Skip to main content

Home/ OARS funding Computer/ Group items tagged processing

Rss Feed Group items tagged

MiamiOH OARS

Critical Resilient Interdependent Infrastructure Systems and Processes - 0 views

  •  
    Critical infrastructures are the mainstay of our nation's economy, security and health. These infrastructures are interdependent. They are linked to individual preferences and community needs. For example, the electrical power system depends on the delivery of fuels to power generating stations through transportation services, the production of those fuels depends in turn on the use of electrical power, and those fuels are needed by the transportation services. Social networks, interactions, and policies can enable or hinder the successful creation of resilient complex adaptive systems. The goals of the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) solicitation are to: (1) foster an interdisciplinary research community of engineers, computer and computational scientists and social and behavioral scientists, that creates new approaches and engineering solutions for the design and operation of infrastructures as processes and services; (2) enhance the understanding and design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions and failures from any cause, natural, technological, or malicious; (3) create the knowledge for innovation in ICIs so that they safely, securely, and effectively expand the range of goods and services they enable; and (4) improve the effectiveness and efficiency with which they deliver existing goods and services.
  •  
    Critical infrastructures are the mainstay of our nation's economy, security and health. These infrastructures are interdependent. They are linked to individual preferences and community needs. For example, the electrical power system depends on the delivery of fuels to power generating stations through transportation services, the production of those fuels depends in turn on the use of electrical power, and those fuels are needed by the transportation services. Social networks, interactions, and policies can enable or hinder the successful creation of resilient complex adaptive systems. The goals of the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) solicitation are to: (1) foster an interdisciplinary research community of engineers, computer and computational scientists and social and behavioral scientists, that creates new approaches and engineering solutions for the design and operation of infrastructures as processes and services; (2) enhance the understanding and design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions and failures from any cause, natural, technological, or malicious; (3) create the knowledge for innovation in ICIs so that they safely, securely, and effectively expand the range of goods and services they enable; and (4) improve the effectiveness and efficiency with which they deliver existing goods and services.
MiamiOH OARS

Software Infrastructure for Sustained Innovation - S2I2 - 0 views

  •  
    SoftwareInfrastructure for Sustained Innovation (SI2) is a long-term investment focused on realizing a portion of the Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21, http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730) vision and catalyzing new thinking, paradigms and practices in science and engineering. CIF21 envisions a linked cyberinfrastructure architecture that integrates large-scale computing, high-speed networks, massive data archives, instruments and major facilities, observatories, experiments, and embedded sensors and actuators, across the nation and the world, and that enables research at unprecedented scales, complexity, resolution, and accuracy by integrating computation, data, and experiments in novel ways. Software is a primary modality through which CIF21 innovation and discovery will be realized. It permeates all aspects and layers of cyberinfrastructure (from application codes and frameworks, programming systems, libraries and system software, to middleware, operating systems, networking and the low-level drivers). The CIF21 software infrastructure must address the complexity of this cyberinfrastructure, accommodating: disruptive hardware trends; ever-increasing data volumes; data integrity, privacy, and confidentiality; security; complex application structures and behaviors; and emerging concerns such as fault-tolerance and energy efficiency. The programs must focus on building robust, reliable and sustainable software that will support and advance sustained scientific innovation and discovery.
 The Division of Advanced Cyberinfrastructure in the Computer & Information Science & Engineering Directorate (CISE/ACI) is partnering with Directorates and Offices across the NSF to support SI2, a long-term comprehensive program focused on realizing a sustained software infrastructure that is an integral part of CIF21.
MiamiOH OARS

nsf.gov - Funding - Resilient Interdependent Infrastructure Processes and Systems - US ... - 0 views

  •  
    The goals of the Resilient Interdependent Infrastructure Processes and Systems (RIPS) solicitation are (1) to foster an interdisciplinary research community that discovers new knowledge for the design and operation of infrastructures as processes and services  (2) to enhance the understanding and design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions and failures from any cause, natural, technological, or malicious, and (3) to create the knowledge for innovation in ICIs to advance society with new goods and services. The objectives of this solicitation are: Create theoretical frameworks and multidisciplinary computational models of interdependent infrastructure systems, processes and services, capable of analytical prediction of complex behaviors, in response to system and policy changes. Synthesize new approaches to increase resilience, interoperations, performance, and readiness in ICIs. Understand organizational, social, psychological, legal, political and economic obstacles to improving ICI's, and identifying strategies for overcoming those obstacles. The RIPS solicitation seeks proposals with transformative ideas that will ensure ICIs services are effective, efficient, dependable, adaptable, resilient, safe, and secure.  Successful proposals are expected to study multiple infrastructures focusing on them as interdependent systems that deliver services, enabling a new interdisciplinary paradigm in infrastructure research.  Proposals that do not broadly integrate across the cyber-physical, engineering and social, behavioral and economic (SBE) sciences may be returned without review. 
MiamiOH OARS

Procurement Opportunity Search Details - 0 views

  •  
    The purpose of this Request for Proposal (RFP) is to solicit proposals from firms experienced in the development and implementation of Robotics Process Automation (RPA) solutions. BWC is interested in evaluating solutions which would enable the agency to automate structured repetitive tasks to minimize manual intervention and introduce process efficiencies. Such processes will typically require the bots to access multiple systems, various formats of data like text, excel workbooks, word, databases and subsequently retrieve, populate and generate data fields based on responses. The proposed solution must have the capability to automate end to end processes and contain inherent logic handling mechanisms with exception handling.
MiamiOH OARS

Desalination and Water Purification Research Program for Fiscal Year 2018 - 0 views

  •  
    This Funding Opportunity Announcement's (FOA) objective is to invite private industry, universities, water utilities, and other research sponsors to submit proposals to cost share laboratory scale and pilot scale projects that address DWPR program goals and objectives. Funding Group I: Laboratory scale projects are typically bench scale studies involving small flow rates (less than 2 gallons per minute). They are used to determine the viability of a novel process, new materials, or process modifications. Research at this stage often involves a high degree of risk and uncertainty. Funding Group II: Pilot scale projects test a novel process at a sufficiently large scale to determine the technical, practical, and economic viability of the process and are generally preceded by laboratory studies (funded previously by DWPR or others) that demonstrate that the technology works.
MiamiOH OARS

Critical Resilient Interdependent Infrastructure Systems and Processes FY17 (CRISP) (ns... - 0 views

  •  
    The goals of the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) solicitation are to: (1) foster an interdisciplinary research community of engineers, computer and computational scientists and social and behavioral scientists, that creates new approaches and engineering solutions for the design and operation of infrastructures as processes and services; (2) enhance the understanding and design of interdependent critical infrastructure systems (ICIs) and processes that provide essential goods and services despite disruptions and failures from any cause, natural, technological, or malicious; (3) create the knowledge for innovation in ICIs so that they safely, securely, and effectively expand the range of goods and services they enable; and (4) improve the effectiveness and efficiency with which they deliver existing goods and services.
MiamiOH OARS

Smart and Connected Health (SCH) (nsf16601) | NSF - National Science Foundation - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

Notice of Funding Opportunity Publication for Biomedical Data Translator: Technical Fea... - 0 views

  •  
    NCATS plans to support the research, development and testing of up to three biomedical reasoning tool prototypes for the Biomedical Data Translator for an estimated $1,000,000 total costs each. NCATS is utilizing a three-step application process (challenge-concept-proposal) for this expedited program. The duration of each award will be less than one year. All awardees will be expected to collaborate and cooperate with NCATS staff, one another and potentially other contributors to the overall program to maximize the exploration of the potential capabilities of Translator and to understand technical feasibility and challenges of having multiple groups build a single resource. All U.S. and foreign organizations and U.S. citizens are eligible to apply. This funding opportunity is open to U.S. and foreign organizations, including academic institutions and commercial entities; subcontracts are allowed. U.S. citizens may also apply as individuals and may be direct recipients of an award. Non-citizen individuals residing in the U.S. or foreign country not affiliated with either a U.S. or foreign organization are not eligible to be direct recipients of an award. Successful completion of the application process will require applicants to have specific skills related to translational research and software development. Applicants need to demonstrate technical skills, including familiarity with web communication protocols, a variety of programming languages and software stack, and general algorithmic techniques in the areas of artificial intelligence, machine learning, and knowledge engineering, as well as problem solving skills, especially creativity and persistence. Applicants familiar with languages and packages most useful for solving different tasks, the entire challenge process may take between 2 and 8 hours to complete.
MiamiOH OARS

Smart and Connected Health | NSF - National Science Foundation - 0 views

  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

Engineering Design and System Engineering - 0 views

  •  
    The Engineering Design and Systems Engineering (EDSE) program supports fundamental research into the basic processes and phenomena of engineering design and systems engineering. The program seeks proposals leading to improved understanding about how processes, organizational structure, social interactions, strategic decision making, and other factors impact success in the planning and execution of engineering design and systems engineering projects. It also supports advances pertaining to engineering design and systems engineering in areas that include, but are not limited to, decision making under uncertainty, including preference and demand modeling; problem decomposition and decision delegation; applications of reverse game theory (mechanism design); computer-aided design; design representation; system performance modeling and prediction; design optimization; uncertainty quantification; domain- or concern-specific design methods; and advanced computational techniques for supporting effective human cognition, decision making, and collaboration. Competitive proposals for novel methods will include a plan to evaluate rigorously the effectiveness and performance of the proposed approach. The EDSE program encourages multidisciplinary collaborations of experts in design and systems engineering with experts in other domains. Of particular interest is research on the design of engineering material systems that leverages the unique aspects of a particular material system to realize advanced design methods that are driven by performance metrics and incorporate processing/manufacturing considerations.
MiamiOH OARS

DOD Acquisition Research Program (ARP) - 0 views

  •  
    The Acquisition Research Program (ARP) (www.acquisitionresearch.net) conducts and supports research in academic disciplines that bear on public procurement policy and management. These include economics, finance, financial management, information systems, organization theory, operations management, human resources management, risk management, and marketing, as well as the traditional public procurement areas such as contracting, program/project management, logistics, test and evaluation and systems engineering management. The ARP is interested in innovative proposals that will provide unclassified and non-proprietary findings suitable for publication in open scholarly literature. Studies of government processes, systems, or policies should also expand the body of knowledge and theory of processes, systems, or policies outside the government. The following research areas are of special interest: Leading-edge techniques in data collection, management, visual analytics and decision-making; Robust risk modeling techniques; Performance metrics and methodologies; Collaboration and cross-functional teams; and, Model-Based Acquisition. Offerors bear prime responsibility for the design, management, direction and conduct of research. Researchers should exercise judgment and original thought toward attaining the goals within broad parameters of the research areas proposed and the resources provided. Offerors are encouraged to be creative in the selection of the technical and management processes and approaches and consider the greatest and broadest impact possible.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Processing and Storage Technologies (Se... - 0 views

  •  
    Future ultra-low-energy computing, storage and signal-processing systems can be built on principles derived from organic systems that are at the intersection of chemistry, biology, and engineering. New information technologies can be envisioned that are based on biological principles and that use biomaterials in the fabrication of devices and components; it is anticipated that these information technologies could enable stored data to be retained for more than 100 years and storage capacity to be 1,000 times greater than current capabilities. These could also facilitate compact computers that will operate with substantially lower power than today's computers. Research in support of these goals can have a significant impact on advanced information processing and storage technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, engineering, physics, chemistry, materials science, computer science, and information science that will enable heretofore-unanticipated breakthroughs as well as meet educational goals.
MiamiOH OARS

Smart and Connected Health (SCH) (nsf13543) - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The U.S. Army Contracting Command - Aberdeen Proving Ground RTP Division, on behalf of the U.S. Army Research Office (ARO), is issuing a Broad Agency Announcement (BAA), W911NF-13-R-0010, for the establishment of Research in Quantum Computing. There are two separate research topics covered in this announcement: 1. Quantum characterization, verification, and validation The Quantum Characterization, Verification, and Validation (QCVV) research topic seeks proposals addressing the development of theoretical and experimental techniques, procedures, and methods for characterizing few-qubit systems with a focus on metrics relevant to robust fault-tolerant quantum computation (FTQC). The ultimate goal is to develop a set of standards and procedures, together with experimental demonstration, that will aid in characterizing increasingly complex quantum information systems. 2. Advanced quantum computing measurement technology Quantum information systems utilize measurement in a variety of ways: for diagnostic purposes while calibrating a quantum information system, to tune up a process for optimal operation, and for final read-out when implementing a quantum information process.
MiamiOH OARS

nsf.gov - Funding - Smart and Connected Health - US National Science Foundation (NSF) - 0 views

  •  
    The goal of the Smart and Connected Health (SCH) Program is to accelerate the development and use of innovative approaches that would support the much needed transformation of healthcare from reactive and hospital-centered to preventive, proactive, evidence-based, person-centered and focused on well-being rather than disease. Approaches that partner technology-based solutions with biobehavioral health research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling.
MiamiOH OARS

Mentored Quantitative Research Development Award (Parent K25 - Independent Basic Experi... - 0 views

  •  
    The purpose of the Mentored Quantitative Research Career Development Award (K25) is to attract to NIH-relevant research those investigators whose quantitative science and engineering research has thus far not been focused primarily on questions of health and disease. The K25 award will provide support and "protected time" for a period of supervised study and research for productive professionals with quantitative (e.g., mathematics, statistics, economics, computer science, imaging science, informatics, physics, chemistry) and engineering backgrounds to integrate their expertise with NIH-relevant research. This Funding Opportunity Announcement (FOA) is designed specifically for applicants proposing to lead basic science experimental studies involving humans, referred to in NOT-OD-18-212 as prospective basic science studies involving human participants. These studies fall within the NIH definition of a clinical trial and also meet the definition of basic research. Types of studies that should submit under this FOA include studies that prospectively assign human participants to conditions (i.e., experimentally manipulate independent variables) and that assess biomedical or behavioral outcomes in humans for the purpose of understanding the fundamental aspects of phenomena without specific application towards processes or products in mind. Studies conducted with specific applications toward processes or products in mind should submit under the companion PA-18-395.
MiamiOH OARS

2018 Mathematical Multifaceted Integrated Capability Centers (MMICCs) - 0 views

  •  
    The Office of Advanced Scientific Computing Research (ASCR) of the SC, U.S. Department of Energy (DOE), hereby invites applications for basic research that address fundamental challenges within DOE's mission areas of energy, environment and security, and from a perspective that requires new integrated efforts across multiple mathematical, statistical and computational disciplines. This solicitation is for new Mathematical Multifaceted Integrated Capability Centers (MMICCs) to enable greatly enhanced scientific discovery, design, optimization or decision-support capabilities for the increasingly complex systems, processes, and problems that arise in science and energy research. Proposed research tightly focused on the solution of a particular science or engineering problem are outside the scope of this solicitation.These MMICCs will enable applied mathematics researchers to work together in large, collaborative teams to develop the mathematics needed to address significant scientific computing research challenges. The MMICCs allow researchers to take a broader view of the problem as a whole, and devise solution strategies that attack the problem in its entirety by building fundamental, multidisciplinary mathematical capabilities and tools cognizant of both existing and emerging computing paradigms. The MMICCs teams will have the flexibility and technical expertise to consider all aspects of the problem-solving process simultaneously - ranging from the mathematical formulation to the development, analysis, integration of appropriate models and methods, and demonstration of results and capabilities.
MiamiOH OARS

Sensing, Learning, Autonomy and Knowledge Engineering (SLAKE) - Federal Business Opport... - 0 views

  •  
    The goal of the Sensing, Learning, Autonomy, and Knowledge Engineering (SLAKE) program is to advance Air Force sensing capabilities by employing diverse sensor processing results at a representational or product level that is abstracted from the direct sensing output yet retains crucial information and corresponding uncertainties. Key research areas under SLAKE include development of sensor product representations suitable for efficient storage, efficient communication, and efficient resource allocation; robust conversion of sensor processing output to novel representation formats; accurate characterization of sensing uncertainties; rigorous incorporation of sensing uncertainties within novel algorithms for sensor resource management, task allocation, and information fusion; development and employment of virtual environments suitable for exercising specific algorithms and for analyzing specific system concepts; and sustained, efficient descriptions of mission context and mission operating environment. In support of technology maturation and transition, SLAKE also includes small unmanned aerial system (SUAS) integration and operation, advanced demonstration and validation.
MiamiOH OARS

Smart and Connected Health (SCH) (nsf18541) | NSF - National Science Foundation - 0 views

  •  
    The goal of the interagency Smart and Connected Health (SCH): Connecting Data, People and Systems program is to accelerate the development and integration of innovative computer and information science and engineering approaches to support the transformation of health and medicine. Approaches that partner technology-based solutions with biomedical and biobehavioral research are supported by multiple agencies of the federal government including the National Science Foundation (NSF) and the National Institutes of Health (NIH). The purpose of this program is to develop next-generation multidisciplinary science that encourages existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as networking, pervasive computing, advanced analytics, sensor integration, privacy and security, modeling of socio-behavioral and cognitive processes and system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, barriers to change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems and an aging population. Such solutions demand multidisciplinary teams ready to address issues ranging from fundamental science and engineering to medical and public health practice.
1 - 20 of 128 Next › Last »
Showing 20 items per page