Skip to main content

Home/ OARS funding Computer/ Group items tagged processing

Rss Feed Group items tagged

MiamiOH OARS

Department of Defense NSWC - CRANE - 0 views

  •  
    Naval Surface Warfare Center (NSWC) Crane and the Office of the Undersecretary of Defense for Research and Engineering (OUSD(R&E))'s Joint Hypersonic Transition Office (JHTO) are interested in receiving research proposals in the following areas. Each will have a Period of Performance (PoP) of 12 months. a. Systems-level design of high-temperature composite materials and structures research utilization of fiber architectures and matrix compositions b. Novel position, navigation, and timing and adaptive flight controls c. Design-oriented models to optimize scramjet and multi-mode engines d. Simulation Methods for the Rapid Prediction of Hypersonic Environments e. Addressing the flow path processes that occur in rectangular or curved inlets and isolators including the destabilization that may occur due to junction flows or off-nominal flight conditions f. The development of methods and models including validation experiments and instrumentation to provide high quality data on multiphase blast properties and structural responses to structures g. Improving the understanding of rotating detonation rocket engine (RDRE) physics and developing design solutions for their inherent technical challenges h. Hypersonic Workforce Curricula Development
MiamiOH OARS

Sony Research Award Program | Sony US - 0 views

  •  
    Solid research is the underlying driving force to crystallize fearless creativity and innovation. While we are committed to run in-house research and engineering, we are also excited to collaborate with academic partners to facilitate exploration of new and promising research. The Sony Focused Research Award provides an opportunity for university faculty and Sony to conduct this type of collaborative, focused research. The award provides up to $150K USD* in funds, and may be renewed for subsequent year(s). A list of candidate research topics appears below: - Manipulation Secure Image Sensing - Self-Supervised Learning for Spiking Neural Networks with Event-Based Vision Sensor - Deep Learning & Deep Fusion Towards Automotive Scene Perception - Designing and Implementing Camera ISP Algorithms Using Deep Learning and Computer Vision - Robust Mesh Tracking for Volumetric Capture - Advanced Image Processing Enabled by AI - Novel Actuator - Machine Learning/AI for Wireless Communications - Reconfigurable Reflector Type Materials - Individual Treatment Effect Estimation - Acoustic Metamaterials - Novel Technologies for GaN-based VSCELs - Intelligent Sensing of Patient-Reported Outcomes
MiamiOH OARS

Cybersecurity Innovation for Cyberinfrastructure (CICI) (nsf21512) | NSF - National Sci... - 0 views

  •  
    The objective of the Cybersecurity Innovation for Cyberinfrastructure (CICI) program is to develop, deploy and integrate solutions that benefit the broader scientific community by securing science data, workflows, and infrastructure. CICI recognizes the unique nature of modern, rapid collaborative science and the breadth of security expertise, infrastructure and requirements among different practitioners, researchers, and scientific projects. CICI seeks projects in three program areas: Usable and Collaborative Security for Science (UCSS): Projects in this program area should support novel and applied security and usability research that facilitates scientific collaboration, encourages the adoption of security into the scientific workflow, and helps create a holistic, integrated security environment that spans the entire scientific CI ecosystem. Reference Scientific Security Datasets (RSSD):Projects in this program area should capture the unique properties of scientific workflows and workloads as reference data artifacts to support reproducible security research and protect the scientific process. Scientific Infrastructure Vulnerability Discovery (SIVD): Projects in this program area should develop and apply techniques to proactively discover vulnerabilities and weaknesses in scientific infrastructure.
MiamiOH OARS

Mid-Scale Research Infrastructure-1 Program Webinar | NSF - National Science Foundation - 0 views

  •  
    NOTE: Webpage provides information about general webinar and BIO Directorate breakout. If you are interested in breakouts for other directorates, contact Heather Johnston (johnsthb@MiamiOH.edu) in Research & Innovation for information. On Wednesday, November 4, 2020 and Thursday, November 5, 2020, NSF will host outreach webinars with information about the Mid-Scale Research Infrastructure (Mid-scale RI)-1 funding opportunity (NSF 21-505). The Mid-scale RI Big Idea is intended to provides an agile, Foundation-wide process to fund experimental research capabilities in the mid-scale range ($6 million to $100 million), between the Major Research Instrumentation (MRI) and Major Facilities thresholds.  Recently, the solicitation (NSF 21-505) for the Mid-scale RI-1 program (for infrastructure with total project cost of $6 million up until, but not including, $20 million) was published with a deadline of January 7, 2021 for preliminary proposals. Each session will begin at 1:00 p.m. EST and have two parts: a general Mid-scale RI-1 information session (1:00 p.m. -1:40 p.m. EST) with Q&A followed by Directorate-specific breakouts (1:45 p.m. - 2:30 p.m. EST) where more technical questions will be addressed. The information presented on Day 1 will be the same as the information presented on Day 2.
MiamiOH OARS

Computational Chemical Science | Department of Energy - 0 views

  •  
    The DOE SC program in Basic Energy Sciences (BES) hereby announces its interest in receiving new and renewal applications from small groups (2-3 principal investigators) and integrated multidisciplinary teams (typically from multiple institutions) in Computational Chemical Sciences (CCS). Single-investigator applications are not responsive to the objectives of this FOA. CCS will support basic research to develop validated, open-source codes for modeling and simulation of complex chemical processes and phenomena that allow full use of emerging exascale and future planned DOE leadership-class computing capabilities. The focus for CCS is on developing capabilities that allow modeling and simulation of new or previously inaccessible complex chemical systems and/or provide dramatic improvement in fidelity, scalability, and throughput. Teams should bring together expertise in domain areas (e.g., electronic structure, chemical dynamics, statistical mechanics, etc.) and other areas important to advance computational tools such as data science, algorithm development, and software architectures. Priority will be given to efforts that address reaction chemistry across multiple scales in complex environments important in geosciences, catalysis, biochemistry, or electrochemistry. CCS will continue to support the DOE Exascale Computing Initiative (ECI). The ECI aims to accelerate the research and development needed to overcome key exascale challenges and maximize benefits of high-performance computing. This funding opportunity continues the BES commitment to ECI by developing open-source codes that can take full advantage of emerging exascale and future planned DOE leadership-class computing facilities.
MiamiOH OARS

Designing Materials to Revolutionize and Engineer our Future (DMREF) (nsf21522) | NSF -... - 0 views

  •  
    DMREF will support activities that significantly accelerate materials discovery and development by building the fundamental knowledge base needed to advance the design and development of materials with desirable properties or functionality. This will be accomplished through forming interdisciplinary teams of researchers working synergistically in a "closed loop" fashion, building a vibrant research community, leveraging data science, providing ready access to materials data, and educating the future MGI workforce. Achieving this goal could involve some combination of: strategies to advance materials design through testing methodology; theory, modeling, and simulation to predict behavior or assist in analysis of multidimensional input data; and validation through synthesis, growth, processing, characterization, and/or device demonstration.
MiamiOH OARS

CBI Research Program: Norberg Travel Fund - 1 views

  •  
    The Arthur L. Norberg Travel Fund provides short-term grants-in-aid to help scholars with travel expenses to use archival collections at the Charles Babbage Institute.  Each year we plan to award two or more $750 grants. The Charles Babbage Institute (CBI) is an internationally recognized research center and archives focused on the history of information technology.  CBI conducts major research projects; publishes books and articles; and collects, processes, and provides open public access to the most diverse and extensive collection of archival materials on computing, software, and networking in the world.  CBI collections include the records of corporations, technical and trade associations, personal papers, industry publications, oral histories, photographs, film/video, and an extensive reference library.  The Norberg Travel Fund is named for CBI's founding director, Arthur L. Norberg, and is funded by generous gifts from his friends and colleagues.
MiamiOH OARS

Critical Resilient Interdependent Infrastructure Systems and Processes FY17 (CRISP) (ns... - 0 views

  •  
    The CRISP solicitation seeks to fund projects likely to produce new knowledge that can contribute to making ICI services more effective, efficient, dependable, adaptable, resilient, safe, and secure, taking into account the human systems in which they are embedded. Successful proposals are expected to study multiple infrastructures focusing on them as interdependent systems that deliver services, enabling a new interdisciplinary paradigm in infrastructure research. To meet the interdisciplinary criterion, proposals must broadly integrate across engineering, computer, information and computational science, and the social, behavioral and economic sciences.
  •  
    The CRISP solicitation seeks to fund projects likely to produce new knowledge that can contribute to making ICI services more effective, efficient, dependable, adaptable, resilient, safe, and secure, taking into account the human systems in which they are embedded. Successful proposals are expected to study multiple infrastructures focusing on them as interdependent systems that deliver services, enabling a new interdisciplinary paradigm in infrastructure research. To meet the interdisciplinary criterion, proposals must broadly integrate across engineering, computer, information and computational science, and the social, behavioral and economic sciences.
« First ‹ Previous 121 - 128 of 128
Showing 20 items per page