Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Modernism

Rss Feed Group items tagged

Weiye Loh

The Death of Postmodernism And Beyond | Philosophy Now - 0 views

  • Most of the undergraduates who will take ‘Postmodern Fictions’ this year will have been born in 1985 or after, and all but one of the module’s primary texts were written before their lifetime. Far from being ‘contemporary’, these texts were published in another world, before the students were born: The French Lieutenant’s Woman, Nights at the Circus, If on a Winter’s Night a Traveller, Do Androids Dream of Electric Sheep? (and Blade Runner), White Noise: this is Mum and Dad’s culture. Some of the texts (‘The Library of Babel’) were written even before their parents were born. Replace this cache with other postmodern stalwarts – Beloved, Flaubert’s Parrot, Waterland, The Crying of Lot 49, Pale Fire, Slaughterhouse 5, Lanark, Neuromancer, anything by B.S. Johnson – and the same applies. It’s all about as contemporary as The Smiths, as hip as shoulder pads, as happening as Betamax video recorders. These are texts which are just coming to grips with the existence of rock music and television; they mostly do not dream even of the possibility of the technology and communications media – mobile phones, email, the internet, computers in every house powerful enough to put a man on the moon – which today’s undergraduates take for granted.
  • somewhere in the late 1990s or early 2000s, the emergence of new technologies re-structured, violently and forever, the nature of the author, the reader and the text, and the relationships between them.
  • Postmodernism, like modernism and romanticism before it, fetishised [ie placed supreme importance on] the author, even when the author chose to indict or pretended to abolish him or herself. But the culture we have now fetishises the recipient of the text to the degree that they become a partial or whole author of it. Optimists may see this as the democratisation of culture; pessimists will point to the excruciating banality and vacuity of the cultural products thereby generated (at least so far).
  • ...17 more annotations...
  • Pseudo-modernism also encompasses contemporary news programmes, whose content increasingly consists of emails or text messages sent in commenting on the news items. The terminology of ‘interactivity’ is equally inappropriate here, since there is no exchange: instead, the viewer or listener enters – writes a segment of the programme – then departs, returning to a passive role. Pseudo-modernism also includes computer games, which similarly place the individual in a context where they invent the cultural content, within pre-delineated limits. The content of each individual act of playing the game varies according to the particular player.
  • The pseudo-modern cultural phenomenon par excellence is the internet. Its central act is that of the individual clicking on his/her mouse to move through pages in a way which cannot be duplicated, inventing a pathway through cultural products which has never existed before and never will again. This is a far more intense engagement with the cultural process than anything literature can offer, and gives the undeniable sense (or illusion) of the individual controlling, managing, running, making up his/her involvement with the cultural product. Internet pages are not ‘authored’ in the sense that anyone knows who wrote them, or cares. The majority either require the individual to make them work, like Streetmap or Route Planner, or permit him/her to add to them, like Wikipedia, or through feedback on, for instance, media websites. In all cases, it is intrinsic to the internet that you can easily make up pages yourself (eg blogs).
  • Where once special effects were supposed to make the impossible appear credible, CGI frequently [inadvertently] works to make the possible look artificial, as in much of Lord of the Rings or Gladiator. Battles involving thousands of individuals have really happened; pseudo-modern cinema makes them look as if they have only ever happened in cyberspace.
  • Similarly, television in the pseudo-modern age favours not only reality TV (yet another unapt term), but also shopping channels, and quizzes in which the viewer calls to guess the answer to riddles in the hope of winning money.
  • The purely ‘spectacular’ function of television, as with all the arts, has become a marginal one: what is central now is the busy, active, forging work of the individual who would once have been called its recipient. In all of this, the ‘viewer’ feels powerful and is indeed necessary; the ‘author’ as traditionally understood is either relegated to the status of the one who sets the parameters within which others operate, or becomes simply irrelevant, unknown, sidelined; and the ‘text’ is characterised both by its hyper-ephemerality and by its instability. It is made up by the ‘viewer’, if not in its content then in its sequence – you wouldn’t read Middlemarch by going from page 118 to 316 to 401 to 501, but you might well, and justifiably, read Ceefax that way.
  • A pseudo-modern text lasts an exceptionally brief time. Unlike, say, Fawlty Towers, reality TV programmes cannot be repeated in their original form, since the phone-ins cannot be reproduced, and without the possibility of phoning-in they become a different and far less attractive entity.
  • If scholars give the date they referenced an internet page, it is because the pages disappear or get radically re-cast so quickly. Text messages and emails are extremely difficult to keep in their original form; printing out emails does convert them into something more stable, like a letter, but only by destroying their essential, electronic state.
  • The cultural products of pseudo-modernism are also exceptionally banal
  • Much text messaging and emailing is vapid in comparison with what people of all educational levels used to put into letters.
  • A triteness, a shallowness dominates all.
  • In music, the pseudo-modern supersedingof the artist-dominated album as monolithic text by the downloading and mix-and-matching of individual tracks on to an iPod, selected by the listener, was certainly prefigured by the music fan’s creation of compilation tapes a generation ago. But a shift has occurred, in that what was a marginal pastime of the fan has become the dominant and definitive way of consuming music, rendering the idea of the album as a coherent work of art, a body of integrated meaning, obsolete.
  • To a degree, pseudo-modernism is no more than a technologically motivated shift to the cultural centre of something which has always existed (similarly, metafiction has always existed, but was never so fetishised as it was by postmodernism). Television has always used audience participation, just as theatre and other performing arts did before it; but as an option, not as a necessity: pseudo-modern TV programmes have participation built into them.
  • Whereas postmodernism called ‘reality’ into question, pseudo-modernism defines the real implicitly as myself, now, ‘interacting’ with its texts. Thus, pseudo-modernism suggests that whatever it does or makes is what is reality, and a pseudo-modern text may flourish the apparently real in an uncomplicated form: the docu-soap with its hand-held cameras (which, by displaying individuals aware of being regarded, give the viewer the illusion of participation); The Office and The Blair Witch Project, interactive pornography and reality TV; the essayistic cinema of Michael Moore or Morgan Spurlock.
  • whereas postmodernism favoured the ironic, the knowing and the playful, with their allusions to knowledge, history and ambivalence, pseudo-modernism’s typical intellectual states are ignorance, fanaticism and anxiety
  • pseudo-modernism lashes fantastically sophisticated technology to the pursuit of medieval barbarism – as in the uploading of videos of beheadings onto the internet, or the use of mobile phones to film torture in prisons. Beyond this, the destiny of everyone else is to suffer the anxiety of getting hit in the cross-fire. But this fatalistic anxiety extends far beyond geopolitics, into every aspect of contemporary life; from a general fear of social breakdown and identity loss, to a deep unease about diet and health; from anguish about the destructiveness of climate change, to the effects of a new personal ineptitude and helplessness, which yield TV programmes about how to clean your house, bring up your children or remain solvent.
  • Pseudo-modernism belongs to a world pervaded by the encounter between a religiously fanatical segment of the United States, a largely secular but definitionally hyper-religious Israel, and a fanatical sub-section of Muslims scattered across the planet: pseudo-modernism was not born on 11 September 2001, but postmodernism was interred in its rubble.
  • pseudo-modernist communicates constantly with the other side of the planet, yet needs to be told to eat vegetables to be healthy, a fact self-evident in the Bronze Age. He or she can direct the course of national television programmes, but does not know how to make him or herself something to eat – a characteristic fusion of the childish and the advanced, the powerful and the helpless. For varying reasons, these are people incapable of the “disbelief of Grand Narratives” which Lyotard argued typified postmodernists
  •  
    Postmodern philosophy emphasises the elusiveness of meaning and knowledge. This is often expressed in postmodern art as a concern with representation and an ironic self-awareness. And the argument that postmodernism is over has already been made philosophically. There are people who have essentially asserted that for a while we believed in postmodern ideas, but not any more, and from now on we're going to believe in critical realism. The weakness in this analysis is that it centres on the academy, on the practices and suppositions of philosophers who may or may not be shifting ground or about to shift - and many academics will simply decide that, finally, they prefer to stay with Foucault [arch postmodernist] than go over to anything else. However, a far more compelling case can be made that postmodernism is dead by looking outside the academy at current cultural production.
Weiye Loh

Religion as a catalyst of rationalization « The Immanent Frame - 0 views

  • For Habermas, religion has been a continuous concern precisely because it is related to both the emergence of reason and the development of a public space of reason-giving. Religious ideas, according to Habermas, are never mere irrational speculation. Rather, they possess a form, a grammar or syntax, that unleashes rational insights, even arguments; they contain, not just specific semantic contents about God, but also a particular structure that catalyzes rational argumentation.
  • in his earliest, anthropological-philosophical stage, Habermas approaches religion from a predominantly philosophical perspective. But as he undertakes the task of “transforming historical materialism” that will culminate in his magnum opus, The Theory of Communicative Action, there is a shift from philosophy to sociology and, more generally, social theory. With this shift, religion is treated, not as a germinal for philosophical concepts, but instead as the source of the social order.
  • What is noteworthy about this juncture in Habermas’s writings is that secularization is explained as “pressure for rationalization” from “above,” which meets the force of rationalization from below, from the realm of technical and practical action oriented to instrumentalization. Additionally, secularization here is not simply the process of the profanation of the world—that is, the withdrawal of religious perspectives as worldviews and the privatization of belief—but, perhaps most importantly, religion itself becomes the means for the translation and appropriation of the rational impetus released by its secularization.
  • ...6 more annotations...
  • religion becomes its own secular catalyst, or, rather, secularization itself is the result of religion. This approach will mature in the most elaborate formulation of what Habermas calls the “linguistification of the sacred,” in volume two of The Theory of Communicative Action. There, basing himself on Durkheim and Mead, Habermas shows how ritual practices and religious worldviews release rational imperatives through the establishment of a communicative grammar that conditions how believers can and should interact with each other, and how they relate to the idea of a supreme being. Habermas writes: worldviews function as a kind of drive belt that transforms the basic religious consensus into the energy of social solidarity and passes it on to social institutions, thus giving them a moral authority. [. . .] Whereas ritual actions take place at a pregrammatical level, religious worldviews are connected with full-fledged communicative actions.
  • The thrust of Habermas’s argumentation in this section of The Theory of Communicative Action is to show that religion is the source of the normative binding power of ethical and moral commandments. Yet there is an ambiguity here. While the contents of worldviews may be sublimated into the normative, binding of social systems, it is not entirely clear that the structure, or the grammar, of religious worldviews is itself exhausted. Indeed, in “A Genealogical Analysis of the Cognitive Content of Morality,” Habermas resolves this ambiguity by claiming that the horizontal relationship among believers and the vertical relationship between each believer and God shape the structure of our moral relationship to our neighbour, but now under two corresponding aspects: that of solidarity and that of justice. Here, the grammar of one’s religious relationship to God and the corresponding community of believers are like the exoskeleton of a magnificent species, which, once the religious worldviews contained in them have desiccated under the impact of the forces of secularization, leave behind a casing to be used as a structuring shape for other contents.
  • Metaphysical thinking, which for Habermas has become untenable by the very logic of philosophical development, is characterized by three aspects: identity thinking, or the philosophy of origins that postulates the correspondence between being and thought; the doctrine of ideas, which becomes the foundation for idealism, which in turn postulates a tension between what is perceived and what can be conceptualized; and a concomitant strong concept of theory, where the bios theoretikos takes on a quasi-sacred character, and where philosophy becomes the path to salvation through dedication to a life of contemplation. By “postmetaphysical” Habermas means the new self-understanding of reason that we are able to obtain after the collapse of the Hegelian idealist system—the historicization of reason, or the de-substantivation that turns it into a procedural rationality, and, above all, its humbling. It is noteworthy that one of the main aspects of the new postmetaphysical constellation is that in the wake of the collapse of metaphysics, philosophy is forced to recognize that it must co-exist with religious practices and language: Philosophy, even in its postmetaphysical form, will be able neither to replace nor to repress religion as long as religious language is the bearer of semantic content that is inspiring and even indispensable, for this content eludes (for the time being?) the explanatory force of philosophical language and continues to resist translation into reasoning discourses.
  • metaphysical thinking either surrendered philosophy to religion or sought to eliminate religion altogether. In contrast, postmetaphysical thinking recognizes that philosophy can neither replace nor dismissively reject religion, for religion continues to articulate a language whose syntax and content elude philosophy, but from which philosophy continues to derive insights into the universal dimensions of human existence.
  • Habermas claims that even moral discourse cannot translate religious language without something being lost: “Secular languages which only eliminate the substance once intended leave irritations. When sin was converted to culpability, and the breaking of divine commands to an offence against human laws, something was lost.” Still, Habermas’s concern with religion is no longer solely philosophical, nor merely socio-theoretical, but has taken on political urgency. Indeed, he now asks whether modern rule of law and constitutional democracies can generate the motivational resources that nourish them and make them durable. In a series of essays, now gathered in Between Naturalism and Religion, as well as in his Europe: The Faltering Project, Habermas argues that as we have become members of a world society (Weltgesellschaft), we have also been forced to adopt a societal “post-secular self-consciousness.” By this term Habermas does not mean that secularization has come to an end, and even less that it has to be reversed. Instead, he now clarifies that secularization refers very specifically to the secularization of state power and to the general dissolution of metaphysical, overarching worldviews (among which religious views are to be counted). Additionally, as members of a world society that has, if not a fully operational, at least an incipient global public sphere, we have been forced to witness the endurance and vitality of religion. As members of this emergent global public sphere, we are also forced to recognize the plurality of forms of secularization. Secularization did not occur in one form, but in a variety of forms and according to different chronologies.
  • through a critical reading of Rawls, Habermas has begun to translate the postmetaphysical orientation of modern philosophy into a postsecular self-understanding of modern rule of law societies in such a way that religious citizens as well as secular citizens can co-exist, not just by force of a modus vivendi, but out of a sincere mutual respect. “Mutual recognition implies, among other things, that religious and secular citizens are willing to listen and to learn from each other in public debates. The political virtue of treating each other civilly is an expression of distinctive cognitive attitudes.” The cognitive attitudes Habermas is referring to here are the very cognitive competencies that are distinctive of modern, postconventional social agents. Habermas’s recent work on religion, then, is primarily concerned with rescuing for the modern liberal state those motivational and moral resources that it cannot generate or provide itself. At the same time, his recent work is concerned with foregrounding the kind of ethical and moral concerns, preoccupations, and values that can guide us between the Scylla of a society administered from above by the system imperatives of a global economy and political power and the Charybdis of a technological frenzy that places us on the slippery slope of a liberally sanctioned eugenics.
  •  
    Religion in the public sphere: Religion as a catalyst of rationalization posted by Eduardo Mendieta
Weiye Loh

How We Know by Freeman Dyson | The New York Review of Books - 0 views

  • Another example illustrating the central dogma is the French optical telegraph.
  • The telegraph was an optical communication system with stations consisting of large movable pointers mounted on the tops of sixty-foot towers. Each station was manned by an operator who could read a message transmitted by a neighboring station and transmit the same message to the next station in the transmission line.
  • The distance between neighbors was about seven miles. Along the transmission lines, optical messages in France could travel faster than drum messages in Africa. When Napoleon took charge of the French Republic in 1799, he ordered the completion of the optical telegraph system to link all the major cities of France from Calais and Paris to Toulon and onward to Milan. The telegraph became, as Claude Chappe had intended, an important instrument of national power. Napoleon made sure that it was not available to private users.
  • ...27 more annotations...
  • Unlike the drum language, which was based on spoken language, the optical telegraph was based on written French. Chappe invented an elaborate coding system to translate written messages into optical signals. Chappe had the opposite problem from the drummers. The drummers had a fast transmission system with ambiguous messages. They needed to slow down the transmission to make the messages unambiguous. Chappe had a painfully slow transmission system with redundant messages. The French language, like most alphabetic languages, is highly redundant, using many more letters than are needed to convey the meaning of a message. Chappe’s coding system allowed messages to be transmitted faster. Many common phrases and proper names were encoded by only two optical symbols, with a substantial gain in speed of transmission. The composer and the reader of the message had code books listing the message codes for eight thousand phrases and names. For Napoleon it was an advantage to have a code that was effectively cryptographic, keeping the content of the messages secret from citizens along the route.
  • After these two historical examples of rapid communication in Africa and France, the rest of Gleick’s book is about the modern development of information technolog
  • The modern history is dominated by two Americans, Samuel Morse and Claude Shannon. Samuel Morse was the inventor of Morse Code. He was also one of the pioneers who built a telegraph system using electricity conducted through wires instead of optical pointers deployed on towers. Morse launched his electric telegraph in 1838 and perfected the code in 1844. His code used short and long pulses of electric current to represent letters of the alphabet.
  • Morse was ideologically at the opposite pole from Chappe. He was not interested in secrecy or in creating an instrument of government power. The Morse system was designed to be a profit-making enterprise, fast and cheap and available to everybody. At the beginning the price of a message was a quarter of a cent per letter. The most important users of the system were newspaper correspondents spreading news of local events to readers all over the world. Morse Code was simple enough that anyone could learn it. The system provided no secrecy to the users. If users wanted secrecy, they could invent their own secret codes and encipher their messages themselves. The price of a message in cipher was higher than the price of a message in plain text, because the telegraph operators could transcribe plain text faster. It was much easier to correct errors in plain text than in cipher.
  • Claude Shannon was the founding father of information theory. For a hundred years after the electric telegraph, other communication systems such as the telephone, radio, and television were invented and developed by engineers without any need for higher mathematics. Then Shannon supplied the theory to understand all of these systems together, defining information as an abstract quantity inherent in a telephone message or a television picture. Shannon brought higher mathematics into the game.
  • When Shannon was a boy growing up on a farm in Michigan, he built a homemade telegraph system using Morse Code. Messages were transmitted to friends on neighboring farms, using the barbed wire of their fences to conduct electric signals. When World War II began, Shannon became one of the pioneers of scientific cryptography, working on the high-level cryptographic telephone system that allowed Roosevelt and Churchill to talk to each other over a secure channel. Shannon’s friend Alan Turing was also working as a cryptographer at the same time, in the famous British Enigma project that successfully deciphered German military codes. The two pioneers met frequently when Turing visited New York in 1943, but they belonged to separate secret worlds and could not exchange ideas about cryptography.
  • In 1945 Shannon wrote a paper, “A Mathematical Theory of Cryptography,” which was stamped SECRET and never saw the light of day. He published in 1948 an expurgated version of the 1945 paper with the title “A Mathematical Theory of Communication.” The 1948 version appeared in the Bell System Technical Journal, the house journal of the Bell Telephone Laboratories, and became an instant classic. It is the founding document for the modern science of information. After Shannon, the technology of information raced ahead, with electronic computers, digital cameras, the Internet, and the World Wide Web.
  • According to Gleick, the impact of information on human affairs came in three installments: first the history, the thousands of years during which people created and exchanged information without the concept of measuring it; second the theory, first formulated by Shannon; third the flood, in which we now live
  • The event that made the flood plainly visible occurred in 1965, when Gordon Moore stated Moore’s Law. Moore was an electrical engineer, founder of the Intel Corporation, a company that manufactured components for computers and other electronic gadgets. His law said that the price of electronic components would decrease and their numbers would increase by a factor of two every eighteen months. This implied that the price would decrease and the numbers would increase by a factor of a hundred every decade. Moore’s prediction of continued growth has turned out to be astonishingly accurate during the forty-five years since he announced it. In these four and a half decades, the price has decreased and the numbers have increased by a factor of a billion, nine powers of ten. Nine powers of ten are enough to turn a trickle into a flood.
  • Gordon Moore was in the hardware business, making hardware components for electronic machines, and he stated his law as a law of growth for hardware. But the law applies also to the information that the hardware is designed to embody. The purpose of the hardware is to store and process information. The storage of information is called memory, and the processing of information is called computing. The consequence of Moore’s Law for information is that the price of memory and computing decreases and the available amount of memory and computing increases by a factor of a hundred every decade. The flood of hardware becomes a flood of information.
  • In 1949, one year after Shannon published the rules of information theory, he drew up a table of the various stores of memory that then existed. The biggest memory in his table was the US Library of Congress, which he estimated to contain one hundred trillion bits of information. That was at the time a fair guess at the sum total of recorded human knowledge. Today a memory disc drive storing that amount of information weighs a few pounds and can be bought for about a thousand dollars. Information, otherwise known as data, pours into memories of that size or larger, in government and business offices and scientific laboratories all over the world. Gleick quotes the computer scientist Jaron Lanier describing the effect of the flood: “It’s as if you kneel to plant the seed of a tree and it grows so fast that it swallows your whole town before you can even rise to your feet.”
  • On December 8, 2010, Gleick published on the The New York Review’s blog an illuminating essay, “The Information Palace.” It was written too late to be included in his book. It describes the historical changes of meaning of the word “information,” as recorded in the latest quarterly online revision of the Oxford English Dictionary. The word first appears in 1386 a parliamentary report with the meaning “denunciation.” The history ends with the modern usage, “information fatigue,” defined as “apathy, indifference or mental exhaustion arising from exposure to too much information.”
  • The consequences of the information flood are not all bad. One of the creative enterprises made possible by the flood is Wikipedia, started ten years ago by Jimmy Wales. Among my friends and acquaintances, everybody distrusts Wikipedia and everybody uses it. Distrust and productive use are not incompatible. Wikipedia is the ultimate open source repository of information. Everyone is free to read it and everyone is free to write it. It contains articles in 262 languages written by several million authors. The information that it contains is totally unreliable and surprisingly accurate. It is often unreliable because many of the authors are ignorant or careless. It is often accurate because the articles are edited and corrected by readers who are better informed than the authors
  • Jimmy Wales hoped when he started Wikipedia that the combination of enthusiastic volunteer writers with open source information technology would cause a revolution in human access to knowledge. The rate of growth of Wikipedia exceeded his wildest dreams. Within ten years it has become the biggest storehouse of information on the planet and the noisiest battleground of conflicting opinions. It illustrates Shannon’s law of reliable communication. Shannon’s law says that accurate transmission of information is possible in a communication system with a high level of noise. Even in the noisiest system, errors can be reliably corrected and accurate information transmitted, provided that the transmission is sufficiently redundant. That is, in a nutshell, how Wikipedia works.
  • The information flood has also brought enormous benefits to science. The public has a distorted view of science, because children are taught in school that science is a collection of firmly established truths. In fact, science is not a collection of truths. It is a continuing exploration of mysteries. Wherever we go exploring in the world around us, we find mysteries. Our planet is covered by continents and oceans whose origin we cannot explain. Our atmosphere is constantly stirred by poorly understood disturbances that we call weather and climate. The visible matter in the universe is outweighed by a much larger quantity of dark invisible matter that we do not understand at all. The origin of life is a total mystery, and so is the existence of human consciousness. We have no clear idea how the electrical discharges occurring in nerve cells in our brains are connected with our feelings and desires and actions.
  • Even physics, the most exact and most firmly established branch of science, is still full of mysteries. We do not know how much of Shannon’s theory of information will remain valid when quantum devices replace classical electric circuits as the carriers of information. Quantum devices may be made of single atoms or microscopic magnetic circuits. All that we know for sure is that they can theoretically do certain jobs that are beyond the reach of classical devices. Quantum computing is still an unexplored mystery on the frontier of information theory. Science is the sum total of a great multitude of mysteries. It is an unending argument between a great multitude of voices. It resembles Wikipedia much more than it resembles the Encyclopaedia Britannica.
  • The rapid growth of the flood of information in the last ten years made Wikipedia possible, and the same flood made twenty-first-century science possible. Twenty-first-century science is dominated by huge stores of information that we call databases. The information flood has made it easy and cheap to build databases. One example of a twenty-first-century database is the collection of genome sequences of living creatures belonging to various species from microbes to humans. Each genome contains the complete genetic information that shaped the creature to which it belongs. The genome data-base is rapidly growing and is available for scientists all over the world to explore. Its origin can be traced to the year 1939, when Shannon wrote his Ph.D. thesis with the title “An Algebra for Theoretical Genetics.
  • Shannon was then a graduate student in the mathematics department at MIT. He was only dimly aware of the possible physical embodiment of genetic information. The true physical embodiment of the genome is the double helix structure of DNA molecules, discovered by Francis Crick and James Watson fourteen years later. In 1939 Shannon understood that the basis of genetics must be information, and that the information must be coded in some abstract algebra independent of its physical embodiment. Without any knowledge of the double helix, he could not hope to guess the detailed structure of the genetic code. He could only imagine that in some distant future the genetic information would be decoded and collected in a giant database that would define the total diversity of living creatures. It took only sixty years for his dream to come true.
  • In the twentieth century, genomes of humans and other species were laboriously decoded and translated into sequences of letters in computer memories. The decoding and translation became cheaper and faster as time went on, the price decreasing and the speed increasing according to Moore’s Law. The first human genome took fifteen years to decode and cost about a billion dollars. Now a human genome can be decoded in a few weeks and costs a few thousand dollars. Around the year 2000, a turning point was reached, when it became cheaper to produce genetic information than to understand it. Now we can pass a piece of human DNA through a machine and rapidly read out the genetic information, but we cannot read out the meaning of the information. We shall not fully understand the information until we understand in detail the processes of embryonic development that the DNA orchestrated to make us what we are.
  • The explosive growth of information in our human society is a part of the slower growth of ordered structures in the evolution of life as a whole. Life has for billions of years been evolving with organisms and ecosystems embodying increasing amounts of information. The evolution of life is a part of the evolution of the universe, which also evolves with increasing amounts of information embodied in ordered structures, galaxies and stars and planetary systems. In the living and in the nonliving world, we see a growth of order, starting from the featureless and uniform gas of the early universe and producing the magnificent diversity of weird objects that we see in the sky and in the rain forest. Everywhere around us, wherever we look, we see evidence of increasing order and increasing information. The technology arising from Shannon’s discoveries is only a local acceleration of the natural growth of information.
  • . Lord Kelvin, one of the leading physicists of that time, promoted the heat death dogma, predicting that the flow of heat from warmer to cooler objects will result in a decrease of temperature differences everywhere, until all temperatures ultimately become equal. Life needs temperature differences, to avoid being stifled by its waste heat. So life will disappear
  • Thanks to the discoveries of astronomers in the twentieth century, we now know that the heat death is a myth. The heat death can never happen, and there is no paradox. The best popular account of the disappearance of the paradox is a chapter, “How Order Was Born of Chaos,” in the book Creation of the Universe, by Fang Lizhi and his wife Li Shuxian.2 Fang Lizhi is doubly famous as a leading Chinese astronomer and a leading political dissident. He is now pursuing his double career at the University of Arizona.
  • The belief in a heat death was based on an idea that I call the cooking rule. The cooking rule says that a piece of steak gets warmer when we put it on a hot grill. More generally, the rule says that any object gets warmer when it gains energy, and gets cooler when it loses energy. Humans have been cooking steaks for thousands of years, and nobody ever saw a steak get colder while cooking on a fire. The cooking rule is true for objects small enough for us to handle. If the cooking rule is always true, then Lord Kelvin’s argument for the heat death is correct.
  • the cooking rule is not true for objects of astronomical size, for which gravitation is the dominant form of energy. The sun is a familiar example. As the sun loses energy by radiation, it becomes hotter and not cooler. Since the sun is made of compressible gas squeezed by its own gravitation, loss of energy causes it to become smaller and denser, and the compression causes it to become hotter. For almost all astronomical objects, gravitation dominates, and they have the same unexpected behavior. Gravitation reverses the usual relation between energy and temperature. In the domain of astronomy, when heat flows from hotter to cooler objects, the hot objects get hotter and the cool objects get cooler. As a result, temperature differences in the astronomical universe tend to increase rather than decrease as time goes on. There is no final state of uniform temperature, and there is no heat death. Gravitation gives us a universe hospitable to life. Information and order can continue to grow for billions of years in the future, as they have evidently grown in the past.
  • The vision of the future as an infinite playground, with an unending sequence of mysteries to be understood by an unending sequence of players exploring an unending supply of information, is a glorious vision for scientists. Scientists find the vision attractive, since it gives them a purpose for their existence and an unending supply of jobs. The vision is less attractive to artists and writers and ordinary people. Ordinary people are more interested in friends and family than in science. Ordinary people may not welcome a future spent swimming in an unending flood of information.
  • A darker view of the information-dominated universe was described in a famous story, “The Library of Babel,” by Jorge Luis Borges in 1941.3 Borges imagined his library, with an infinite array of books and shelves and mirrors, as a metaphor for the universe.
  • Gleick’s book has an epilogue entitled “The Return of Meaning,” expressing the concerns of people who feel alienated from the prevailing scientific culture. The enormous success of information theory came from Shannon’s decision to separate information from meaning. His central dogma, “Meaning is irrelevant,” declared that information could be handled with greater freedom if it was treated as a mathematical abstraction independent of meaning. The consequence of this freedom is the flood of information in which we are drowning. The immense size of modern databases gives us a feeling of meaninglessness. Information in such quantities reminds us of Borges’s library extending infinitely in all directions. It is our task as humans to bring meaning back into this wasteland. As finite creatures who think and feel, we can create islands of meaning in the sea of information. Gleick ends his book with Borges’s image of the human condition:We walk the corridors, searching the shelves and rearranging them, looking for lines of meaning amid leagues of cacophony and incoherence, reading the history of the past and of the future, collecting our thoughts and collecting the thoughts of others, and every so often glimpsing mirrors, in which we may recognize creatures of the information.
Weiye Loh

Rationally Speaking: Is modern moral philosophy still in thrall to religion? - 0 views

  • Recently I re-read Richard Taylor’s An Introduction to Virtue Ethics, a classic published by Prometheus
  • Taylor compares virtue ethics to the other two major approaches to moral philosophy: utilitarianism (a la John Stuart Mill) and deontology (a la Immanuel Kant). Utilitarianism, of course, is roughly the idea that ethics has to do with maximizing pleasure and minimizing pain; deontology is the idea that reason can tell us what we ought to do from first principles, as in Kant’s categorical imperative (e.g., something is right if you can agree that it could be elevated to a universally acceptable maxim).
  • Taylor argues that utilitarianism and deontology — despite being wildly different in a variety of respects — share one common feature: both philosophies assume that there is such a thing as moral right and wrong, and a duty to do right and avoid wrong. But, he says, on the face of it this is nonsensical. Duty isn’t something one can have in the abstract, duty is toward a law or a lawgiver, which begs the question of what could arguably provide us with a universal moral law, or who the lawgiver could possibly be.
  • ...11 more annotations...
  • His answer is that both utilitarianism and deontology inherited the ideas of right, wrong and duty from Christianity, but endeavored to do without Christianity’s own answers to those questions: the law is given by God and the duty is toward Him. Taylor says that Mill, Kant and the like simply absorbed the Christian concept of morality while rejecting its logical foundation (such as it was). As a result, utilitarians and deontologists alike keep talking about the right thing to do, or the good as if those concepts still make sense once we move to a secular worldview. Utilitarians substituted pain and pleasure for wrong and right respectively, and Kant thought that pure reason can arrive at moral universals. But of course neither utilitarians nor deontologist ever give us a reason why it would be irrational to simply decline to pursue actions that increase global pleasure and diminish global pain, or why it would be irrational for someone not to find the categorical imperative particularly compelling.
  • The situation — again according to Taylor — is dramatically different for virtue ethics. Yes, there too we find concepts like right and wrong and duty. But, for the ancient Greeks they had completely different meanings, which made perfect sense then and now, if we are not mislead by the use of those words in a different context. For the Greeks, an action was right if it was approved by one’s society, wrong if it wasn’t, and duty was to one’s polis. And they understood perfectly well that what was right (or wrong) in Athens may or may not be right (or wrong) in Sparta. And that an Athenian had a duty to Athens, but not to Sparta, and vice versa for a Spartan.
  • But wait a minute. Does that mean that Taylor is saying that virtue ethics was founded on moral relativism? That would be an extraordinary claim indeed, and he does not, in fact, make it. His point is a bit more subtle. He suggests that for the ancient Greeks ethics was not (principally) about right, wrong and duty. It was about happiness, understood in the broad sense of eudaimonia, the good or fulfilling life. Aristotle in particular wrote in his Ethics about both aspects: the practical ethics of one’s duty to one’s polis, and the universal (for human beings) concept of ethics as the pursuit of the good life. And make no mistake about it: for Aristotle the first aspect was relatively trivial and understood by everyone, it was the second one that represented the real challenge for the philosopher.
  • For instance, the Ethics is famous for Aristotle’s list of the virtues (see Table), and his idea that the right thing to do is to steer a middle course between extreme behaviors. But this part of his work, according to Taylor, refers only to the practical ways of being a good Athenian, not to the universal pursuit of eudaimonia. Vice of Deficiency Virtuous Mean Vice of Excess Cowardice Courage Rashness Insensibility Temperance Intemperance Illiberality Liberality Prodigality Pettiness Munificence Vulgarity Humble-mindedness High-mindedness Vaingloriness Want of Ambition Right Ambition Over-ambition Spiritlessness Good Temper Irascibility Surliness Friendly Civility Obsequiousness Ironical Depreciation Sincerity Boastfulness Boorishness Wittiness Buffoonery</t
  • How, then, is one to embark on the more difficult task of figuring out how to live a good life? For Aristotle eudaimonia meant the best kind of existence that a human being can achieve, which in turns means that we need to ask what it is that makes humans different from all other species, because it is the pursuit of excellence in that something that provides for a eudaimonic life.
  • Now, Plato - writing before Aristotle - ended up construing the good life somewhat narrowly and in a self-serving fashion. He reckoned that the thing that distinguishes humanity from the rest of the biological world is our ability to use reason, so that is what we should be pursuing as our highest goal in life. And of course nobody is better equipped than a philosopher for such an enterprise... Which reminds me of Bertrand Russell’s quip that “A process which led from the amoeba to man appeared to the philosophers to be obviously a progress, though whether the amoeba would agree with this opinion is not known.”
  • But Aristotle's conception of "reason" was significantly broader, and here is where Taylor’s own update of virtue ethics begins to shine, particularly in Chapter 16 of the book, aptly entitled “Happiness.” Taylor argues that the proper way to understand virtue ethics is as the quest for the use of intelligence in the broadest possible sense, in the sense of creativity applied to all walks of life. He says: “Creative intelligence is exhibited by a dancer, by athletes, by a chess player, and indeed in virtually any activity guided by intelligence [including — but certainly not limited to — philosophy].” He continues: “The exercise of skill in a profession, or in business, or even in such things as gardening and farming, or the rearing of a beautiful family, all such things are displays of creative intelligence.”
  • what we have now is a sharp distinction between utilitarianism and deontology on the one hand and virtue ethics on the other, where the first two are (mistakenly, in Taylor’s assessment) concerned with the impossible question of what is right or wrong, and what our duties are — questions inherited from religion but that in fact make no sense outside of a religious framework. Virtue ethics, instead, focuses on the two things that really matter and to which we can find answers: the practical pursuit of a life within our polis, and the lifelong quest of eudaimonia understood as the best exercise of our creative faculties
  • &gt; So if one's profession is that of assassin or torturer would being the best that you can be still be your duty and eudaimonic? And what about those poor blighters who end up with an ugly family? &lt;Aristotle's philosophy is ver much concerned with virtue, and being an assassin or a torturer is not a virtue, so the concept of a eudaimonic life for those characters is oxymoronic. As for ending up in a "ugly" family, Aristotle did write that eudaimonia is in part the result of luck, because it is affected by circumstances.
  • &gt; So to the title question of this post: "Is modern moral philosophy still in thrall to religion?" one should say: Yes, for some residual forms of philosophy and for some philosophers &lt;That misses Taylor's contention - which I find intriguing, though I have to give it more thought - that *all* modern moral philosophy, except virtue ethics, is in thrall to religion, without realizing it.
  • “The exercise of skill in a profession, or in business, or even in such things as gardening and farming, or the rearing of a beautiful family, all such things are displays of creative intelligence.”So if one's profession is that of assassin or torturer would being the best that you can be still be your duty and eudaimonic? And what about those poor blighters who end up with an ugly family?
Weiye Loh

Our Kind of Truth - Ian Buruma - Project Syndicate - 0 views

  • Of course, not everything in the mainstream media is always true. Mistakes are made. News organizations have political biases, sometimes reflecting the views and interests of their owners. But high-quality journalism has always relied on its reputation for probity. Editors, as well as reporters, at least tried to get the facts right. That is why people read Le Monde, The New York Times, or, indeed, the Washington Post. Filtering nonsense was one of their duties –&nbsp;and their main selling point.
  • It is unlikely that Rick Santorum, or many of his followers, have read any post-modern theorists. Santorum, after all, recently called Obama a “snob” for claiming that all Americans should be entitled to a college education. So he must surely loath writers who represent everything that the Tea Party and other radical right-wingers abhor: the highly educated, intellectual, urban, secular, and not always white. These writers are the left-wing elite, at least in academia.
  • But, as so often happens, ideas have a way of migrating in unexpected ways. The blogger who dismissed The Washington Post’s corrections of Santorum’s fictional portrayal of the Netherlands expressed himself like a perfect post-modernist. The most faithful followers of obscure leftist thinkers in Paris, New York, or Berkeley are the most reactionary elements in the American heartland. Of course, if this were pointed out to them, they would no doubt dismiss it as elitist propaganda.
  •  
    It is unlikely that Rick Santorum, or many of his followers, have read any post-modern theorists. Santorum, after all, recently called Obama a "snob" for claiming that all Americans should be entitled to a college education. So he must surely loath writers who represent everything that the Tea Party and other radical right-wingers abhor: the highly educated, intellectual, urban, secular, and not always white. These writers are the left-wing elite, at least in academia. But, as so often happens, ideas have a way of migrating in unexpected ways. The blogger who dismissed The Washington Post's corrections of Santorum's fictional portrayal of the Netherlands expressed himself like a perfect post-modernist. The most faithful followers of obscure leftist thinkers in Paris, New York, or Berkeley are the most reactionary elements in the American heartland. Of course, if this were pointed out to them, they would no doubt dismiss it as elitist propaganda.
Weiye Loh

Rationally Speaking: Human, know thy place! - 0 views

  • I kicked off a recent episode of the Rationally Speaking podcast on the topic of transhumanism by defining it as “the idea that we should be pursuing science and technology to improve the human condition, modifying our bodies and our minds to make us smarter, healthier, happier, and potentially longer-lived.”
  • Massimo understandably expressed some skepticism about why there needs to be a transhumanist movement at all, given how incontestable their mission statement seems to be. As he rhetorically asked, “Is transhumanism more than just the idea that we should be using technologies to improve the human condition? Because that seems a pretty uncontroversial point.” Later in the episode, referring to things such as radical life extension and modifications of our minds and genomes, Massimo said, “I don't think these are things that one can necessarily have objections to in principle.”
  • There are a surprising number of people whose reaction, when they are presented with the possibility of making humanity much healthier, smarter and longer-lived, is not “That would be great,” nor “That would be great, but it's infeasible,” nor even “That would be great, but it's too risky.” Their reaction is, “That would be terrible.”
  • ...14 more annotations...
  • The people with this attitude aren't just fringe fundamentalists who are fearful of messing with God's Plan. Many of them are prestigious professors and authors whose arguments make no mention of religion. One of the most prominent examples is political theorist Francis Fukuyama, author of End of History, who published a book in 2003 called “Our Posthuman Future: Consequences of the Biotechnology Revolution.” In it he argues that we will lose our “essential” humanity by enhancing ourselves, and that the result will be a loss of respect for “human dignity” and a collapse of morality.
  • Fukuyama's reasoning represents a prominent strain of thought about human enhancement, and one that I find doubly fallacious. (Fukuyama is aware of the following criticisms, but neither I nor other reviewers were impressed by his attempt to defend himself against them.) The idea that the status quo represents some “essential” quality of humanity collapses when you zoom out and look at the steady change in the human condition over previous millennia. Our ancestors were less knowledgable, more tribalistic, less healthy, shorter-lived; would Fukuyama have argued for the preservation of all those qualities on the grounds that, in their respective time, they constituted an “essential human nature”? And even if there were such a thing as a persistent “human nature,” why is it necessarily worth preserving? In other words, I would argue that Fukuyama is committing both the fallacy of essentialism (there exists a distinct thing that is “human nature”) and the appeal to nature (the way things naturally are is how they ought to be).
  • Writer Bill McKibben, who was called “probably the nation's leading environmentalist” by the Boston Globe this year, and “the world's best green journalist” by Time magazine, published a book in 2003 called “Enough: Staying Human in an Engineered Age.” In it he writes, “That is the choice... one that no human should have to make... To be launched into a future without bounds, where meaning may evaporate.” McKibben concludes that it is likely that “meaning and pain, meaning and transience are inextricably intertwined.” Or as one blogger tartly paraphrased: “If we all live long healthy happy lives, Bill’s favorite poetry will become obsolete.”
  • President George W. Bush's Council on Bioethics, which advised him from 2001-2009, was steeped in it. Harvard professor of political philosophy Michael J. Sandel served on the Council from 2002-2005 and penned an article in the Atlantic Monthly called “The Case Against Perfection,” in which he objected to genetic engineering on the grounds that, basically, it’s uppity. He argues that genetic engineering is “the ultimate expression of our resolve to see ourselves astride the world, the masters of our nature.” Better we should be bowing in submission than standing in mastery, Sandel feels. Mastery “threatens to banish our appreciation of life as a gift,” he warns, and submitting to forces outside our control “restrains our tendency toward hubris.”
  • If you like Sandel's “It's uppity” argument against human enhancement, you'll love his fellow Councilmember Dr. William Hurlbut's argument against life extension: “It's unmanly.” Hurlbut's exact words, delivered in a 2007 debate with Aubrey de Grey: “I actually find a preoccupation with anti-aging technologies to be, I think, somewhat spiritually immature and unmanly... I’m inclined to think that there’s something profound about aging and death.”
  • And Council chairman Dr. Leon Kass, a professor of bioethics from the University of Chicago who served from 2001-2005, was arguably the worst of all. Like McKibben, Kass has frequently argued against radical life extension on the grounds that life's transience is central to its meaningfulness. “Could the beauty of flowers depend on the fact that they will soon wither?” he once asked. “How deeply could one deathless ‘human’ being love another?”
  • Kass has also argued against human enhancements on the same grounds as Fukuyama, that we shouldn't deviate from our proper nature as human beings. “To turn a man into a cockroach— as we don’t need Kafka to show us —would be dehumanizing. To try to turn a man into more than a man might be so as well,” he said. And Kass completes the anti-transhumanist triad (it robs life of meaning; it's dehumanizing; it's hubris) by echoing Sandel's call for humility and gratitude, urging, “We need a particular regard and respect for the special gift that is our own given nature.”
  • By now you may have noticed a familiar ring to a lot of this language. The idea that it's virtuous to suffer, and to humbly surrender control of your own fate, is a cornerstone of Christian morality.
  • it's fairly representative of standard Christian tropes: surrendering to God, submitting to God, trusting that God has good reasons for your suffering.
  • I suppose I can understand that if you believe in an all-powerful entity who will become irate if he thinks you are ungrateful for anything, then this kind of groveling might seem like a smart strategic move. But what I can't understand is adopting these same attitudes in the absence of any religious context. When secular people chastise each other for the “hubris” of trying to improve the “gift” of life they've received, I want to ask them: just who, exactly, are you groveling to? Who, exactly, are you afraid of affronting if you dare to reach for better things?
  • This is why transhumanism is most needed, from my perspective – to counter the astoundingly widespread attitude that suffering and 80-year-lifespans are good things that are worth preserving. That attitude may make sense conditional on certain peculiarly masochistic theologies, but the rest of us have no need to defer to it. It also may have been a comforting thing to tell ourselves back when we had no hope of remedying our situation, but that's not necessarily the case anymore.
  • I think there is a seperation of Transhumanism and what Massimo is referring to. Things like robotic arms and the like come from trying to deal with a specific defect and thus seperate it from Transhumanism. I would define transhumanism the same way you would (the achievement of a better human), but I would exclude the inventions of many life altering devices as transhumanism. If we could invent a device that just made you smarter, then ideed that would be transhumanism, but if we invented a device that could make someone that was metally challenged to be able to be normal, I would define this as modern medicine. I just want to make sure we seperate advances in modern medicine from transhumanism. Modern medicine being the one that advances to deal with specific medical issues to improve quality of life (usually to restore it to normal conditions) and transhumanism being the one that can advance every single human (perhaps equally?).
    • Weiye Loh
       
      Assumes that "normal conditions" exist. 
  • I agree with all your points about why the arguments against transhumanism and for suffering are ridiculous. That being said, when I first heard about the ideas of Transhumanism, after the initial excitement wore off (since I'm a big tech nerd), my reaction was more of less the same as Massimo's. I don't particularly see the need for a philosophical movement for this.
  • if people believe that suffering is something God ordained for us, you're not going to convince them otherwise with philosophical arguments any more than you'll convince them there's no God at all. If the technologies do develop, acceptance of them will come as their use becomes more prevalent, not with arguments.
  •  
    Human, know thy place!
Weiye Loh

The Inequality That Matters - Tyler Cowen - The American Interest Magazine - 0 views

  • most of the worries about income inequality are bogus, but some are probably better grounded and even more serious than even many of their heralds realize.
  • In terms of immediate political stability, there is less to the income inequality issue than meets the eye. Most analyses of income inequality neglect two major points. First, the inequality of personal well-being is sharply down over the past hundred years and perhaps over the past twenty years as well. Bill Gates is much, much richer than I am, yet it is not obvious that he is much happier if, indeed, he is happier at all. I have access to penicillin, air travel, good cheap food, the Internet and virtually all of the technical innovations that Gates does. Like the vast majority of Americans, I have access to some important new pharmaceuticals, such as statins to protect against heart disease. To be sure, Gates receives the very best care from the world’s top doctors, but our health outcomes are in the same ballpark. I don’t have a private jet or take luxury vacations, and—I think it is fair to say—my house is much smaller than his. I can’t meet with the world’s elite on demand. Still, by broad historical standards, what I share with Bill Gates is far more significant than what I don’t share with him.
  • when average people read about or see income inequality, they don’t feel the moral outrage that radiates from the more passionate egalitarian quarters of society. Instead, they think their lives are pretty good and that they either earned through hard work or lucked into a healthy share of the American dream.
  • ...35 more annotations...
  • This is why, for example, large numbers of Americans oppose the idea of an estate tax even though the current form of the tax, slated to return in 2011, is very unlikely to affect them or their estates. In narrowly self-interested terms, that view may be irrational, but most Americans are unwilling to frame national issues in terms of rich versus poor. There’s a great deal of hostility toward various government bailouts, but the idea of “undeserving” recipients is the key factor in those feelings. Resentment against Wall Street gamesters hasn’t spilled over much into resentment against the wealthy more generally. The bailout for General Motors’ labor unions wasn’t so popular either—again, obviously not because of any bias against the wealthy but because a basic sense of fairness was violated. As of November 2010, congressional Democrats are of a mixed mind as to whether the Bush tax cuts should expire for those whose annual income exceeds $250,000; that is in large part because their constituents bear no animus toward rich people, only toward undeservedly rich people.
  • envy is usually local. At least in the United States, most economic resentment is not directed toward billionaires or high-roller financiers—not even corrupt ones. It’s directed at the guy down the hall who got a bigger raise. It’s directed at the husband of your wife’s sister, because the brand of beer he stocks costs $3 a case more than yours, and so on. That’s another reason why a lot of people aren’t so bothered by income or wealth inequality at the macro level. Most of us don’t compare ourselves to billionaires. Gore Vidal put it honestly: “Whenever a friend succeeds, a little something in me dies.”
  • Occasionally the cynic in me wonders why so many relatively well-off intellectuals lead the egalitarian charge against the privileges of the wealthy. One group has the status currency of money and the other has the status currency of intellect, so might they be competing for overall social regard? The high status of the wealthy in America, or for that matter the high status of celebrities, seems to bother our intellectual class most. That class composes a very small group, however, so the upshot is that growing income inequality won’t necessarily have major political implications at the macro level.
  • All that said, income inequality does matter—for both politics and the economy.
  • The numbers are clear: Income inequality has been rising in the United States, especially at the very top. The data show a big difference between two quite separate issues, namely income growth at the very top of the distribution and greater inequality throughout the distribution. The first trend is much more pronounced than the second, although the two are often confused.
  • When it comes to the first trend, the share of pre-tax income earned by the richest 1 percent of earners has increased from about 8 percent in 1974 to more than 18 percent in 2007. Furthermore, the richest 0.01 percent (the 15,000 or so richest families) had a share of less than 1 percent in 1974 but more than 6 percent of national income in 2007. As noted, those figures are from pre-tax income, so don’t look to the George W. Bush tax cuts to explain the pattern. Furthermore, these gains have been sustained and have evolved over many years, rather than coming in one or two small bursts between 1974 and today.1
  • At the same time, wage growth for the median earner has slowed since 1973. But that slower wage growth has afflicted large numbers of Americans, and it is conceptually distinct from the higher relative share of top income earners. For instance, if you take the 1979–2005 period, the average incomes of the bottom fifth of households increased only 6 percent while the incomes of the middle quintile rose by 21 percent. That’s a widening of the spread of incomes, but it’s not so drastic compared to the explosive gains at the very top.
  • The broader change in income distribution, the one occurring beneath the very top earners, can be deconstructed in a manner that makes nearly all of it look harmless. For instance, there is usually greater inequality of income among both older people and the more highly educated, if only because there is more time and more room for fortunes to vary. Since America is becoming both older and more highly educated, our measured income inequality will increase pretty much by demographic fiat. Economist Thomas Lemieux at the University of British Columbia estimates that these demographic effects explain three-quarters of the observed rise in income inequality for men, and even more for women.2
  • Attacking the problem from a different angle, other economists are challenging whether there is much growth in inequality at all below the super-rich. For instance, real incomes are measured using a common price index, yet poorer people are more likely to shop at discount outlets like Wal-Mart, which have seen big price drops over the past twenty years.3 Once we take this behavior into account, it is unclear whether the real income gaps between the poor and middle class have been widening much at all. Robert J. Gordon, an economist from Northwestern University who is hardly known as a right-wing apologist, wrote in a recent paper that “there was no increase of inequality after 1993 in the bottom 99 percent of the population”, and that whatever overall change there was “can be entirely explained by the behavior of income in the top 1 percent.”4
  • And so we come again to the gains of the top earners, clearly the big story told by the data. It’s worth noting that over this same period of time, inequality of work hours increased too. The top earners worked a lot more and most other Americans worked somewhat less. That’s another reason why high earners don’t occasion more resentment: Many people understand how hard they have to work to get there. It also seems that most of the income gains of the top earners were related to performance pay—bonuses, in other words—and not wildly out-of-whack yearly salaries.5
  • It is also the case that any society with a lot of “threshold earners” is likely to experience growing income inequality. A threshold earner is someone who seeks to earn a certain amount of money and no more. If wages go up, that person will respond by seeking less work or by working less hard or less often. That person simply wants to “get by” in terms of absolute earning power in order to experience other gains in the form of leisure—whether spending time with friends and family, walking in the woods and so on. Luck aside, that person’s income will never rise much above the threshold.
  • The funny thing is this: For years, many cultural critics in and of the United States have been telling us that Americans should behave more like threshold earners. We should be less harried, more interested in nurturing friendships, and more interested in the non-commercial sphere of life. That may well be good advice. Many studies suggest that above a certain level more money brings only marginal increments of happiness. What isn’t so widely advertised is that those same critics have basically been telling us, without realizing it, that we should be acting in such a manner as to increase measured income inequality. Not only is high inequality an inevitable concomitant of human diversity, but growing income inequality may be, too, if lots of us take the kind of advice that will make us happier.
  • Why is the top 1 percent doing so well?
  • Steven N. Kaplan and Joshua Rauh have recently provided a detailed estimation of particular American incomes.6 Their data do not comprise the entire U.S. population, but from partial financial records they find a very strong role for the financial sector in driving the trend toward income concentration at the top. For instance, for 2004, nonfinancial executives of publicly traded companies accounted for less than 6 percent of the top 0.01 percent income bracket. In that same year, the top 25 hedge fund managers combined appear to have earned more than all of the CEOs from the entire S&amp;P 500. The number of Wall Street investors earning more than $100 million a year was nine times higher than the public company executives earning that amount. The authors also relate that they shared their estimates with a former U.S. Secretary of the Treasury, one who also has a Wall Street background. He thought their estimates of earnings in the financial sector were, if anything, understated.
  • Many of the other high earners are also connected to finance. After Wall Street, Kaplan and Rauh identify the legal sector as a contributor to the growing spread in earnings at the top. Yet many high-earning lawyers are doing financial deals, so a lot of the income generated through legal activity is rooted in finance. Other lawyers are defending corporations against lawsuits, filing lawsuits or helping corporations deal with complex regulations. The returns to these activities are an artifact of the growing complexity of the law and government growth rather than a tale of markets per se. Finance aside, there isn’t much of a story of market failure here, even if we don’t find the results aesthetically appealing.
  • When it comes to professional athletes and celebrities, there isn’t much of a mystery as to what has happened. Tiger Woods earns much more, even adjusting for inflation, than Arnold Palmer ever did. J.K. Rowling, the first billionaire author, earns much more than did Charles Dickens. These high incomes come, on balance, from the greater reach of modern communications and marketing. Kids all over the world read about Harry Potter. There is more purchasing power to spend on children’s books and, indeed, on culture and celebrities more generally. For high-earning celebrities, hardly anyone finds these earnings so morally objectionable as to suggest that they be politically actionable. Cultural critics can complain that good schoolteachers earn too little, and they may be right, but that does not make celebrities into political targets. They’re too popular. It’s also pretty clear that most of them work hard to earn their money, by persuading fans to buy or otherwise support their product. Most of these individuals do not come from elite or extremely privileged backgrounds, either. They worked their way to the top, and even if Rowling is not an author for the ages, her books tapped into the spirit of their time in a special way. We may or may not wish to tax the wealthy, including wealthy celebrities, at higher rates, but there is no need to “cure” the structural causes of higher celebrity incomes.
  • to be sure, the high incomes in finance should give us all pause.
  • The first factor driving high returns is sometimes called by practitioners “going short on volatility.” Sometimes it is called “negative skewness.” In plain English, this means that some investors opt for a strategy of betting against big, unexpected moves in market prices. Most of the time investors will do well by this strategy, since big, unexpected moves are outliers by definition. Traders will earn above-average returns in good times. In bad times they won’t suffer fully when catastrophic returns come in, as sooner or later is bound to happen, because the downside of these bets is partly socialized onto the Treasury, the Federal Reserve and, of course, the taxpayers and the unemployed.
  • if you bet against unlikely events, most of the time you will look smart and have the money to validate the appearance. Periodically, however, you will look very bad. Does that kind of pattern sound familiar? It happens in finance, too. Betting against a big decline in home prices is analogous to betting against the Wizards. Every now and then such a bet will blow up in your face, though in most years that trading activity will generate above-average profits and big bonuses for the traders and CEOs.
  • To this mix we can add the fact that many money managers are investing other people’s money. If you plan to stay with an investment bank for ten years or less, most of the people playing this investing strategy will make out very well most of the time. Everyone’s time horizon is a bit limited and you will bring in some nice years of extra returns and reap nice bonuses. And let’s say the whole thing does blow up in your face? What’s the worst that can happen? Your bosses fire you, but you will still have millions in the bank and that MBA from Harvard or Wharton. For the people actually investing the money, there’s barely any downside risk other than having to quit the party early. Furthermore, if everyone else made more or less the same mistake (very surprising major events, such as a busted housing market, affect virtually everybody), you’re hardly disgraced. You might even get rehired at another investment bank, or maybe a hedge fund, within months or even weeks.
  • Moreover, smart shareholders will acquiesce to or even encourage these gambles. They gain on the upside, while the downside, past the point of bankruptcy, is borne by the firm’s creditors. And will the bondholders object? Well, they might have a difficult time monitoring the internal trading operations of financial institutions. Of course, the firm’s trading book cannot be open to competitors, and that means it cannot be open to bondholders (or even most shareholders) either. So what, exactly, will they have in hand to object to?
  • Perhaps more important, government bailouts minimize the damage to creditors on the downside. Neither the Treasury nor the Fed allowed creditors to take any losses from the collapse of the major banks during the financial crisis. The U.S. government guaranteed these loans, either explicitly or implicitly. Guaranteeing the debt also encourages equity holders to take more risk. While current bailouts have not in general maintained equity values, and while share prices have often fallen to near zero following the bust of a major bank, the bailouts still give the bank a lifeline. Instead of the bank being destroyed, sometimes those equity prices do climb back out of the hole. This is true of the major surviving banks in the United States, and even AIG is paying back its bailout. For better or worse, we’re handing out free options on recovery, and that encourages banks to take more risk in the first place.
  • there is an unholy dynamic of short-term trading and investing, backed up by bailouts and risk reduction from the government and the Federal Reserve. This is not good. “Going short on volatility” is a dangerous strategy from a social point of view. For one thing, in so-called normal times, the finance sector attracts a big chunk of the smartest, most hard-working and most talented individuals. That represents a huge human capital opportunity cost to society and the economy at large. But more immediate and more important, it means that banks take far too many risks and go way out on a limb, often in correlated fashion. When their bets turn sour, as they did in 2007–09, everyone else pays the price.
  • And it’s not just the taxpayer cost of the bailout that stings. The financial disruption ends up throwing a lot of people out of work down the economic food chain, often for long periods. Furthermore, the Federal Reserve System has recapitalized major U.S. banks by paying interest on bank reserves and by keeping an unusually high interest rate spread, which allows banks to borrow short from Treasury at near-zero rates and invest in other higher-yielding assets and earn back lots of money rather quickly. In essence, we’re allowing banks to earn their way back by arbitraging interest rate spreads against the U.S. government. This is rarely called a bailout and it doesn’t count as a normal budget item, but it is a bailout nonetheless. This type of implicit bailout brings high social costs by slowing down economic recovery (the interest rate spreads require tight monetary policy) and by redistributing income from the Treasury to the major banks.
  • the “going short on volatility” strategy increases income inequality. In normal years the financial sector is flush with cash and high earnings. In implosion years a lot of the losses are borne by other sectors of society. In other words, financial crisis begets income inequality. Despite being conceptually distinct phenomena, the political economy of income inequality is, in part, the political economy of finance. Simon Johnson tabulates the numbers nicely: From 1973 to 1985, the financial sector never earned more than 16 percent of domestic corporate profits. In 1986, that figure reached 19 percent. In the 1990s, it oscillated between 21 percent and 30 percent, higher than it had ever been in the postwar period. This decade, it reached 41 percent. Pay rose just as dramatically. From 1948 to 1982, average compensation in the financial sector ranged between 99 percent and 108 percent of the average for all domestic private industries. From 1983, it shot upward, reaching 181 percent in 2007.7
  • There’s a second reason why the financial sector abets income inequality: the “moving first” issue. Let’s say that some news hits the market and that traders interpret this news at different speeds. One trader figures out what the news means in a second, while the other traders require five seconds. Still other traders require an entire day or maybe even a month to figure things out. The early traders earn the extra money. They buy the proper assets early, at the lower prices, and reap most of the gains when the other, later traders pile on. Similarly, if you buy into a successful tech company in the early stages, you are “moving first” in a very effective manner, and you will capture most of the gains if that company hits it big.
  • The moving-first phenomenon sums to a “winner-take-all” market. Only some relatively small number of traders, sometimes just one trader, can be first. Those who are first will make far more than those who are fourth or fifth. This difference will persist, even if those who are fourth come pretty close to competing with those who are first. In this context, first is first and it doesn’t matter much whether those who come in fourth pile on a month, a minute or a fraction of a second later. Those who bought (or sold, as the case may be) first have captured and locked in most of the available gains. Since gains are concentrated among the early winners, and the closeness of the runner-ups doesn’t so much matter for income distribution, asset-market trading thus encourages the ongoing concentration of wealth. Many investors make lots of mistakes and lose their money, but each year brings a new bunch of projects that can turn the early investors and traders into very wealthy individuals.
  • These two features of the problem—“going short on volatility” and “getting there first”—are related. Let’s say that Goldman Sachs regularly secures a lot of the best and quickest trades, whether because of its quality analysis, inside connections or high-frequency trading apparatus (it has all three). It builds up a treasure chest of profits and continues to hire very sharp traders and to receive valuable information. Those profits allow it to make “short on volatility” bets faster than anyone else, because if it messes up, it still has a large enough buffer to pad losses. This increases the odds that Goldman will repeatedly pull in spectacular profits.
  • Still, every now and then Goldman will go bust, or would go bust if not for government bailouts. But the odds are in any given year that it won’t because of the advantages it and other big banks have. It’s as if the major banks have tapped a hole in the social till and they are drinking from it with a straw. In any given year, this practice may seem tolerable—didn’t the bank earn the money fair and square by a series of fairly normal looking trades? Yet over time this situation will corrode productivity, because what the banks do bears almost no resemblance to a process of getting capital into the hands of those who can make most efficient use of it. And it leads to periodic financial explosions. That, in short, is the real problem of income inequality we face today. It’s what causes the inequality at the very top of the earning pyramid that has dangerous implications for the economy as a whole.
  • What about controlling bank risk-taking directly with tight government oversight? That is not practical. There are more ways for banks to take risks than even knowledgeable regulators can possibly control; it just isn’t that easy to oversee a balance sheet with hundreds of billions of dollars on it, especially when short-term positions are wound down before quarterly inspections. It’s also not clear how well regulators can identify risky assets. Some of the worst excesses of the financial crisis were grounded in mortgage-backed assets—a very traditional function of banks—not exotic derivatives trading strategies. Virtually any asset position can be used to bet long odds, one way or another. It is naive to think that underpaid, undertrained regulators can keep up with financial traders, especially when the latter stand to earn billions by circumventing the intent of regulations while remaining within the letter of the law.
  • For the time being, we need to accept the possibility that the financial sector has learned how to game the American (and UK-based) system of state capitalism. It’s no longer obvious that the system is stable at a macro level, and extreme income inequality at the top has been one result of that imbalance. Income inequality is a symptom, however, rather than a cause of the real problem. The root cause of income inequality, viewed in the most general terms, is extreme human ingenuity, albeit of a perverse kind. That is why it is so hard to control.
  • Another root cause of growing inequality is that the modern world, by so limiting our downside risk, makes extreme risk-taking all too comfortable and easy. More risk-taking will mean more inequality, sooner or later, because winners always emerge from risk-taking. Yet bankers who take bad risks (provided those risks are legal) simply do not end up with bad outcomes in any absolute sense. They still have millions in the bank, lots of human capital and plenty of social status. We’re not going to bring back torture, trial by ordeal or debtors’ prisons, nor should we. Yet the threat of impoverishment and disgrace no longer looms the way it once did, so we no longer can constrain excess financial risk-taking. It’s too soft and cushy a world.
  • Why don’t we simply eliminate the safety net for clueless or unlucky risk-takers so that losses equal gains overall? That’s a good idea in principle, but it is hard to put into practice. Once a financial crisis arrives, politicians will seek to limit the damage, and that means they will bail out major financial institutions. Had we not passed TARP and related policies, the United States probably would have faced unemployment rates of 25 percent of higher, as in the Great Depression. The political consequences would not have been pretty. Bank bailouts may sound quite interventionist, and indeed they are, but in relative terms they probably were the most libertarian policy we had on tap. It meant big one-time expenses, but, for the most part, it kept government out of the real economy (the General Motors bailout aside).
  • We probably don’t have any solution to the hazards created by our financial sector, not because plutocrats are preventing our political system from adopting appropriate remedies, but because we don’t know what those remedies are. Yet neither is another crisis immediately upon us. The underlying dynamic favors excess risk-taking, but banks at the current moment fear the scrutiny of regulators and the public and so are playing it fairly safe. They are sitting on money rather than lending it out. The biggest risk today is how few parties will take risks, and, in part, the caution of banks is driving our current protracted economic slowdown. According to this view, the long run will bring another financial crisis once moods pick up and external scrutiny weakens, but that day of reckoning is still some ways off.
  • Is the overall picture a shame? Yes. Is it distorting resource distribution and productivity in the meantime? Yes. Will it again bring our economy to its knees? Probably. Maybe that’s simply the price of modern society. Income inequality will likely continue to rise and we will search in vain for the appropriate political remedies for our underlying problems.
Weiye Loh

Science Warriors' Ego Trips - The Chronicle Review - The Chronicle of Higher Education - 0 views

  • By Carlin Romano Standing up for science excites some intellectuals the way beautiful actresses arouse Warren Beatty, or career liberals boil the blood of Glenn Beck and Rush Limbaugh. It's visceral.
  • A brave champion of beleaguered science in the modern age of pseudoscience, this Ayn Rand protagonist sarcastically derides the benighted irrationalists and glows with a self-anointed superiority. Who wouldn't want to feel that sense of power and rightness?
  • You hear the voice regularly—along with far more sensible stuff—in the latest of a now common genre of science patriotism, Nonsense on Stilts: How to Tell Science From Bunk (University of Chicago Press), by Massimo Pigliucci, a philosophy professor at the City University of New York.
  • ...24 more annotations...
  • it mixes eminent common sense and frequent good reporting with a cocksure hubris utterly inappropriate to the practice it apotheosizes.
  • According to Pigliucci, both Freudian psychoanalysis and Marxist theory of history "are too broad, too flexible with regard to observations, to actually tell us anything interesting." (That's right—not one "interesting" thing.) The idea of intelligent design in biology "has made no progress since its last serious articulation by natural theologian William Paley in 1802," and the empirical evidence for evolution is like that for "an open-and-shut murder case."
  • Pigliucci offers more hero sandwiches spiced with derision and certainty. Media coverage of science is "characterized by allegedly serious journalists who behave like comedians." Commenting on the highly publicized Dover, Pa., court case in which U.S. District Judge John E. Jones III ruled that intelligent-design theory is not science, Pigliucci labels the need for that judgment a "bizarre" consequence of the local school board's "inane" resolution. Noting the complaint of intelligent-design advocate William Buckingham that an approved science textbook didn't give creationism a fair shake, Pigliucci writes, "This is like complaining that a textbook in astronomy is too focused on the Copernican theory of the structure of the solar system and unfairly neglects the possibility that the Flying Spaghetti Monster is really pulling each planet's strings, unseen by the deluded scientists."
  • Or is it possible that the alternate view unfairly neglected could be more like that of Harvard scientist Owen Gingerich, who contends in God's Universe (Harvard University Press, 2006) that it is partly statistical arguments—the extraordinary unlikelihood eons ago of the physical conditions necessary for self-conscious life—that support his belief in a universe "congenially designed for the existence of intelligent, self-reflective life"?
  • Even if we agree that capital "I" and "D" intelligent-design of the scriptural sort—what Gingerich himself calls "primitive scriptural literalism"—is not scientifically credible, does that make Gingerich's assertion, "I believe in intelligent design, lowercase i and lowercase d," equivalent to Flying-Spaghetti-Monsterism? Tone matters. And sarcasm is not science.
  • The problem with polemicists like Pigliucci is that a chasm has opened up between two groups that might loosely be distinguished as "philosophers of science" and "science warriors."
  • Philosophers of science, often operating under the aegis of Thomas Kuhn, recognize that science is a diverse, social enterprise that has changed over time, developed different methodologies in different subsciences, and often advanced by taking putative pseudoscience seriously, as in debunking cold fusion
  • The science warriors, by contrast, often write as if our science of the moment is isomorphic with knowledge of an objective world-in-itself—Kant be damned!—and any form of inquiry that doesn't fit the writer's criteria of proper science must be banished as "bunk." Pigliucci, typically, hasn't much sympathy for radical philosophies of science. He calls the work of Paul Feyerabend "lunacy," deems Bruno Latour "a fool," and observes that "the great pronouncements of feminist science have fallen as flat as the similarly empty utterances of supporters of intelligent design."
  • It doesn't have to be this way. The noble enterprise of submitting nonscientific knowledge claims to critical scrutiny—an activity continuous with both philosophy and science—took off in an admirable way in the late 20th century when Paul Kurtz, of the University at Buffalo, established the Committee for the Scientific Investigation of Claims of the Paranormal (Csicop) in May 1976. Csicop soon after launched the marvelous journal Skeptical Inquirer
  • Although Pigliucci himself publishes in Skeptical Inquirer, his contributions there exhibit his signature smugness. For an antidote to Pigliucci's overweening scientism 'tude, it's refreshing to consult Kurtz's curtain-raising essay, "Science and the Public," in Science Under Siege (Prometheus Books, 2009, edited by Frazier)
  • Kurtz's commandment might be stated, "Don't mock or ridicule—investigate and explain." He writes: "We attempted to make it clear that we were interested in fair and impartial inquiry, that we were not dogmatic or closed-minded, and that skepticism did not imply a priori rejection of any reasonable claim. Indeed, I insisted that our skepticism was not totalistic or nihilistic about paranormal claims."
  • Kurtz combines the ethos of both critical investigator and philosopher of science. Describing modern science as a practice in which "hypotheses and theories are based upon rigorous methods of empirical investigation, experimental confirmation, and replication," he notes: "One must be prepared to overthrow an entire theoretical framework—and this has happened often in the history of science ... skeptical doubt is an integral part of the method of science, and scientists should be prepared to question received scientific doctrines and reject them in the light of new evidence."
  • Pigliucci, alas, allows his animus against the nonscientific to pull him away from sensitive distinctions among various sciences to sloppy arguments one didn't see in such earlier works of science patriotism as Carl Sagan's The Demon-Haunted World: Science as a Candle in the Dark (Random House, 1995). Indeed, he probably sets a world record for misuse of the word "fallacy."
  • To his credit, Pigliucci at times acknowledges the nondogmatic spine of science. He concedes that "science is characterized by a fuzzy borderline with other types of inquiry that may or may not one day become sciences." Science, he admits, "actually refers to a rather heterogeneous family of activities, not to a single and universal method." He rightly warns that some pseudoscience—for example, denial of HIV-AIDS causation—is dangerous and terrible.
  • But at other points, Pigliucci ferociously attacks opponents like the most unreflective science fanatic
  • He dismisses Feyerabend's view that "science is a religion" as simply "preposterous," even though he elsewhere admits that "methodological naturalism"—the commitment of all scientists to reject "supernatural" explanations—is itself not an empirically verifiable principle or fact, but rather an almost Kantian precondition of scientific knowledge. An article of faith, some cold-eyed Feyerabend fans might say.
  • He writes, "ID is not a scientific theory at all because there is no empirical observation that can possibly contradict it. Anything we observe in nature could, in principle, be attributed to an unspecified intelligent designer who works in mysterious ways." But earlier in the book, he correctly argues against Karl Popper that susceptibility to falsification cannot be the sole criterion of science, because science also confirms. It is, in principle, possible that an empirical observation could confirm intelligent design—i.e., that magic moment when the ultimate UFO lands with representatives of the intergalactic society that planted early life here, and we accept their evidence that they did it.
  • "As long as we do not venture to make hypotheses about who the designer is and why and how she operates," he writes, "there are no empirical constraints on the 'theory' at all. Anything goes, and therefore nothing holds, because a theory that 'explains' everything really explains nothing."
  • Here, Pigliucci again mixes up what's likely or provable with what's logically possible or rational. The creation stories of traditional religions and scriptures do, in effect, offer hypotheses, or claims, about who the designer is—e.g., see the Bible.
  • Far from explaining nothing because it explains everything, such an explanation explains a lot by explaining everything. It just doesn't explain it convincingly to a scientist with other evidentiary standards.
  • A sensible person can side with scientists on what's true, but not with Pigliucci on what's rational and possible. Pigliucci occasionally recognizes that. Late in his book, he concedes that "nonscientific claims may be true and still not qualify as science." But if that's so, and we care about truth, why exalt science to the degree he does? If there's really a heaven, and science can't (yet?) detect it, so much the worse for science.
  • Pigliucci quotes a line from Aristotle: "It is the mark of an educated mind to be able to entertain a thought without accepting it." Science warriors such as Pigliucci, or Michael Ruse in his recent clash with other philosophers in these pages, should reflect on a related modern sense of "entertain." One does not entertain a guest by mocking, deriding, and abusing the guest. Similarly, one does not entertain a thought or approach to knowledge by ridiculing it.
  • Long live Skeptical Inquirer! But can we deep-six the egomania and unearned arrogance of the science patriots? As Descartes, that immortal hero of scientists and skeptics everywhere, pointed out, true skepticism, like true charity, begins at home.
  • Carlin Romano, critic at large for The Chronicle Review, teaches philosophy and media theory at the University of Pennsylvania.
  •  
    April 25, 2010 Science Warriors' Ego Trips
Weiye Loh

No Science please, we're Anthropologists « Critical Thinking « Skeptic North - 0 views

  • The debate is between researchers in science-based anthropological disciplines like archaeologists, physical anthropology and forensic anthropology — and anthropologists who focus on the more humanities based issues like race, ethnicity and gender.
  • Those that are defend the old mandate, members of the fields that are science based, are interested in relying on the scientific method to inform their theories about anthropology and ensuring that due diligence is done on new theories and that research is being conducted based on sound principles. In opposition are members who view themselves as advocates and activists. As they see it, research on culture, race, and gender is only harmed by science as it represents the cold arm of colonial imperialism.
  • viewing this as more than a simple cosmetic change, he compared the attacks and challenges on anthropology to creationism in that they both are “based on the rejection of rational argument and thought.
  • ...6 more annotations...
  • the American Anthropological Association attempted to clarify their position, they issued a statement in which they stated: “the Executive Board recognizes and endorses the crucial place of the scientific method in much anthropological research.” To further clarify matters they went on to describe anthropology as: “Anthropology is a holistic and expansive discipline that covers the full breadth of human history and culture.”
  • Damon Dozier, the association’s director of public affairs is further quoted saying “We mean holistic in terms of the diversity of the discipline.”
  • Despite the attempts to head off a huge rift, there appears to be lingering doubt as to the direction the American Anthropological Association is going and even more concern that the field of anthropology is under siege from post-modern attacks on its science foundations.
  • One of the most important contributions of science to the world has been a method of inquiry that has proven itself unequalled in explaining the natural world. The scientific method is, and should, be foundational in any field where the goal is to explain the natural world.
  • The so-called “hard sciences” understand this. Where things get muddled is in the “soft sciences” like anthropology, history, and psychology. For some reason these fields have proven especially vulnerable to post-modernism and have fallen prey to schizophrenic notion that science is “western” and trying to use science to explain things is another branch of imperialism.
  • The so-called “soft sciences” are occasionally put in the position of making assumptions. When you have a hypothesis you want to test, you unfortunately can’t travel back in time and do an experiment. Therefore, relying on the evidence you already have and employing your critical thinking skills you formulate a rational assumption and await the opportunity to confirm or deny it. It’s not based on a “hunch” or conjured up from the imagination. It’s based on rational skepticism.
Weiye Loh

homunculus: I can see clearly now - 0 views

  • Here’s a little piece I wrote for Nature news. To truly appreciate this stuff you need to take a look at the slideshow. There will be a great deal more on early microscopy in my next book, probably called Curiosity and scheduled for next year.
  • The first microscopes were a lot better than they are given credit for. That’s the claim of microscopist Brian Ford, based at Cambridge University and a specialist in the history and development of these instruments.
  • Ford says it is often suggested that the microscopes used by the earliest pioneers in the seventeenth century, such as Robert Hooke and Antony van Leeuwenhoek, gave only very blurred images of structures such as cells and micro-organisms. Hooke was the first to record cells, seen in thin slices of cork, while Leeuwenhoek described tiny ‘animalcules’, invisible to the naked eye, in rain water in 1676. The implication is that these breakthroughs in microscopic biology involved more than a little guesswork and invention. But Ford has looked again at the capabilities of some of Leeuwenhoek’s microscopes, and says ‘the results were breathtaking’. ‘The images were comparable with those you would obtain from a modern light microscope’, he adds in an account of his experiments in Microscopy and Analysis [1].
  • ...5 more annotations...
  • The poor impression of the seventeenth-century instruments, says Ford, is due to bad technique in modern reconstructions. In contrast to the hazy images shown in some museums and television documentaries, careful attention to such factors as lighting can produce micrographs of startling clarity using original microscopes or modern replicas.
  • Ford was able to make some of these improvements when he was granted access to one of Leeuwenhoek’s original microscopes owned by the Utrecht University Museum in the Netherlands. Leeuwenhoek made his own instruments, which had only a single lens made from a tiny bead of glass mounted in a metal frame. These simple microscopes were harder to make and to use than the more familiar two-lens compound microscope, but offered greater resolution.
  • Hooke popularized microscopy in his 1665 masterpiece Micrographia, which included stunning engravings of fleas, mites and the compound eyes of flies. The diarist Samuel Pepys judged it ‘the most ingenious book that I ever read in my life’. Ford’s findings show that Hooke was not, as some have imagined, embellishing his drawings from imagination, but should genuinely have been able to see such things as the tiny hairs on the flea’s legs.
  • Even Hooke was temporarily foxed, however, when he was given the duty of reproducing the results described by Leeuwenhoek, a linen merchant of Delft, in a letter to the Royal Society. It took him over a year before he could see these animalcules, whereupon he wrote that ‘I was very much surprised at this so wonderful a spectacle, having never seen any living creature comparable to these for smallness.’ ‘The abilities of those pioneer microscopists were so much greater than has been recognized’ says Ford. He attributes this misconception to the fact that ‘no longer is microscopy properly taught.’
  • Reference1. Ford, B. J. Microsc. Anal. March 2011 (in press).
  •  
    The first microscopes were a lot better than they are given credit for.
Weiye Loh

Drone journalism takes off - ABC News (Australian Broadcasting Corporation) - 0 views

  • Instead of acquiring military-style multi-million dollar unmanned aerial vehicles the size of small airliners, the media is beginning to go micro, exploiting rapid advances in technology by deploying small toy-like UAVs to get the story.
  • Last November, drone journalism hit the big time after a Polish activist launched a small craft with four helicopter-like rotors called a quadrocopter. He flew the drone low over riot police lines to record a violent demonstration in Warsaw. The pictures were extraordinarily different from run-of-the-mill protest coverage.Posted online, the images went viral. More significantly, this birds-eye view clip found its way onto the bulletins and web pages of mainstream media.
  • Drone Journalism Lab, a research project to determine the viability of remote airborne media.
  •  
    Drones play an increasing and controversial role in modern warfare. From Afghanistan and Pakistan to Iran and Yemen, they have become a ubiquitous symbol of Washington's war on terrorism. Critics point to the mounting drone-induced death toll as evidence that machines, no matter how sophisticated, cannot discriminate between combatants and innocent bystanders. Now drones are starting to fly into a more peaceful, yet equally controversial role in the media. Rapid technological advances in low-cost aerial platforms herald the age of drone journalism. But it will not be all smooth flying: this new media tool can expect to be buffeted by the issues of safety, ethics and legality.
Weiye Loh

Hermits and Cranks: Lessons from Martin Gardner on Recognizing Pseudoscientists: Scient... - 0 views

  • In 1950 Martin Gardner published an article in the Antioch Review entitled "The Hermit Scientist," about what we would today call pseudoscientists.
  • there has been some progress since Gardner offered his first criticisms of pseudoscience. Now largely antiquated are his chapters on believers in a flat Earth, a hollow Earth, Atlantis and Lemuria, Alfred William Lawson, Roger Babson, Trofim Lysenko, Wilhelm Reich and Alfred Korzybski. But disturbingly, a good two thirds of the book's contents are relevant today, including Gardner's discussions of homeopathy, naturopathy, osteopathy, iridiagnosis (reading the iris of the eye to deter- mine bodily malfunctions), food faddists, cancer cures and other forms of medical quackery, Edgar Cayce, the Great Pyramid's alleged mystical powers, handwriting analysis, ESP and PK (psychokinesis), reincarnation, dowsing rods, eccentric sexual theories, and theories of group racial differences.
  • The "hermit scientist," a youthful Gardner wrote, works alone and is ignored by mainstream scientists. "Such neglect, of course, only strengthens the convictions of the self-declared genius."
  • ...5 more annotations...
  • Even then Gardner was bemoaning that some beliefs never seem to go out of vogue, as he recalled an H. L. Mencken quip from the 1920s: "Heave an egg out of a Pullman window, and you will hit a Fundamentalist almost anywhere in the U.S. today." Gardner cautions that when religious superstition should be on the wane, it is easy "to forget that thousands of high school teachers of biology, in many of our southern states, are still afraid to teach the theory of evolution for fear of losing their jobs." Today creationism has spread northward and mutated into the oxymoronic form of "creation science."
  • the differences between science and pseudoscience. On the one extreme we have ideas that are most certainly false, "such as the dianetic view that a one-day-old embryo can make sound recordings of its mother's conversation." In the borderlands between the two "are theories advanced as working hypotheses, but highly debatable because of the lack of sufficient data." Of these Gardner selects a most propitious propitious example: "the theory that the universe is expanding." That theory would now fall at the other extreme end of the spectrum, where lie "theories al- most certainly true, such as the belief that the Earth is round or that men and beasts are distant cousins."
  • How can we tell if someone is a scientific crank? Gardner offers this advice: (1) "First and most important of these traits is that cranks work in almost total isolation from their colleagues." Cranks typically do not understand how the scientific process operates—that they need to try out their ideas on colleagues, attend conferences and publish their hypotheses in peer-reviewed journals before announcing to the world their startling discovery. Of course, when you explain this to them they say that their ideas are too radical for the conservative scientific establishment to accept.
  • (2) "A second characteristic of the pseudo-scientist, which greatly strengthens his isolation, is a tendency toward paranoia," which manifests itself in several ways: (1) He considers himself a genius. (2) He regards his colleagues, without exception, as ignorant blockheads....(3) He believes himself unjustly persecuted and discriminated against. The recognized societies refuse to let him lecture. The journals reject his papers and either ignore his books or assign them to "enemies" for review. It is all part of a dastardly plot. It never occurs to the crank that this opposition may be due to error in his work....(4) He has strong compulsions to focus his attacks on the greatest scientists and the best-established theories. When Newton was the outstanding name in physics, eccentric works in that science were violently anti-Newton. Today, with Einstein the father-symbol of authority, a crank theory of physics is likely to attack Einstein....(5) He often has a tendency to write in a complex jargon, in many cases making use of terms and phrases he himself has coined.
  • "If the present trend continues," Gardner concludes, "we can expect a wide variety of these men, with theories yet unimaginable, to put in their appearance in the years immediately ahead. They will write impressive books, give inspiring lectures, organize exciting cults. They may achieve a following of one—or one million. In any case, it will be well for ourselves and for society if we are on our guard against them."
  •  
    May 23, 2010 | 31 comments Hermits and Cranks: Lessons from Martin Gardner on Recognizing Pseudoscientists Fifty years ago Gardner launched the modern skeptical movement. Unfortunately, much of what he wrote about is still current today By Michael Shermer   
Weiye Loh

Skepticblog » The Value of Vertigo - 1 views

  • But Ruse’s moment of vertigo is not as surprising as it may appear. Indeed, he put effort into achieving this immersion: “I am atypical, I took about three hours to go through [the creation museum] but judging from my students most people don’t read the material as obsessively as I and take about an hour.” Why make this meticulous effort, when he could have dismissed creationism’s well-known scientific problems from the parking lot, or from&nbsp;his easy chair at home?
  • According to Ruse, the vertiginous “what if?” feeling has a practical value. After all, it’s easy to find problems with a pseudoscientific belief; what’s harder is understanding how and why other people believe. “It is silly just to dismiss this stuff as false,” Ruse argues (although it is false, and although Ruse has fought against “this stuff” for decades). “A lot of people believe Creationism so we on the other side need to get a feeling not just for the ideas but for the psychology too.”
  •  
    In June of 2009, philosopher of biology Michael Ruse took a group of grad students to the Answers in Genesis Creation Museum in Kentucky (and also some mainstream institutions) as part of a course on how museums present science. In a critical description of his visit, Ruse reflected upon "the extent to which the Creationist museum uses modern science to its own ends, melding it in seamlessly with its own Creationist message." Continental drift, the Big Bang, and even natural selection are all presented as evidence in support of Young Earth cosmology and flood geology. While immersing himself in the museum's pitch, Ruse wrote, Just for one moment about half way through the exhibit…I got that Kuhnian flash that it could all be true - it was only a flash (rather like thinking that Freudianism is true or that the Republicans are right on anything whatsoever) but it was interesting nevertheless to get a sense of how much sense this whole display and paradigm can make to people.
Weiye Loh

7 Essential Skills You Didn't Learn in College | Magazine - 0 views

shared by Weiye Loh on 15 Oct 10 - No Cached
  • Statistical Literacy Why take this course? We are misled by numbers and by our misunderstanding of probability.
  • Our world is shaped by widespread statistical illiteracy. We fear things that probably won’t kill us (terrorist attacks) and ignore things that probably will (texting while driving). We buy lottery tickets. We fall prey to misleading gut instincts, which lead to biases like loss aversion—an inability to gauge risk against potential gain. The effects play out in the grocery store, the office, and the voting booth (not to mention the bedroom: People who are more risk-averse are less successful in love).
  • We are now 53 percent more likely than our parents to trust polls of dubious merit. (That figure is totally made up. See?) Where do all these numbers that we remember so easily and cite so readily come from? How are they calculated, and by whom? How do we misuse them to make them say what we want them to? We’ll explore all of these questions in a sequence on sourcing statistics.
  • ...9 more annotations...
  • probabilistic intuition. We’ll learn to judge what’s likely and unlikely—and what’s impossible to know. We’ll learn about distorting habits of mind like selection bias—and how to guard against them. We’ll gamble. We’ll read The Art of Probability for Scientists and Engineers by Richard Hamming, Expert Political Judgment by Philip Tetlock, and How to Cheat Your Friends at Poker by Penn Jillette and Mickey Lynn.
  • Post-State Diplomacy Why take this course? As the world becomes evermore atomized, understanding the new leaders and constituencies becomes increasingly important.
  • tribal insurgents to multinational corporations, private charities to pirate gangs, religious movements to armies for hire, a range of organizations now compete with (and sometimes eclipse) the nation-states in which they reside. Without capitals or traditional constituencies, they can’t be persuaded or deterred by traditional tactics.
  • that doesn’t mean diplomacy is dead; quite the opposite. Negotiating with these parties requires the same skills as dealing with belligerent nations—understanding the shareholders and alliances they must answer to, the cultures that inform how they behave, and the religious, economic, and political interests they must address.
  • Power has always depended on who can provide justice, commerce, and stability.
  • Remix Culture Why take this course? Modern artists don’t start with a blank page or empty canvas. They start with preexisting works. What you’ll learn: How to analyze—and create—artworks made out of other artworks
  • philosophical roots of remix culture and study seminal works like Robert Rauschenberg’s Monogram and Jorge Luis Borges’ Pierre Menard, Author of Don Quixote. And we’ll examine modern-day exemplars from DJ Shadow’s Endtroducing to Auto-Tune the News.
  • Applied Cognition Why take this course? You have to know the brain to train the brain. What you’ll learn: How the mind works and how you can make it work for you.
  • Writing for New Forms Why take this course? You can write a cogent essay, but can you write it in 140 characters or less? What you’ll learn: How to adapt your message to multiple formats and audiences—human and machine.
  •  
    7 Essential Skills You Didn't Learn in College
Weiye Loh

MacIntyre on money « Prospect Magazine - 0 views

  • MacIntyre has often given the impression of a robe-ripping Savonarola. He has lambasted the heirs to the principal western ethical schools: John Locke’s social contract, Immanuel Kant’s categorical imperative, Jeremy Bentham’s utilitarian “the greatest happiness for the greatest number.” Yet his is not a lone voice in the wilderness. He can claim connections with a trio of 20th-century intellectual heavyweights: the late Elizabeth Anscombe, her surviving husband, Peter Geach, and the Canadian philosopher Charles Taylor, winner in 2007 of the Templeton prize. What all four have in common is their Catholic faith, enthusiasm for Aristotle’s telos (life goals), and promotion of Thomism, the philosophy of St Thomas Aquinas who married Christianity and Aristotle. Leo XIII (pope from 1878 to 1903), who revived Thomism while condemning communism and unfettered capitalism, is also an influence.
  • MacIntyre’s key moral and political idea is that to be human is to be an Aristotelian goal-driven, social animal. Being good, according to Aristotle, consists in a creature (whether plant, animal, or human) acting according to its nature—its telos, or purpose. The telos for human beings is to generate a communal life with others; and the good society is composed of many independent, self-reliant groups.
  • MacIntyre differs from all these influences and alliances, from Leo XIII onwards, in his residual respect for Marx’s critique of capitalism.
  • ...6 more annotations...
  • MacIntyre begins his Cambridge talk by asserting that the 2008 economic crisis was not due to a failure of business ethics.
  • he has argued that moral behaviour begins with the good practice of a profession, trade, or art: playing the violin, cutting hair, brick-laying, teaching philosophy.
  • In other words, the virtues necessary for human flourishing are not a result of the top-down application of abstract ethical principles, but the development of good character in everyday life.
  • After Virtue, which is in essence an attack on the failings of the Enlightenment, has in its sights a catalogue of modern assumptions of beneficence: liberalism, humanism, individualism, capitalism. MacIntyre yearns for a single, shared view of the good life as opposed to modern pluralism’s assumption that there can be many competing views of how to live well.
  • In philosophy he attacks consequentialism, the view that what matters about an action is its consequences, which is usually coupled with utilitarianism’s “greatest happiness” principle. He also rejects Kantianism—the identification of universal ethical maxims based on reason and applied to circumstances top down. MacIntyre’s critique routinely cites the contradictory moral principles adopted by the allies in the second world war. Britain invoked a Kantian reason for declaring war on Germany: that Hitler could not be allowed to invade his neighbours. But the bombing of Dresden (which for a Kantian involved the treatment of people as a means to an end, something that should never be countenanced) was justified under consequentialist or utilitarian arguments: to bring the war to a swift end.
  • MacIntyre seeks to oppose utilitarianism on the grounds that people are called on by their very nature to be good, not merely to perform acts that can be interpreted as good. The most damaging consequence of the Enlightenment, for MacIntyre, is the decline of the idea of a tradition within which an individual’s desires are disciplined by virtue. And that means being guided by internal rather than external “goods.” So the point of being a good footballer is the internal good of playing beautifully and scoring lots of goals, not the external good of earning a lot of money. The trend away from an Aristotelian perspective has been inexorable: from the empiricism of David Hume, to Darwin’s account of nature driven forward without a purpose, to the sterile analytical philosophy of AJ Ayer and the “demolition of metaphysics” in his 1936 book Language, Truth and Logic.
  •  
    The influential moral philosopher Alasdair MacIntyre has long stood outside the mainstream. Has the financial crisis finally vindicated his critique of global capitalism?
Weiye Loh

Odds Are, It's Wrong - Science News - 0 views

  • science has long been married to mathematics. Generally it has been for the better. Especially since the days of Galileo and Newton, math has nurtured science. Rigorous mathematical methods have secured science’s fidelity to fact and conferred a timeless reliability to its findings.
  • a mutant form of math has deflected science’s heart from the modes of calculation that had long served so faithfully. Science was seduced by statistics, the math rooted in the same principles that guarantee profits for Las Vegas casinos. Supposedly, the proper use of statistics makes relying on scientific results a safe bet. But in practice, widespread misuse of statistical methods makes science more like a crapshoot.
  • science’s dirtiest secret: The “scientific method” of testing hypotheses by statistical analysis stands on a flimsy foundation. Statistical tests are supposed to guide scientists in judging whether an experimental result reflects some real effect or is merely a random fluke, but the standard methods mix mutually inconsistent philosophies and offer no meaningful basis for making such decisions. Even when performed correctly, statistical tests are widely misunderstood and frequently misinterpreted. As a result, countless conclusions in the scientific literature are erroneous, and tests of medical dangers or treatments are often contradictory and confusing.
  • ...24 more annotations...
  • Experts in the math of probability and statistics are well aware of these problems and have for decades expressed concern about them in major journals. Over the years, hundreds of published papers have warned that science’s love affair with statistics has spawned countless illegitimate findings. In fact, if you believe what you read in the scientific literature, you shouldn’t believe what you read in the scientific literature.
  • “There are more false claims made in the medical literature than anybody appreciates,” he says. “There’s no question about that.”Nobody contends that all of science is wrong, or that it hasn’t compiled an impressive array of truths about the natural world. Still, any single scientific study alone is quite likely to be incorrect, thanks largely to the fact that the standard statistical system for drawing conclusions is, in essence, illogical. “A lot of scientists don’t understand statistics,” says Goodman. “And they don’t understand statistics because the statistics don’t make sense.”
  • In 2007, for instance, researchers combing the medical literature found numerous studies linking a total of 85 genetic variants in 70 different genes to acute coronary syndrome, a cluster of heart problems. When the researchers compared genetic tests of 811 patients that had the syndrome with a group of 650 (matched for sex and age) that didn’t, only one of the suspect gene variants turned up substantially more often in those with the syndrome — a number to be expected by chance.“Our null results provide no support for the hypothesis that any of the 85 genetic variants tested is a susceptibility factor” for the syndrome, the researchers reported in the Journal of the American Medical Association.How could so many studies be wrong? Because their conclusions relied on “statistical significance,” a concept at the heart of the mathematical analysis of modern scientific experiments.
  • Statistical significance is a phrase that every science graduate student learns, but few comprehend. While its origins stretch back at least to the 19th century, the modern notion was pioneered by the mathematician Ronald A. Fisher in the 1920s. His original interest was agriculture. He sought a test of whether variation in crop yields was due to some specific intervention (say, fertilizer) or merely reflected random factors beyond experimental control.Fisher first assumed that fertilizer caused no difference — the “no effect” or “null” hypothesis. He then calculated a number called the P value, the probability that an observed yield in a fertilized field would occur if fertilizer had no real effect. If P is less than .05 — meaning the chance of a fluke is less than 5 percent — the result should be declared “statistically significant,” Fisher arbitrarily declared, and the no effect hypothesis should be rejected, supposedly confirming that fertilizer works.Fisher’s P value eventually became the ultimate arbiter of credibility for science results of all sorts
  • But in fact, there’s no logical basis for using a P value from a single study to draw any conclusion. If the chance of a fluke is less than 5 percent, two possible conclusions remain: There is a real effect, or the result is an improbable fluke. Fisher’s method offers no way to know which is which. On the other hand, if a study finds no statistically significant effect, that doesn’t prove anything, either. Perhaps the effect doesn’t exist, or maybe the statistical test wasn’t powerful enough to detect a small but real effect.
  • Soon after Fisher established his system of statistical significance, it was attacked by other mathematicians, notably Egon Pearson and Jerzy Neyman. Rather than testing a null hypothesis, they argued, it made more sense to test competing hypotheses against one another. That approach also produces a P value, which is used to gauge the likelihood of a “false positive” — concluding an effect is real when it actually isn’t. What &nbsp;eventually emerged was a hybrid mix of the mutually inconsistent Fisher and Neyman-Pearson approaches, which has rendered interpretations of standard statistics muddled at best and simply erroneous at worst. As a result, most scientists are confused about the meaning of a P value or how to interpret it. “It’s almost never, ever, ever stated correctly, what it means,” says Goodman.
  • experimental data yielding a P value of .05 means that there is only a 5 percent chance of obtaining the observed (or more extreme) result if no real effect exists (that is, if the no-difference hypothesis is correct). But many explanations mangle the subtleties in that definition. A recent popular book on issues involving science, for example, states a commonly held misperception about the meaning of statistical significance at the .05 level: “This means that it is 95 percent certain that the observed difference between groups, or sets of samples, is real and could not have arisen by chance.”
  • That interpretation commits an egregious logical error (technical term: “transposed conditional”): confusing the odds of getting a result (if a hypothesis is true) with the odds favoring the hypothesis if you observe that result. A well-fed dog may seldom bark, but observing the rare bark does not imply that the dog is hungry. A dog may bark 5 percent of the time even if it is well-fed all of the time. (See Box 2)
    • Weiye Loh
       
      Does the problem then, lie not in statistics, but the interpretation of statistics? Is the fallacy of appeal to probability is at work in such interpretation? 
  • Another common error equates statistical significance to “significance” in the ordinary use of the word. Because of the way statistical formulas work, a study with a very large sample can detect “statistical significance” for a small effect that is meaningless in practical terms. A new drug may be statistically better than an old drug, but for every thousand people you treat you might get just one or two additional cures — not clinically significant. Similarly, when studies claim that a chemical causes a “significantly increased risk of cancer,” they often mean that it is just statistically significant, possibly posing only a tiny absolute increase in risk.
  • Statisticians perpetually caution against mistaking statistical significance for practical importance, but scientific papers commit that error often. Ziliak studied journals from various fields — psychology, medicine and economics among others — and reported frequent disregard for the distinction.
  • “I found that eight or nine of every 10 articles published in the leading journals make the fatal substitution” of equating statistical significance to importance, he said in an interview. Ziliak’s data are documented in the 2008 book The Cult of Statistical Significance, coauthored with Deirdre McCloskey of the University of Illinois at Chicago.
  • Multiplicity of mistakesEven when “significance” is properly defined and P values are carefully calculated, statistical inference is plagued by many other problems. Chief among them is the “multiplicity” issue — the testing of many hypotheses simultaneously. When several drugs are tested at once, or a single drug is tested on several groups, chances of getting a statistically significant but false result rise rapidly.
  • Recognizing these problems, some researchers now calculate a “false discovery rate” to warn of flukes disguised as real effects. And genetics researchers have begun using “genome-wide association studies” that attempt to ameliorate the multiplicity issue (SN: 6/21/08, p. 20).
  • Many researchers now also commonly report results with confidence intervals, similar to the margins of error reported in opinion polls. Such intervals, usually given as a range that should include the actual value with 95 percent confidence, do convey a better sense of how precise a finding is. But the 95 percent confidence calculation is based on the same math as the .05 P value and so still shares some of its problems.
  • Statistical problems also afflict the “gold standard” for medical research, the randomized, controlled clinical trials that test drugs for their ability to cure or their power to harm. Such trials assign patients at random to receive either the substance being tested or a placebo, typically a sugar pill; random selection supposedly guarantees that patients’ personal characteristics won’t bias the choice of who gets the actual treatment. But in practice, selection biases may still occur, Vance Berger and Sherri Weinstein noted in 2004 in ControlledClinical Trials. “Some of the benefits ascribed to randomization, for example that it eliminates all selection bias, can better be described as fantasy than reality,” they wrote.
  • Randomization also should ensure that unknown differences among individuals are mixed in roughly the same proportions in the groups being tested. But statistics do not guarantee an equal distribution any more than they prohibit 10 heads in a row when flipping a penny. With thousands of clinical trials in progress, some will not be well randomized. And DNA differs at more than a million spots in the human genetic catalog, so even in a single trial differences may not be evenly mixed. In a sufficiently large trial, unrandomized factors may balance out, if some have positive effects and some are negative. (See Box 3) Still, trial results are reported as averages that may obscure individual differences, masking beneficial or harm­ful effects and possibly leading to approval of drugs that are deadly for some and denial of effective treatment to others.
  • nother concern is the common strategy of combining results from many trials into a single “meta-analysis,” a study of studies. In a single trial with relatively few participants, statistical tests may not detect small but real and possibly important effects. In principle, combining smaller studies to create a larger sample would allow the tests to detect such small effects. But statistical techniques for doing so are valid only if certain criteria are met. For one thing, all the studies conducted on the drug must be included — published and unpublished. And all the studies should have been performed in a similar way, using the same protocols, definitions, types of patients and doses. When combining studies with differences, it is necessary first to show that those differences would not affect the analysis, Goodman notes, but that seldom happens. “That’s not a formal part of most meta-analyses,” he says.
  • Meta-analyses have produced many controversial conclusions. Common claims that antidepressants work no better than placebos, for example, are based on meta-analyses that do not conform to the criteria that would confer validity. Similar problems afflicted a 2007 meta-analysis, published in the New England Journal of Medicine, that attributed increased heart attack risk to the diabetes drug Avandia. Raw data from the combined trials showed that only 55 people in 10,000 had heart attacks when using Avandia, compared with 59 people per 10,000 in comparison groups. But after a series of statistical manipulations, Avandia appeared to confer an increased risk.
  • combining small studies in a meta-analysis is not a good substitute for a single trial sufficiently large to test a given question. “Meta-analyses can reduce the role of chance in the interpretation but may introduce bias and confounding,” Hennekens and DeMets write in the Dec. 2 Journal of the American Medical Association. “Such results should be considered more as hypothesis formulating than as hypothesis testing.”
  • Some studies show dramatic effects that don’t require sophisticated statistics to interpret. If the P value is 0.0001 — a hundredth of a percent chance of a fluke — that is strong evidence, Goodman points out. Besides, most well-accepted science is based not on any single study, but on studies that have been confirmed by repetition. Any one result may be likely to be wrong, but confidence rises quickly if that result is independently replicated.“Replication is vital,” says statistician Juliet Shaffer, a lecturer emeritus at the University of California, Berkeley. And in medicine, she says, the need for replication is widely recognized. “But in the social sciences and behavioral sciences, replication is not common,” she noted in San Diego in February at the annual meeting of the American Association for the Advancement of Science. “This is a sad situation.”
  • Most critics of standard statistics advocate the Bayesian approach to statistical reasoning, a methodology that derives from a theorem credited to Bayes, an 18th century English clergyman. His approach uses similar math, but requires the added twist of a “prior probability” — in essence, an informed guess about the expected probability of something in advance of the study. Often this prior probability is more than a mere guess — it could be based, for instance, on previous studies.
  • it basically just reflects the need to include previous knowledge when drawing conclusions from new observations. To infer the odds that a barking dog is hungry, for instance, it is not enough to know how often the dog barks when well-fed. You also need to know how often it eats — in order to calculate the prior probability of being hungry. Bayesian math combines a prior probability with observed data to produce an estimate of the likelihood of the hunger hypothesis. “A scientific hypothesis cannot be properly assessed solely by reference to the observational data,” but only by viewing the data in light of prior belief in the hypothesis, wrote George Diamond and Sanjay Kaul of UCLA’s School of Medicine in 2004 in the Journal of the American College of Cardiology. “Bayes’ theorem is ... a logically consistent, mathematically valid, and intuitive way to draw inferences about the hypothesis.” (See Box 4)
  • In many real-life contexts, Bayesian methods do produce the best answers to important questions. In medical diagnoses, for instance, the likelihood that a test for a disease is correct depends on the prevalence of the disease in the population, a factor that Bayesian math would take into account.
  • But Bayesian methods introduce a confusion into the actual meaning of the mathematical concept of “probability” in the real world. Standard or “frequentist” statistics treat probabilities as objective realities; Bayesians treat probabilities as “degrees of belief” based in part on a personal assessment or subjective decision about what to include in the calculation. That’s a tough placebo to swallow for scientists wedded to the “objective” ideal of standard statistics. “Subjective prior beliefs are anathema to the frequentist, who relies instead on a series of ad hoc algorithms that maintain the facade of scientific objectivity,” Diamond and Kaul wrote.Conflict between frequentists and Bayesians has been ongoing for two centuries. So science’s marriage to mathematics seems to entail some irreconcilable differences. Whether the future holds a fruitful reconciliation or an ugly separation may depend on forging a shared understanding of probability.“What does probability mean in real life?” the statistician David Salsburg asked in his 2001 book The Lady Tasting Tea. “This problem is still unsolved, and ... if it remains un­solved, the whole of the statistical approach to science may come crashing down from the weight of its own inconsistencies.”
  •  
    Odds Are, It's Wrong Science fails to face the shortcomings of statistics
Weiye Loh

The Decline Effect and the Scientific Method : The New Yorker - 0 views

  • On September 18, 2007, a few dozen neuroscientists, psychiatrists, and drug-company executives gathered in a hotel conference room in Brussels to hear some startling news. It had to do with a class of drugs known as atypical or second-generation antipsychotics, which came on the market in the early nineties.
  • the therapeutic power of the drugs appeared to be steadily waning. A recent study showed an effect that was less than half of that documented in the first trials, in the early nineteen-nineties. Many researchers began to argue that the expensive pharmaceuticals weren’t any better than first-generation antipsychotics, which have been in use since the fifties. “In fact, sometimes they now look even worse,” John Davis, a professor of psychiatry at the University of Illinois at Chicago, told me.
  • Before the effectiveness of a drug can be confirmed, it must be tested and tested again. Different scientists in different labs need to repeat the protocols and publish their results. The test of replicability, as it’s known, is the foundation of modern research. Replicability is how the community enforces itself. It’s a safeguard for the creep of subjectivity. Most of the time, scientists know what results they want, and that can influence the results they get. The premise of replicability is that the scientific community can correct for these flaws.
  • ...30 more annotations...
  • But now all sorts of well-established, multiply confirmed findings have started to look increasingly uncertain. It’s as if our facts were losing their truth: claims that have been enshrined in textbooks are suddenly unprovable. This phenomenon doesn’t yet have an official name, but it’s occurring across a wide range of fields, from psychology to ecology. In the field of medicine, the phenomenon seems extremely widespread, affecting not only antipsychotics but also therapies ranging from cardiac stents to Vitamin E and antidepressants: Davis has a forthcoming analysis demonstrating that the efficacy of antidepressants has gone down as much as threefold in recent decades.
  • In private, Schooler began referring to the problem as “cosmic habituation,” by analogy to the decrease in response that occurs when individuals habituate to particular stimuli. “Habituation is why you don’t notice the stuff that’s always there,” Schooler says. “It’s an inevitable process of adjustment, a ratcheting down of excitement. I started joking that it was like the cosmos was habituating to my ideas. I took it very personally.”
  • At first, he assumed that he’d made an error in experimental design or a statistical miscalculation. But he couldn’t find anything wrong with his research. He then concluded that his initial batch of research subjects must have been unusually susceptible to verbal overshadowing. (John Davis, similarly, has speculated that part of the drop-off in the effectiveness of antipsychotics can be attributed to using subjects who suffer from milder forms of psychosis which are less likely to show dramatic improvement.) “It wasn’t a very satisfying explanation,” Schooler says. “One of my mentors told me that my real mistake was trying to replicate my work. He told me doing that was just setting myself up for disappointment.”
  • the effect is especially troubling because of what it exposes about the scientific process. If replication is what separates the rigor of science from the squishiness of pseudoscience, where do we put all these rigorously validated findings that can no longer be proved? Which results should we believe? Francis Bacon, the early-modern philosopher and pioneer of the scientific method, once declared that experiments were essential, because they allowed us to “put nature to the question.” But it appears that nature often gives us different answers.
  • The most likely explanation for the decline is an obvious one: regression to the mean. As the experiment is repeated, that is, an early statistical fluke gets cancelled out. The extrasensory powers of Schooler’s subjects didn’t decline—they were simply an illusion that vanished over time. And yet Schooler has noticed that many of the data sets that end up declining seem statistically solid—that is, they contain enough data that any regression to the mean shouldn’t be dramatic. “These are the results that pass all the tests,” he says. “The odds of them being random are typically quite remote, like one in a million. This means that the decline effect should almost never happen. But it happens all the time!
  • this is why Schooler believes that the decline effect deserves more attention: its ubiquity seems to violate the laws of statistics. “Whenever I start talking about this, scientists get very nervous,” he says. “But I still want to know what happened to my results. Like most scientists, I assumed that it would get easier to document my effect over time. I’d get better at doing the experiments, at zeroing in on the conditions that produce verbal overshadowing. So why did the opposite happen? I’m convinced that we can use the tools of science to figure this out. First, though, we have to admit that we’ve got a problem.”
  • In 2001, Michael Jennions, a biologist at the Australian National University, set out to analyze “temporal trends” across a wide range of subjects in ecology and evolutionary biology. He looked at hundreds of papers and forty-four meta-analyses (that is, statistical syntheses of related studies), and discovered a consistent decline effect over time, as many of the theories seemed to fade into irrelevance. In fact, even when numerous variables were controlled for—Jennions knew, for instance, that the same author might publish several critical papers, which could distort his analysis—there was still a significant decrease in the validity of the hypothesis, often within a year of publication. Jennions admits that his findings are troubling, but expresses a reluctance to talk about them publicly. “This is a very sensitive issue for scientists,” he says. “You know, we’re supposed to be dealing with hard facts, the stuff that’s supposed to stand the test of time. But when you see these trends you become a little more skeptical of things.”
  • the worst part was that when I submitted these null results I had difficulty getting them published. The journals only wanted confirming data. It was too exciting an idea to disprove, at least back then.
  • the steep rise and slow fall of fluctuating asymmetry is a clear example of a scientific paradigm, one of those intellectual fads that both guide and constrain research: after a new paradigm is proposed, the peer-review process is tilted toward positive results. But then, after a few years, the academic incentives shift—the paradigm has become entrenched—so that the most notable results are now those that disprove the theory.
  • Jennions, similarly, argues that the decline effect is largely a product of publication bias, or the tendency of scientists and scientific journals to prefer positive data over null results, which is what happens when no effect is found. The bias was first identified by the statistician Theodore Sterling, in 1959, after he noticed that ninety-seven per cent of all published psychological studies with statistically significant data found the effect they were looking for. A “significant” result is defined as any data point that would be produced by chance less than five per cent of the time. This ubiquitous test was invented in 1922 by the English mathematician Ronald Fisher, who picked five per cent as the boundary line, somewhat arbitrarily, because it made pencil and slide-rule calculations easier. Sterling saw that if ninety-seven per cent of psychology studies were proving their hypotheses, either psychologists were extraordinarily lucky or they published only the outcomes of successful experiments. In recent years, publication bias has mostly been seen as a problem for clinical trials, since pharmaceutical companies are less interested in publishing results that aren’t favorable. But it’s becoming increasingly clear that publication bias also produces major distortions in fields without large corporate incentives, such as psychology and ecology.
  • While publication bias almost certainly plays a role in the decline effect, it remains an incomplete explanation. For one thing, it fails to account for the initial prevalence of positive results among studies that never even get submitted to journals. It also fails to explain the experience of people like Schooler, who have been unable to replicate their initial data despite their best efforts
  • an equally significant issue is the selective reporting of results—the data that scientists choose to document in the first place. Palmer’s most convincing evidence relies on a statistical tool known as a funnel graph. When a large number of studies have been done on a single subject, the data should follow a pattern: studies with a large sample size should all cluster around a common value—the true result—whereas those with a smaller sample size should exhibit a random scattering, since they’re subject to greater sampling error. This pattern gives the graph its name, since the distribution resembles a funnel.
  • The funnel graph visually captures the distortions of selective reporting. For instance, after Palmer plotted every study of fluctuating asymmetry, he noticed that the distribution of results with smaller sample sizes wasn’t random at all but instead skewed heavily toward positive results.
  • Palmer has since documented a similar problem in several other contested subject areas. “Once I realized that selective reporting is everywhere in science, I got quite depressed,” Palmer told me. “As a researcher, you’re always aware that there might be some nonrandom patterns, but I had no idea how widespread it is.” In a recent review article, Palmer summarized the impact of selective reporting on his field: “We cannot escape the troubling conclusion that some—perhaps many—cherished generalities are at best exaggerated in their biological significance and at worst a collective illusion nurtured by strong a-priori beliefs often repeated.”
  • Palmer emphasizes that selective reporting is not the same as scientific fraud. Rather, the problem seems to be one of subtle omissions and unconscious misperceptions, as researchers struggle to make sense of their results. Stephen Jay Gould referred to this as the “shoehorning” process. “A lot of scientific measurement is really hard,” Simmons told me. “If you’re talking about fluctuating asymmetry, then it’s a matter of minuscule differences between the right and left sides of an animal. It’s millimetres of a tail feather. And so maybe a researcher knows that he’s measuring a good male”—an animal that has successfully mated—“and he knows that it’s supposed to be symmetrical. Well, that act of measurement is going to be vulnerable to all sorts of perception biases. That’s not a cynical statement. That’s just the way human beings work.”
  • One of the classic examples of selective reporting concerns the testing of acupuncture in different countries. While acupuncture is widely accepted as a medical treatment in various Asian countries, its use is much more contested in the West. These cultural differences have profoundly influenced the results of clinical trials. Between 1966 and 1995, there were forty-seven studies of acupuncture in China, Taiwan, and Japan, and every single trial concluded that acupuncture was an effective treatment. During the same period, there were ninety-four clinical trials of acupuncture in the United States, Sweden, and the U.K., and only fifty-six per cent of these studies found any therapeutic benefits. As Palmer notes, this wide discrepancy suggests that scientists find ways to confirm their preferred hypothesis, disregarding what they don’t want to see. Our beliefs are a form of blindness.
  • John Ioannidis, an epidemiologist at Stanford University, argues that such distortions are a serious issue in biomedical research. “These exaggerations are why the decline has become so common,” he says. “It’d be really great if the initial studies gave us an accurate summary of things. But they don’t. And so what happens is we waste a lot of money treating millions of patients and doing lots of follow-up studies on other themes based on results that are misleading.”
  • In 2005, Ioannidis published an article in the Journal of the American Medical Association that looked at the forty-nine most cited clinical-research studies in three major medical journals. Forty-five of these studies reported positive results, suggesting that the intervention being tested was effective. Because most of these studies were randomized controlled trials—the “gold standard” of medical evidence—they tended to have a significant impact on clinical practice, and led to the spread of treatments such as hormone replacement therapy for menopausal women and daily low-dose aspirin to prevent heart attacks and strokes. Nevertheless, the data Ioannidis found were disturbing: of the thirty-four claims that had been subject to replication, forty-one per cent had either been directly contradicted or had their effect sizes significantly downgraded.
  • The situation is even worse when a subject is fashionable. In recent years, for instance, there have been hundreds of studies on the various genes that control the differences in disease risk between men and women. These findings have included everything from the mutations responsible for the increased risk of schizophrenia to the genes underlying hypertension. Ioannidis and his colleagues looked at four hundred and thirty-two of these claims. They quickly discovered that the vast majority had serious flaws. But the most troubling fact emerged when he looked at the test of replication: out of four hundred and thirty-two claims, only a single one was consistently replicable. “This doesn’t mean that none of these claims will turn out to be true,” he says. “But, given that most of them were done badly, I wouldn’t hold my breath.”
  • the main problem is that too many researchers engage in what he calls “significance chasing,” or finding ways to interpret the data so that it passes the statistical test of significance—the ninety-five-per-cent boundary invented by Ronald Fisher. “The scientists are so eager to pass this magical test that they start playing around with the numbers, trying to find anything that seems worthy,” Ioannidis says. In recent years, Ioannidis has become increasingly blunt about the pervasiveness of the problem. One of his most cited papers has a deliberately provocative title: “Why Most Published Research Findings Are False.”
  • The problem of selective reporting is rooted in a fundamental cognitive flaw, which is that we like proving ourselves right and hate being wrong. “It feels good to validate a hypothesis,” Ioannidis said. “It feels even better when you’ve got a financial interest in the idea or your career depends upon it. And that’s why, even after a claim has been systematically disproven”—he cites, for instance, the early work on hormone replacement therapy, or claims involving various vitamins—“you still see some stubborn researchers citing the first few studies that show a strong effect. They really want to believe that it’s true.”
  • scientists need to become more rigorous about data collection before they publish. “We’re wasting too much time chasing after bad studies and underpowered experiments,” he says. The current “obsession” with replicability distracts from the real problem, which is faulty design. He notes that nobody even tries to replicate most science papers—there are simply too many. (According to Nature, a third of all studies never even get cited, let alone repeated.)
  • Schooler recommends the establishment of an open-source database, in which researchers are required to outline their planned investigations and document all their results. “I think this would provide a huge increase in access to scientific work and give us a much better way to judge the quality of an experiment,” Schooler says. “It would help us finally deal with all these issues that the decline effect is exposing.”
  • Although such reforms would mitigate the dangers of publication bias and selective reporting, they still wouldn’t erase the decline effect. This is largely because scientific research will always be shadowed by a force that can’t be curbed, only contained: sheer randomness. Although little research has been done on the experimental dangers of chance and happenstance, the research that exists isn’t encouraging
  • John Crabbe, a neuroscientist at the Oregon Health and Science University, conducted an experiment that showed how unknowable chance events can skew tests of replicability. He performed a series of experiments on mouse behavior in three different science labs: in Albany, New York; Edmonton, Alberta; and Portland, Oregon. Before he conducted the experiments, he tried to standardize every variable he could think of. The same strains of mice were used in each lab, shipped on the same day from the same supplier. The animals were raised in the same kind of enclosure, with the same brand of sawdust bedding. They had been exposed to the same amount of incandescent light, were living with the same number of littermates, and were fed the exact same type of chow pellets. When the mice were handled, it was with the same kind of surgical glove, and when they were tested it was on the same equipment, at the same time in the morning.
  • The premise of this test of replicability, of course, is that each of the labs should have generated the same pattern of results. “If any set of experiments should have passed the test, it should have been ours,” Crabbe says. “But that’s not the way it turned out.” In one experiment, Crabbe injected a particular strain of mouse with cocaine. In Portland the mice given the drug moved, on average, six hundred centimetres more than they normally did; in Albany they moved seven hundred and one additional centimetres. But in the Edmonton lab they moved more than five thousand additional centimetres. Similar deviations were observed in a test of anxiety. Furthermore, these inconsistencies didn’t follow any detectable pattern. In Portland one strain of mouse proved most anxious, while in Albany another strain won that distinction.
  • The disturbing implication of the Crabbe study is that a lot of extraordinary scientific data are nothing but noise. The hyperactivity of those coked-up Edmonton mice wasn’t an interesting new fact—it was a meaningless outlier, a by-product of invisible variables we don’t understand. The problem, of course, is that such dramatic findings are also the most likely to get published in prestigious journals, since the data are both statistically significant and entirely unexpected. Grants get written, follow-up studies are conducted. The end result is a scientific accident that can take years to unravel.
  • This suggests that the decline effect is actually a decline of illusion.
  • While Karl Popper imagined falsification occurring with a single, definitive experiment—Galileo refuted Aristotelian mechanics in an afternoon—the process turns out to be much messier than that. Many scientific theories continue to be considered true even after failing numerous experimental tests. Verbal overshadowing might exhibit the decline effect, but it remains extensively relied upon within the field. The same holds for any number of phenomena, from the disappearing benefits of second-generation antipsychotics to the weak coupling ratio exhibited by decaying neutrons, which appears to have fallen by more than ten standard deviations between 1969 and 2001. Even the law of gravity hasn’t always been perfect at predicting real-world phenomena. (In one test, physicists measuring gravity by means of deep boreholes in the Nevada desert found a two-and-a-half-per-cent discrepancy between the theoretical predictions and the actual data.) Despite these findings, second-generation antipsychotics are still widely prescribed, and our model of the neutron hasn’t changed. The law of gravity remains the same.
  • Such anomalies demonstrate the slipperiness of empiricism. Although many scientific ideas generate conflicting results and suffer from falling effect sizes, they continue to get cited in the textbooks and drive standard medical practice. Why? Because these ideas seem true. Because they make sense. Because we can’t bear to let them go. And this is why the decline effect is so troubling. Not because it reveals the human fallibility of science, in which data are tweaked and beliefs shape perceptions. (Such shortcomings aren’t surprising, at least for scientists.) And not because it reveals that many of our most exciting theories are fleeting fads and will soon be rejected. (That idea has been around since Thomas Kuhn.) The decline effect is troubling because it reminds us how difficult it is to prove anything. We like to pretend that our experiments define the truth for us. But that’s often not the case. Just because an idea is true doesn’t mean it can be proved. And just because an idea can be proved doesn’t mean it’s true. When the experiments are done, we still have to choose what to believe.
Weiye Loh

The Mysterious Decline Effect | Wired Science | Wired.com - 0 views

  • Question #1: Does this mean I don’t have to believe in climate change? Me: I’m afraid not. One of the sad ironies of scientific denialism is that we tend to be skeptical of precisely the wrong kind of scientific claims. In poll after poll, Americans have dismissed two of the most robust and widely tested theories of modern science: evolution by natural selection and climate change. These are theories that have been verified in thousands of different ways by thousands of different scientists working in many different fields. (This doesn’t mean, of course, that such theories won’t change or get modified – the strength of science is that nothing is settled.) Instead of wasting public debate on creationism or the rhetoric of Senator Inhofe, I wish we’d spend more time considering the value of spinal fusion surgery, or second generation antipsychotics, or the verity of the latest gene association study. The larger point is that we need to be a better job of considering the context behind every claim. In 1952, the Harvard philosopher Willard Von Orman published “The Two Dogmas of Empiricism.” In the essay, Quine compared the truths of science to a spider’s web, in which the strength of the lattice depends upon its interconnectedness. (Quine: “The unit of empirical significance is the whole of science.”)&nbsp;One of the implications of Quine’s paper is that, when evaluating the power of a given study, we need to also consider the other studies and untested assumptions that it depends upon. Don’t just fixate on the effect size – look at the web. Unfortunately for the denialists, climate change and natural selection have very sturdy webs.
  • biases are not fraud. We sometimes forget that science is a human pursuit, mingled with all of our flaws and failings. (Perhaps that explains why an episode like Climategate gets so much attention.) If there’s a single theme that runs through the article it’s that finding the truth is really hard. It’s hard because reality is complicated, shaped by a surreal excess of variables. But it’s also hard because scientists aren’t robots: the act of observation is simultaneously an act of interpretation.
  • (As Paul Simon sang, “A man sees what he wants to see and disregards the rest.”) Most of the time, these distortions are unconscious – we don’t know even we are misperceiving the data.&nbsp;However, even when the distortion is intentional it’s still rarely rises to the level of outright fraud. Consider the story of Mike Rossner. He’s&nbsp;executive director of the Rockefeller University Press, and helps oversee several scientific publications, including The Journal of Cell Biology. &nbsp;In 2002, while trying to format a scientific image in Photoshop that was going to appear in one of the journals, Rossner noticed that the background of the image contained distinct intensities of pixels. “That’s a hallmark of image manipulation,” Rossner told me. “It means the scientist has gone in and deliberately changed what the data looks like. What’s disturbing is just how easy this is to do.” This led Rossner and his colleagues to begin analyzing every image in every accepted paper. They soon discovered that approximately 25 percent of all papers contained at least one “inappropriately manipulated” picture. Interestingly,&nbsp;the vast, vast majority of these manipulations (~99 percent) didn’t affect the interpretation of the results. Instead, the scientists seemed to be photoshopping the pictures for aesthetic reasons: perhaps a line on a gel was erased, or a background blur was deleted, or the contrast was exaggerated. In other words,&nbsp;they wanted to publish pretty images. That’s a perfectly understandable desire, but it gets problematic when that same basic instinct – we want our data to be neat, our pictures to be clean, our charts to be clear – is transposed across the entire scientific process.
  • ...2 more annotations...
  • One of the philosophy papers that I kept on thinking about while writing the article was Nancy Cartwright’s essay “Do the Laws of Physics State the Facts?” Cartwright used numerous examples from modern physics to&nbsp;argue that there is often a basic trade-off between scientific “truth” and experimental validity, so that the laws that are the most true are also the most useless. “Despite their great explanatory power, these laws [such as gravity] do not describe reality,” Cartwright writes. “Instead, fundamental laws describe highly idealized objects in models.”&nbsp; The problem, of course, is that experiments don’t test models. They test reality.
  • Cartwright’s larger point is that many essential scientific theories – those laws that explain things – are not actually provable, at least in the conventional sense. This doesn’t mean that gravity isn’t true or real. There is, perhaps, no truer idea in all of science. (Feynman famously referred to gravity as the “greatest generalization achieved by the human mind.”) Instead, what the anomalies of physics demonstrate is that there is no single test that can define the truth. Although we often pretend that experiments and peer-review and clinical trials settle the truth for us – that we are mere passive observers, dutifully recording the results – the actuality of science is a lot messier than that. Richard Rorty said it best: “To say that we should drop the idea of truth as out there waiting to be discovered is not to say that we have discovered that, out there, there is no truth.” Of course, the very fact that the facts aren’t obvious, that the truth isn’t “waiting to be discovered,” means that science is intensely human. It requires us to look, to search, to plead with nature for an answer.
Weiye Loh

Models, Plain and Fancy - NYTimes.com - 0 views

  • Karl Smith argues that informal economic arguments — models in the sense of thought experiments, not necessarily backed by equations and/or data-crunching — deserve more respect from the profession.
  • misunderstandings in economics come about because people don’t have in their minds any intuitive notion of what it is they’re supposed to be modeling.
  • And Karl Smith is right: no way could Hume have published such a thing in a modern journal. So yes, simple intuitive stories are important, and deserve more credit.
  • ...1 more annotation...
  • You could argue that modern economics really began with David Hume’s Of the Balance of Trade, whose core is a gloriously clear thought experiment
Weiye Loh

Information technology and economic change: The impact of the printing press | vox - Re... - 0 views

  • Despite the revolutionary technological advance of the printing press in the 15th century, there is precious little economic evidence of its benefits. Using data on 200 European cities between 1450 and 1600, this column finds that economic growth was higher by as much as 60 percentage points in cities that adopted the technology.
  • Historians argue that the printing press was among the most revolutionary inventions in human history, responsible for a diffusion of knowledge and ideas, “dwarfing in scale anything which had occurred since the invention of writing” (Roberts 1996, p. 220). Yet economists have struggled to find any evidence of this information technology revolution in measures of aggregate productivity or per capita income (Clark 2001,&nbsp;Mokyr 2005). The historical data thus present us with a puzzle analogous to the famous Solow productivity paradox – that, until the mid-1990s, the data on macroeconomic productivity showed no effect of innovations in computer-based information technology.
  • In recent work (Dittmar 2010a), I examine the revolution in Renaissance information technology from a new perspective by assembling city-level data on the diffusion of the printing press in 15th-century Europe. The data record each city in which a printing press was established 1450-1500 – some 200 out of over 1,000 historic cities (see also an interview on this site, Dittmar 2010b). The research emphasises cities for three principal reasons. First, the printing press was an urban technology, producing for urban consumers. Second, cities were seedbeds for economic ideas and social groups that drove the emergence of modern growth. Third, city sizes were historically important indicators of economic prosperity, and broad-based city growth was associated with macroeconomic growth (Bairoch 1988, Acemoglu et al. 2005).
  • ...8 more annotations...
  • Figure 1 summarises the data and shows how printing diffused from Mainz 1450-1500. Figure 1. The diffusion of the printing press
  • City-level data on the adoption of the printing press can be exploited to examine two key questions: Was the new technology associated with city growth? And, if so, how large was the association? I find that cities in which printing presses were established 1450-1500 had no prior growth advantage, but subsequently grew far faster than similar cities without printing presses. My work uses a difference-in-differences estimation strategy to document the association between printing and city growth. The estimates suggest early adoption of the printing press was associated with a population growth advantage of 21 percentage points 1500-1600, when mean city growth was 30 percentage points. The difference-in-differences model shows that cities that adopted the printing press in the late 1400s had no prior growth advantage, but grew at least 35 percentage points more than similar non-adopting cities from 1500 to 1600.
  • The restrictions on diffusion meant that cities relatively close to Mainz were more likely to receive the technology other things equal. Printing presses were established in 205 cities 1450-1500, but not in 40 of Europe’s 100 largest cities. Remarkably, regulatory barriers did not limit diffusion. Printing fell outside existing guild regulations and was not resisted by scribes, princes, or the Church (Neddermeyer 1997, Barbier 2006, Brady 2009).
  • Historians observe that printing diffused from Mainz in “concentric circles” (Barbier 2006). Distance from Mainz was significantly associated with early adoption of the printing press, but neither with city growth before the diffusion of printing nor with other observable determinants of subsequent growth. The geographic pattern of diffusion thus arguably allows us to identify exogenous variation in adoption. Exploiting distance from Mainz as an instrument for adoption, I find large and significant estimates of the relationship between the adoption of the printing press and city growth. I find a 60 percentage point growth advantage between 1500-1600.
  • The importance of distance from Mainz is supported by an exercise using “placebo” distances. When I employ distance from Venice, Amsterdam, London, or Wittenberg instead of distance from Mainz as the instrument, the estimated print effect is statistically insignificant.
  • Cities that adopted print media benefitted from positive spillovers in human capital accumulation and technological change broadly defined. These spillovers exerted an upward pressure on the returns to labour, made cities culturally dynamic, and attracted migrants. In the pre-industrial era, commerce was a more important source of urban wealth and income than tradable industrial production. Print media played a key role in the development of skills that were valuable to merchants. Following the invention printing, European presses produced a stream of math textbooks used by students preparing for careers in business.
  • These and hundreds of similar texts worked students through problem sets concerned with calculating exchange rates, profit shares, and interest rates. Broadly, print media was also associated with the diffusion of cutting-edge business practice (such as book-keeping), literacy, and the social ascent of new professionals – merchants, lawyers, officials, doctors, and teachers.
  • The printing press was one of the greatest revolutions in information technology. The impact of the printing press is hard to identify in aggregate data. However, the diffusion of the technology was associated with extraordinary subsequent economic dynamism at the city level. European cities were seedbeds of ideas and business practices that drove the transition to modern growth. These facts suggest that the printing press had very far-reaching consequences through its impact on the development of cities.
1 - 20 of 69 Next › Last »
Showing 20 items per page