Skip to main content

Home/ OARS funding Chemistry/ Group items tagged methods

Rss Feed Group items tagged

MiamiOH OARS

The Partnership for Clean Competition - Grants Program - 0 views

  •  
    The PCC has supported world-class research since 2009, spending more than $8.0 M to support novel science. Research and grant-making are the foundation of the PCC and are the focus of everyday business activity. PCC-supported research contributes to a movement in addressing doping's root causes and ultimately decreasing the use of performance-enhancing drugs by all participants in all sports at all levels of play. With an emphasis on original work that focuses on improving existing analytical methods for detecting particular drugs, developing new analytical methods to test for substances not currently detectable, and discovering cost-effective approaches for testing widely abused substances across all levels of sport, the following areas of investigation reflect the PCC's current research priorities: - Developing methods of cost-effective testing to detect and deter the use of banned and illegal substances. - Developing testing protocols to detect designer substances used for doping purposes. - Improving existing analytical methods to detect particular drugs, ex. GH, IGF-1, EPO, hCG. - Developing analytical methods to detect performance enhancing drugs not currently detectable. - Longitudinal urinary excretion patterns, metabolism and dose-concentration. - Critical reviews to support interpretation of laboratory data. - Alternative specimens, (ex. oral fluid, dried blood/plasma spots) for testing.
MiamiOH OARS

Grants Program - PCC - Global Anti-Doping Research Grants for Scientists - 0 views

  •  
    The PCC has supported world-class research since 2008, spending more than $18.0 M to support novel science around the world. Research and grant-making are the foundation of the PCC and are the focus of everyday business activity. PCC-supported research contributes to a movement in addressing doping's root causes and ultimately decreasing the use of performance-enhancing drugs by all participants in all sports at all levels of play. Grant Cycle Deadlines: Pre-Applications are due March 1st, July 1st, and November 1st of each year. Applicants invited to submit full applications must do so by April 1st, August 1st, or December 1st, depending on the cycle (30 days after the pre-application due date). With an emphasis on original work that focuses on improving existing analytical methods for detecting particular drugs, developing new analytical methods to test for substances not currently detectable, and discovering cost-effective approaches for testing widely abused substances across all levels of sport, the following areas of investigation reflect the PCC's current research priorities: Developing methods of cost-effective testing to detect and deter the use of banned and illegal substances. Developing testing protocols to detect designer substances used for doping purposes. Improving existing analytical methods to detect particular drugs, ex. GH, IGF-1, EPO, hCG. Developing analytical methods to detect performance enhancing drugs not currently detectable. Longitudinal urinary excretion patterns, metabolism and dose-concentration. Critical reviews to support interpretation of laboratory data. Alternative specimens, (ex. oral fluid, dried blood/plasma spots) for testing. There is no maximum amount for PCC funding, though the average funding amount is $225,000. To date, over 80 projects have been funded in over 14 countries world-wide. Approximately 33% of applicants are awarded PCC funding.
MiamiOH OARS

NSF Mechanics of Materials - 0 views

  •  
    The Mechanics of Materials program supports fundamental research on the behavior of solid materials and respective devices under external actions.?? A diverse and interdisciplinary spectrum of research is supported with emphasis placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in Mechanics of Materials, and/or ii) uses contemporary Mechanics of Materials methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales. Intellectual merit typically includes advances in fundamental understanding of deformation, fracture, fatigue, and contact through constitutive modeling, multiscale and multiphysics analysis, computational methods, or experimental techniques.??Recent interests comprise, but are not limited to:?? contemporary materials including multiphase materials and material systems, soft materials, active materials, low-dimensional materials, phononic/elastic metamaterials, friction, wear;??multiphysics methods, mechanics at the nano, meso and microscale and multiscale integration thereof, as well as approaches incorporating fundamental understanding of physics and chemistry into the continuum-level understanding of the response characteristics of materials and material systems.
MiamiOH OARS

Development of Innovative Informatics Methods and Algorithms for Cancer Research and Ma... - 0 views

  •  
    The purpose of this Funding Opportunity Announcement (FOA) is to invite exploratory/developmental research grant (R21) applications for the development of innovative methods and algorithms in biomedical computing, informatics, and data science addressing priority needs across the cancer research continuum, including cancer biology, cancer treatment and diagnosis, cancer prevention, cancer control and epidemiology, and/or cancer health disparities. As a component of the NCI's Informatics Technology for Cancer Research (ITCR) Initiative, this FOA encourages applications focused on the development of novel computational, mathematical, and statistical algorithms and methods that can considerably improve acquisition, management, analysis, and dissemination of relevant data and/or knowledge. The central mission of ITCR is to promote research-driven informatics technology across the development lifecycle to address priority needs in cancer research. In order to be successful, the proposed informatics method or algorithm must have a clear rationale on why it is novel and how it will benefit the cancer research field.
MiamiOH OARS

Administrative Supplements to NIH Awards for Validation Studies of Analytical Methods f... - 0 views

  •  
     The methods proposed for validation must be used to identify and quantify chemical constituents (active or marker chemical compounds, adulterants, contaminants, or metabolites thereof) in experimental reagents, raw materials, and/or clinical specimens (for example urine or plasma samples). Methods must have been developed or utilized in fulfillment of the active parent grants specific aims. Candidate constituents for quantitative method validation studies may include (but are not limited to):phytochemicals; nutrients; and potentially deleterious substances such as pesticides and mycotoxins.
MiamiOH OARS

Centers of Excellence in Genomic Science (CEGS) (RM1) - 0 views

  •  
    The Centers of Excellence in Genomic Science (CEGS) program establishes academic Centers for advanced genome research.  Each CEGS grant supports a multi-investigator, interdisciplinary team to develop innovative genomic approaches to address a particular biomedical problem.  A CEGS project will address a critical issue in genomic science or genomic medicine, proposing a solution that would be a very substantial advance.  Thus, the research conducted at these Centers will entail substantial risk, balanced by outstanding scientific and management plans and very high potential payoff.  A CEGS will focus on the development of novel technological or computational methods for the production or analysis of comprehensive data sets, or on a particular genome-scale biomedical problem, or on other ways to develop and use genomic approaches for understanding biological systems and/or significantly furthering the application of genomic knowledge, data and methods towards clinical applications.  Exploiting its outstanding scientific plan and team, each CEGS will nurture genomic science at its institution by facilitating the interaction of investigators from different disciplines, and by providing training to new and experienced investigators, it will expand the pool of highly-qualified professional genomics scientists and engineers.
  •  
    The Centers of Excellence in Genomic Science (CEGS) program establishes academic Centers for advanced genome research.  Each CEGS grant supports a multi-investigator, interdisciplinary team to develop innovative genomic approaches to address a particular biomedical problem.  A CEGS project will address a critical issue in genomic science or genomic medicine, proposing a solution that would be a very substantial advance.  Thus, the research conducted at these Centers will entail substantial risk, balanced by outstanding scientific and management plans and very high potential payoff.  A CEGS will focus on the development of novel technological or computational methods for the production or analysis of comprehensive data sets, or on a particular genome-scale biomedical problem, or on other ways to develop and use genomic approaches for understanding biological systems and/or significantly furthering the application of genomic knowledge, data and methods towards clinical applications.  Exploiting its outstanding scientific plan and team, each CEGS will nurture genomic science at its institution by facilitating the interaction of investigators from different disciplines, and by providing training to new and experienced investigators, it will expand the pool of highly-qualified professional genomics scientists and engineers.
MiamiOH OARS

nsf.gov - Funding - Mechanics of Materials - US National Science Foundation (NSF) - 0 views

  •  
    The MoM program supports fundamental research in interdisciplinary solid mechanics.  Emphasis is placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in MoM, and/or ii) uses contemporary MoM methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales; especially of interest are contemporary materials including complex solids, phononic/elastic metamaterials, soft materials, and active materials.  Research is welcome in emerging areas of multiscale methods, nanomechanics, manufacturing mechanics, and areas that incorporate fundamental understanding of physics and chemistry into the continuum-level understanding of solids.
MiamiOH OARS

RFA-ES-20-004: Optimizing Natural Systems for Remediation: Utilizing Innovative Materia... - 0 views

  •  
    The National Institute of Environmental Health Sciences (NIEHS) invites qualified investigators from domestic institutions of higher education to apply to the Superfund Research Program (SRP) R01 Individual Research Project grant program. The mission of the NIEHS is to discover how the environment affects people in order to promote healthier lives. The NIEHS Superfund Research Program (SRP) (http://www.niehs.nih.gov/research/supported/srp/) was established under the Superfund Amendment Reauthorization Act (SARA) Section 311(a), which authorizes NIEHS to implement a university-based program of basic research for the development of: 1) advanced techniques for the detection, assessment, and evaluation of the effect of hazardous substances on human health; 2) methods to assess the risks to human health presented by hazardous substances; 3) methods and technologies to detect hazardous substances in the environment; and 4) basic biological, chemical, and physical methods to reduce the amount and/or toxicity of hazardous substances. SRP's broad scope, as dictated by the SARA mandates, allows NIEHS to support scientific research to address the wide array of scientific uncertainties facing the national Superfund program utilizing biomedical as well as environmental science and engineering approaches. Research supported by the SRP uses mechanistic science as a foundation and, in keeping with the broad research themes of the program mandates, the SRP promotes an interdisciplinary approach to develop solutions for the safe management of hazardous substances with the ultimate goal of improving public health.
MiamiOH OARS

BRAIN Initiative: Tools to target, identify and characterize non-neuronal cells in the ... - 0 views

  •  
    The purpose of this Funding Opportunity Announcement [FOA] submitted through the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is to stimulate the development and validation of novel tools and analytical methods to target, identify and characterize non-neuronal cells in the brain. This FOA complements previous and ongoing cell-census and tool development efforts initiated under BRAIN, RFA-MH-14-215 and RFA-MH-14-216, that have focused almost exclusively on neuronal cells. The cutting-edge tools and methods developed under this opportunity should focus specifically on providing improved points of entry into non-neuronal cell-types (glial and vascular) to enable their inventory and characterization within the CNS and help define how these cells interact among each other and with neuronal cells to impact functional circuitries. Plans for validating the utility of the tool/technology/method and demonstrating its advantage over currently available approaches will be an essential feature of a successful application. Tools that can be used in several species or model organisms rather than in a single species are especially desirable.
MiamiOH OARS

nsf.gov - Funding - Chemical Theory, Models and Computational Methods - US National Sci... - 0 views

  •  
    The Chemical Theory, Models and Computational Methods program supports the discovery and development of theoretical and computational methods or models to address a range of chemical challenges, with emphasis on emerging areas of chemical research.  Proposals that focus on established theoretical or computational approaches should involve innovative additions or modifications that substantially broaden their applicability.  Areas of interest include, but are not limited to, electronic structure, quantum reaction dynamics, statistical mechanics, molecular dynamics, and simulation and modeling techniques for molecular systems and systems in condensed phases.  Areas of application span the full range of chemical systems from small molecules to mesoscopic aggregates, including single molecules, biological systems and materials in condensed phases.   Despite the diverse application areas, the goal of the program is to support the development of new theoretical and computational methodologies that have the potential of being broadly applicable to a range of challenging chemical problems. We are particularly interested in fundamental areas of chemical research that are difficult or impossible to address using current synthetic, experimental, and/or computational methodologies.  We encourage the integration of innovative software development with methodological and algorithmic development, especially computational approaches that allow efficient utilization of the high end computers of the future.
MiamiOH OARS

Chemical Theory, Models and Computational Methods - 0 views

  •  
    The Chemical Theory, Models and Computational Methods program supports the discovery and development of theoretical and computational methods or models to address a range of chemical challenges, with emphasis on emerging areas of chemical research. Proposals that focus on established theoretical or computational approaches should involve innovative additions or modifications that substantially broaden their applicability. Areas of interest include, but are not limited to, electronic structure, quantum reaction dynamics, statistical mechanics, molecular dynamics, and simulation and modeling techniques for molecular systems and systems in condensed phases. Areas of application span the full range of chemical systems from small molecules to mesoscopic aggregates, including single molecules, biological systems and materials in condensed phases. Despite the diverse application areas, the goal of the program is to support the development of new theoretical and computational methodologies that have the potential of being broadly applicable to a range of challenging chemical problems. We are particularly interested in fundamental areas of chemical research that are difficult or impossible to address using current synthetic, experimental, and/or computational methodologies. We encourage the integration of innovative software development with methodological and algorithmic development, especially computational approaches that allow efficient utilization of the high end computers of the future.Proposals that utilize established theoretical and modeling approaches to solve problems in chemistry, biology or materials discovery and design may be more appropriate for other programs in either the Chemistry division or in other Divisions or Directorates.
MiamiOH OARS

NIJ FY17 Research and Development in Forensic Science for Criminal Justice Purposes - 0 views

  •  
    NIJ seeks proposals for basic or applied research and development projects that will: (1) increase the body of knowledge to guide and inform forensic science policy and practice or (2) lead to the production of useful materials, devices, systems, or methods that have the potential for forensic application. The intent of this program is to direct the findings of basic scientific research, research and development in broader scientific fields applicable to forensic science, and ongoing forensic science research toward the development of highly discriminating, accurate, reliable, cost-effective, and rapid methods for the identification, analysis, and interpretation of physical evidence for criminal justice purposes.
MiamiOH OARS

Nano-Biosensing | NSF - National Science Foundation - 0 views

  •  
    The Nano-Biosensing program is part of the Engineering Biology and Health cluster, which includes also 1) Cellular and Biochemical Engineering; 2) Engineering of Biomedical Systems; 3) Biophotonics; and 4) Disability and Rehabilitation Engineering. The Nano-Biosensing program supports fundamental engineering research on devices and methods for measurement and quantification of biological analytes. Proposals that incorporate emerging nanotechnology methods are especially encouraged. Areas of interest include: -Multi-purpose sensor platforms that exceed the performance of current state-of-the-art devices. -Novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches. These include error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, and others that improve human condition. -Nano-biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena. -Studies that examine intracellular measurements must include discussion on the significance of the measurement. 
MiamiOH OARS

Chemical Measurement and Imaging - 0 views

  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments. Research areas include but are not limited to sampling and separation science; electrochemistry; spectrometry; frequency- and time-domain spectroscopy; sensors and bioassays; and microscopy. Chemical (as opposed to morphological) imaging and measurement tools probing chemical properties and processes across a wide range of spatial scales - from macroscopic structures down to single molecules - are supported, as are innovations enabling the monitoring and imaging of rapid chemical and electronic processes and new approaches to data analysis and interpretation, including chemometrics. Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability. Sensor-related proposals should address new science and/or entirely new approaches with prospects for broad utility and significant enhancement of current capabilities. Assembly of array-type devices using known sensing mechanisms is better suited to programs elsewhere, as is tailoring of known sensing mechanisms to specific new applications. Similarly, engineering aspects of microfluidics and "lab-on-a-chip" device design, technology, and application, are better directed elsewhere. Development of imaging contrast agents is not supported, although proposals addressing entirely new mechanisms of chemical imaging can be.Included among proposals considered by the Program are those (formerly submitted to the CRIF:ID program) for which the primary focus is on development of new instrumentation enabling chemical measurements likely to be of wide interest and utility to the chemistry research community. Such proposals should include the words "Instrument Development" at the beginning
MiamiOH OARS

Division of Molecular and Cellular Biosciences: Investigator-initiated research projects - 0 views

  •  
    The Division of Molecular and Cellular Biosciences (MCB) supports quantitative, predictive, and theory-driven fundamental research and related activities designed to promote understanding of complex living systems at the molecular, subcellular, and cellular levels. MCB is soliciting proposals for hypothesis-driven and discovery research and related activities in four core clusters: Molecular Biophysics Cellular Dynamics and Function Genetic Mechanisms Systems and Synthetic Biology MCB gives high priority to research projects that use theory, methods, and technologies from physical sciences, mathematics, computational sciences, and engineering to address major biological questions.  Research supported by MCB uses a range of experimental approaches--including in vivo, in vitro and in silico strategies--and a broad spectrum of model and non-model organisms, especially microbes and plants. Typical research supported by MCB integrates theory and experimentation.  Projects that address the emerging areas of multi-scale integration, molecular and cellular evolution, quantitative prediction of phenome from genomic information, and development of methods and resources are particularly welcome.
MiamiOH OARS

RFA-ES-17-007: Novel Assays for Screening the Effects of Chemical Toxicants on Cell Dif... - 0 views

  •  
    A primary focus of these programs is on the use of in vitro methods and assays using lower organisms to screen thousands of chemicals for toxicity in order to identify mechanisms of compound-induced biological activity, characterize toxicity pathways, facilitate cross-species extrapolation, and provide input to models for low-dose extrapolation.  Data generated by these methods will be used to prioritize compounds for more extensive toxicological evaluation and to develop predictive models for biological response in humans. Current approaches are limited in terms of incorporating genetic variability in toxicity testing and in assessing the effects of chemicals in multiple normal tissue and cell types, relying on immortalized cell lines or primary cell lines derived from tissues. Thus, there is a need for novel, medium- to high-throughput assays (at least a 96-well format) to evaluate the effects of chemical compounds on the differentiation of pluripotent or multi-potent stem cells as well as the effects of chemical exposures on differentiated cell types representative of various in vivo tissues. Approaches can include the use of human induced pluripotent stem (iPS) cells, approved human embryonic stem (ES) cell lines, or ES or iPS cells derived from genetically characterized mouse strains. Assays should be able to measure the effects of toxicants on the differentiation process and/or on the differentiated cells themselves; cell types of high priority include but are not limited to cardiomyocytes, neural cells, hepatocytes, endothelial cells, lung (airway or alveolar) cells, and hormonally-responsive tissues such as reproductive tissues or breast epithelial cells.
MiamiOH OARS

Annual Open Grants - Alternatives Research and Development Foundation - 0 views

  •  
    The mission of the Alternatives Research & Development Foundation is to fund and promote the development, validation, and adoption of non-animal methods in biomedical research, product testing, and education. To advance this mission, the foundation is soliciting proposals for its Annual Open Grant Program, which supports research projects aimed at developing methods to replace or reduce the use of animals in science. Expert reviewers will evaluate proposals based on scientific merit and feasibility, as well as the potential to reduce or replace the use of animals in science in the near future. Proposals are considered in the areas of research, testing, and/or education.
MiamiOH OARS

Research and Development in Forensic Science for Criminal Justice Purposes, Fiscal Year... - 0 views

  •  
    With this solicitation, NIJ seeks proposals for basic or applied research and development projects. An NIJ forensic science research and development grant supports a discrete, specified, circumscribed project that will: (1) increase the body of knowledge to guide and inform forensic science policy and practice, or (2) lead to the production of useful material(s), device(s), system(s), or method(s) that have the potential for forensic application. The intent of this program is to direct the findings of basic scientific research; research and development in broader scientific fields applicable to forensic science; and ongoing forensic science research toward the development of highly-discriminating, accurate, reliable, cost-effective, and rapid methods for the identification, analysis, and interpretation of physical evidence for criminal justice purposes. Projects should address the challenges and needs of the forensic science community. The operational needs discussed at NIJ's FY 2016 Forensic Science TWG meeting may be found on NIJ.gov. Additional research needs of the forensic science community can be found at the Organization of Scientific Area Committees website. While the goals and deliverables of proposed projects do not necessarily need to result in immediate solutions to the posted challenges or needs, they should speak to them and produce knowledge that adds to work towards eventual resolutions.
MiamiOH OARS

Drug Early Warning Signals from High Risk Populations - 0 views

  •  
    The Office of National Drug Control Policy (ONDCP), Executive Office of the President, is seeking applications from public nonprofit institutions/organizations (includes institutions of higher education and hospitals) to perform research and analysis of data to inform drug policy. This project seeks to further refine a methodology for obtaining drug early warning indicators from expanded testing of urine samples that were previously collected and tested as part of an existing drug test protocol. This method was initially developed using local criminal justice populations - including persons in pre-trial or lock-up, parolees or probationers, and drug court participants. In addition, this method was also tested in two trauma units, with promising results. This project will use similar methodology in criminal justice, health care, and other venues, to include opioid treatment admissions, trauma units or emergency departments, and criminal justice programs such as parole or probation, where biological samples are often collected from clients.
MiamiOH OARS

Field Validation of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures - 0 views

  •  
    Cracking is a primary mode of distress in asphalt pavements. There are several modes of asphalt pavement cracking-thermal, reflection, fatigue, and top-down-and all are affected by numerous factors and their interactions. Recent research has evaluated a variety of laboratory tests and models to assess the cracking potential of asphalt mixtures and several are recommended for routine use. As asphalt mix designs become more complex with the use of asphalt modifiers, RAP and RAS, and warm mix asphalt technologies, highway engineers have recognized the need to establish and implement reliable performance tests that can be used to evaluate asphalt mixes and ultimately extend the life of asphalt pavements. NCHRP Project 09-57, "Experimental Design for Field Validation of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures," developed experimental designs for the ruggedness testing and field validation of candidate laboratory tests to assess the resistance of asphalt mixtures to the four cracking types noted above. Candidate test methods were selected through (a) a critical review of relevant research and state mixture design practices and (b) a workshop with invited experts held in February 2015. The findings and conclusions of the project are summarized in NCHRP Research Results Digest 399: Field Validation of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures: An Experimental Design; the contractor's final project report is available at http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP09-57_FR.pdf. This project is the first in a series proposed to accomplish the field validation designed in Project 09-57. Research is needed to conduct ruggedness testing of the candidate test methods in anticipation of future field validation experiments.
1 - 20 of 81 Next › Last »
Showing 20 items per page