Skip to main content

Home/ OARS funding Computer/ Group items matching "Nanoscience" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

Global Innovation Initiative - 0 views

  •  
    The Global Innovation Initiative is a joint effort of the United States and the United Kingdom to strengthen global multilateral collaboration through grants to university consortia focusing on science, technology, engineering, and mathematics (STEM)-related issues of global significance that foster cutting-edge multinational research and strengthen institutional international partnerships.
MiamiOH OARS

nsf.gov - Funding - Small Business Innovation Research Program Phase I Solicitation FY-2014 (Release 2) - US National Science Foundation (NSF) - 0 views

  •  
    The Small Business Innovation Research (SBIR) Program stimulates technological innovation in the private sector by strengthening the role of small business concerns in meeting Federal research and development needs, increasing the commercial application of federally supported research results, and fostering and encouraging participation by socially and economically disadvantaged and women-owned small businesses. The topics, listed below, are detailed on the SBIR/STTR topics homepage: Educational Technologies and Applications (EA) Information and Communication Technologies (IC) Semiconductors (S) and Photonic (PH) Devices and Materials Electronic Hardware, Robotics and Wireless Technologies (EW) Advanced Manufacturing and Nanotechnology (MN) Advanced Materials and Instrumentation (MI) Chemical and Environmental Technologies (CT) Biological Technologies (BT) Smart Health (SH) and Biomedical (BM) Technologies
MiamiOH OARS

nsf.gov - Funding - Communications, Circuits, and Sensing-Systems - US National Science Foundation (NSF) - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Measurement Science and Engineering (MSE) Research Grant Programs - 0 views

  •  
    NIST is soliciting applications for financial assistance for Fiscal Year 2016 (FY16) within the following NIST Laboratory grant programs: (1) the Material Measurement Laboratory (MML) Grant Program; (2) the Physical Measurement Laboratory (PML) Grant Program; (3) the Engineering Laboratory (EL) Grant Program; (4) the Fire Research (FR) Grant Program; (5) the Information Technology Laboratory (ITL) Grant Program; (6) the Communications Technology Laboratory (CTL) Grant Program; (7) the NIST Center for Neutron Research (NCNR) Grant Program; (8) the Center for Nanoscale Science and Technology (CNST) Grant Program; (9) the Special Programs Office (SPO) Grant Program; (10) the Standards Coordination Office (SCO) Grant Program; (11) the International and Academic Affairs Office (IAAO) Grant Program; and (12) the Associate Director for Laboratory Programs (ADLP) Grant Program.
  •  
    NIST is soliciting applications for financial assistance for Fiscal Year 2016 (FY16) within the following NIST Laboratory grant programs: (1) the Material Measurement Laboratory (MML) Grant Program; (2) the Physical Measurement Laboratory (PML) Grant Program; (3) the Engineering Laboratory (EL) Grant Program; (4) the Fire Research (FR) Grant Program; (5) the Information Technology Laboratory (ITL) Grant Program; (6) the Communications Technology Laboratory (CTL) Grant Program; (7) the NIST Center for Neutron Research (NCNR) Grant Program; (8) the Center for Nanoscale Science and Technology (CNST) Grant Program; (9) the Special Programs Office (SPO) Grant Program; (10) the Standards Coordination Office (SCO) Grant Program; (11) the International and Academic Affairs Office (IAAO) Grant Program; and (12) the Associate Director for Laboratory Programs (ADLP) Grant Program.
MiamiOH OARS

International Research Network Connections | NSF - National Science Foundation - 0 views

  •  
    The International Research Network Connections (IRNC) program supports high-performance network connectivity required by international science and engineering research and education collaborations involving the NSF research community. NSF expects to make 1-2 awards to link U.S. research networks with peer networks in Europe and Africa and leverage existing international network connectivity. High-performance network connections funded by this program are intended to support science and engineering research and education applications, and preference will be given to solutions that provide the best economy of scale and demonstrate the ability to support the largest communities of interest with the broadest services. Funded projects will assist the U.S. research and education community by enabling state-of-the-art international network services and access to increased collaboration and data services. Through extended international network connections, additional research and production network services will be enabled, complementing those currently offered or planned by domestic research networks.
  •  
    The International Research Network Connections (IRNC) program supports high-performance network connectivity required by international science and engineering research and education collaborations involving the NSF research community. NSF expects to make 1-2 awards to link U.S. research networks with peer networks in Europe and Africa and leverage existing international network connectivity. High-performance network connections funded by this program are intended to support science and engineering research and education applications, and preference will be given to solutions that provide the best economy of scale and demonstrate the ability to support the largest communities of interest with the broadest services. Funded projects will assist the U.S. research and education community by enabling state-of-the-art international network services and access to increased collaboration and data services. Through extended international network connections, additional research and production network services will be enabled, complementing those currently offered or planned by domestic research networks.
MiamiOH OARS

RFA-ES-18-008: Novel Approaches for Characterizing Exposure and Response to Engineered Nanomaterials (R43 Clinical Trials Not Allowed) - 0 views

  •  
    This Funding Opportunity Announcement (FOA) solicits Phase I (R43) Small Business Innovative Research (SBIR) grant applications from small business concerns (SBCs) to develop and/or adapt novel technologies to enable the characterization of human exposures to engineered nanomaterials (ENMs) and to monitor or assess ENMs in diverse media ranging from biological samples to air and water.  
MiamiOH OARS

Solar, Heliospheric, and INterplanetary Environment - 0 views

  •  
    The solar and heliospheric research communities are dedicated to promoting enhanced understanding of, and predictive capabilities for, solar disturbances that propagate to the Earth. Broad-based, grass-roots associations such as SHINE have developed to focus community effort on these scientific questions. Proposals are solicited for research directly related to topics under consideration and discussion at community workshops organized by SHINE. Information on the current activities of SHINE may be found at the following web site: http://www.shinecon.org
MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Electronics, Photonics and Magnetic Devices | NSF - National Science Foundation - 0 views

  •  
    The Electronics, Photonics and Magnetic Devices (EPMD) Program supports innovative research on novel devices based on the principles of electronics, optics and photonics, optoelectronics, magnetics, opto- and electromechanics, electromagnetics, and related physical phenomena. EPMD's goal is to advance the frontiers of micro-, nano- and quantum-based devices operating within the electromagnetic spectrum and contributing to a broad range of application domains including information and communications, imaging and sensing, healthcare, Internet of Things, energy, infrastructure, and manufacturing. The program encourages research based on emerging technologies for miniaturization, integration, and energy efficiency as well as novel material-based devices with new functionalities, improved efficiency, flexibility, tunability, wearability, and enhanced reliability.
MiamiOH OARS

Advancing Translational and Clinical Probiotic/Prebiotic and Human Microbiome Research (R01 Clinical Trial Optional) - 0 views

  •  
    The purpose of this funding opportunity announcement (FOA) is twofold: 1. to accelerate translational and clinical Phase I and II a/b safety and efficacy studies for substantiating measurable functional benefits of probiotic/prebiotic components and/or their combinations; and; 2. to understand the underlying mechanisms of their action(s), and variability in responses to these interventions. This FOA calls for interdisciplinary collaborations across scientific disciplines engaged in microbiome and pro/prebiotic research including, but not limited to: nutritional science, microbiology, virology, microecology and microbiome, genomics, immunology, computational biology, chemistry, bioengineering, as well as integration of omics and computational approaches in DNA technologies.
‹ Previous 21 - 31 of 31
Showing 20 items per page