September 2008. http://www.whitehouse.gov/files/documents/ostp/NSTC%20Reports/Federal%20RD%20Agenda%20for%20Net%
MiamiOH OARS

Open Science Prize - 0 views

  •  
    The National Institutes of Health (NIH) Office of the Associate Director for Data Science (ADDS) announces a collaboration with the Wellcome Trust (WT) and the Howard Hughes Medical Institute (HHMI) to launch the ``Open Science Prize'' (the ``Challenge'') to encourage and support the prototyping and development of services, tools and/or platforms that enable open content--including publications, datasets, code and other research outputs--to be discovered, accessed and re-used in ways that will advance research, spark innovation, and generate new societal benefits. The Challenge is necessary to accelerate the field of ``open'' biomedical research beyond what current funding mechanisms can achieve.
MiamiOH OARS

Gen-4 Engineering Research Centers - 0 views

  •  
    The ERC program supports convergent research that will lead to strong societal impact. Each ERC has interacting foundational components that go beyond the research project, including engineering workforce development at all participant stages, a culture of diversity and inclusion where all participants gain mutual benefit, and value creation within an innovation ecosystem that will outlast the lifetime of the ERC. The logical reasoning that links the proposed activities to the identified goals for each ERC should be clear.
MiamiOH OARS

Partnerships for Innovation | NSF - National Science Foundation - 0 views

  •  
    The Partnerships for Innovation (PFI) Program within the Division of Industrial Innovation and Partnerships (IIP) offers researchers from all disciplines of science and engineering funded by NSF the opportunity to perform translational research and technology development, catalyze partnerships and accelerate the transition of discoveries from the laboratory to the marketplace for societal benefit. PFI has five broad goals, as set forth by the American Innovation and Competitiveness Act of 2017 ("the Act", S.3084 - 114th Congress; Sec. 602. Translational Research Grants): (1) identifying and supporting NSF-sponsored research and technologies that have the potential for accelerated commercialization; (2) supporting prior or current NSF-sponsored investigators, institutions of higher education, and non-profit organizations that partner with an institution of higher education in undertaking proof-of-concept work, including the development of technology prototypes that are derived from NSF-sponsored research and have potential market value; (3) promoting sustainable partnerships between NSF-funded institutions, industry, and other organizations within academia and the private sector with the purpose of accelerating the transfer of technology; (4) developing multi-disciplinary innovation ecosystems which involve and are responsive to the specific needs of academia and industry; (5) providing professional development, mentoring, and advice in entrepreneurship, project management, and technology and business development to innovators.
MiamiOH OARS

Energy, Power, Control, and Networks - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control andNetworks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills. Proposals for the EPCN program may involve collaborative research to capture the breadth of
MiamiOH OARS

Structural and Architectural Engineering and Materials | NSF - National Science Foundation - 0 views

  •  
    The overall goal of the Structural and Architectural Engineering and Materials (SAEM) program is to enable sustainable buildings and other structures that can be continuously occupied and/or operated during the structure's useful life. The SAEM program supports fundamental research for advancing knowledge and innovation in structural and architectural engineering and materials that promotes a holistic approach to analysis and design, construction, operation, maintenance, retrofit, and repair of structures. For buildings, all components including the foundation-structure-envelope (the façade, curtain-wall, windows, and roofing) and interior systems (flooring, ceilings, partitions walls), are of interest to the program. The SAEM program encourages the integration of research with knowledge dissemination and activities that can lead to broader societal benefit for provision of sustainable structures.
MiamiOH OARS

Geotechnical Engineering and Materials | NSF - National Science Foundation - 0 views

  •  
    The Geotechnical Engineering and Materials Program (GEM) supports fundamental research in soil and rock mechanics and dynamics in support of physical civil infrastructure systems. Also supported is research on improvement of the engineering properties of geologic materials for infrastructure use by mechanical, biological, thermal, chemical, and electrical processes. The Program supports the traditional areas of foundation engineering, earth structures, underground construction, tunneling, geoenvironmental engineering, and site characterization, as well as the emerging area of bio-geo engineering, for civil engineering applications, with emphasis on sustainable geosystems. Research related to the geotechnical engineering aspects of geothermal energy and geothermal heat pump systems is also supported. The GEM program encourages knowledge dissemination and technology transfer activities that can lead to broader societal benefit and implementation for provision of physical civil infrastructure. The Program also encourages research that explores and builds upon advanced computing techniques and tools to enable major advances in Geotechnical Engineering.
MiamiOH OARS

Engineering for Natural Hazards | NSF - National Science Foundation - 0 views

  •  
    The Engineering for Natural Hazards (ENH) program supports fundamental research that advances knowledge for understanding and mitigating the impact of natural hazards on constructed civil infrastructure.  Natural hazards considered by the ENH program include earthquakes, windstorms (such as tornadoes and hurricanes), tsunamis, storm surge, and landslides.  The constructed civil infrastructure supported by the ENH program includes building systems, such as the soil-foundation-structure-envelope-nonstructural system, as well as the façade and roofing, and other structures, geostructures, and underground facilities, such as tunnels.  While research may focus on a single natural hazard, research that considers civil infrastructure performance over its lifetime in the context of multiple hazards, that is, a multi-hazard approach, is encouraged.  Research may integrate geotechnical, structural, and architectural engineering advances with discoveries in other science and engineering fields, such as earth and atmospheric sciences, materials science, mechanics of materials, dynamic systems and control, systems engineering, decision theory, risk analysis, high performance computational modeling and simulation, and social, behavioral, and economic sciences.  Multi-disciplinary and international collaborations are encouraged.  The ENH program encourages research integrated with knowledge dissemination and activities that can lead to broader societal benefit for reducing the impact of natural hazards on civil infrastructure.
MiamiOH OARS

Gen-4 Engineering Research Centers (ERC) (nsf20553) | NSF - National Science Foundation - 0 views

  •  
    The ERC program supports convergent research that will lead to strong societal impact. Each ERC has interacting foundational components that go beyond the research project, including engineering workforce development at all participant stages, a culture of diversity and inclusion where all participants gain mutual benefit, and value creation within an innovation ecosystem that will outlast the lifetime of the ERC. The logical reasoning that links the proposed activities to the identified goals for each ERC should be clear.
MiamiOH OARS

Gen-4 Engineering Research Centers - 0 views

  •  
    The ERC program supports convergent research that will lead to strong societal impact. Each ERC has interacting foundational components that go beyond the research project, including engineering workforce development at all participant stages, a culture of diversity and inclusion where all participants gain mutual benefit, and value creation within an innovation ecosystem that will outlast the lifetime of the ERC. The logical reasoning that links the proposed activities to the identified goals for each ERC should be clear.
MiamiOH OARS

Spectrum Innovation Initiative: National Center for Wireless Spectrum Research - 0 views

  •  
    The worldwide growth of wireless communication, navigation, and telemetry has provided immense societal benefits including mobile broadband data, Internet of Things (IoT), mobile healthcare, and intelligent transportation systems. These and other applications including 5G and beyond wireless systems call for innovations that can circumvent the challenges of radio spectrum scarcity and interference and foster the growth of ubiquitous, high speed, low latency connectivity. Commercial applications like the above must operate in harmony with scientific uses such as research on radio astronomy, Earth and atmospheric sciences, and must not inhibit weather prediction, polar research, and other nationally vital activities, all of which are dependent upon access to the radio spectrum. The National Science Foundation (NSF) continues to support wireless spectrum research and the scientific uses of the electromagnetic spectrum through multiple programs that enable fast, accurate, dynamic coordination and usage of our limited spectrum resource. These programs have created an opportune ground to build and create a large center-based ecosystem for spectrum research, which is the target of this SII-Center program.
MiamiOH OARS

Gen-4 Engineering Research Centers (ERC) (nsf19503) | NSF - National Science Foundation - 0 views

  •  
    The ERC program supports convergent research that will lead to strong societal impact. Each ERC has interacting foundational components that go beyond the research project, including engineering workforce development at all participant stages, a culture of diversity and inclusion where all participants gain mutual benefit, and value creation within an innovation ecosystem that will outlast the lifetime of the ERC. The logical reasoning that links the proposed activities to the identified goals for each ERC should be clear.
MiamiOH OARS

Spectrum Innovation Initiative: National Center for Wireless Spectrum Research ... - 0 views

  •  
    The worldwide growth of wireless communication, navigation, and telemetry has provided immense societal benefits including mobile broadband data, Internet of Things (IoT), mobile healthcare, and intelligent transportation systems. These and other applications including 5G and beyond wireless systems call for innovations that can circumvent the challenges of radio spectrum scarcity and interference and foster the growth of ubiquitous, high speed, low latency connectivity. Commercial applications like the above must operate in harmony with scientific uses such as research on radio astronomy, Earth and atmospheric sciences, and must not inhibit weather prediction, polar research, and other nationally vital activities, all of which are dependent upon access to the radio spectrum. The National Science Foundation (NSF) continues to support wireless spectrum research and the scientific uses of the electromagnetic spectrum through multiple programs that enable fast, accurate, dynamic coordination and usage of our limited spectrum resource. These programs have created an opportune ground to build and create a large center-based ecosystem for spectrum research, which is the target of this SII-Center program.
1 - 19 of 19
Showing 20 items per page