Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged History

Rss Feed Group items tagged

Weiye Loh

Kevin Kelly and Steven Johnson on Where Ideas Come From | Magazine - 0 views

  • Say the word “inventor” and most people think of a solitary genius toiling in a basement. But two ambitious new books on the history of innovation—by Steven Johnson and Kevin Kelly, both longtime wired contributors—argue that great discoveries typically spring not from individual minds but from the hive mind. In Where Good Ideas Come From: The Natural History of Innovation, Johnson draws on seven centuries of scientific and technological progress, from Gutenberg to GPS, to show what sorts of environments nurture ingenuity. He finds that great creative milieus, whether MIT or Los Alamos, New York City or the World Wide Web, are like coral reefs—teeming, diverse colonies of creators who interact with and influence one another.
  • Seven centuries are an eyeblink in the scope of Kelly’s book, What Technology Wants, which looks back over some 50,000 years of history and peers nearly that far into the future. His argument is similarly sweeping: Technology, Kelly believes, can be seen as a sort of autonomous life-form, with intrinsic goals toward which it gropes over the course of its long development. Those goals, he says, are much like the tendencies of biological life, which over time diversifies, specializes, and (eventually) becomes more sentient.
  • We share a fascination with the long history of simultaneous invention: cases where several people come up with the same idea at almost exactly the same time. Calculus, the electrical battery, the telephone, the steam engine, the radio—all these groundbreaking innovations were hit upon by multiple inventors working in parallel with no knowledge of one another.
  • ...25 more annotations...
  • It’s amazing that the myth of the lone genius has persisted for so long, since simultaneous invention has always been the norm, not the exception. Anthropologists have shown that the same inventions tended to crop up in prehistory at roughly similar times, in roughly the same order, among cultures on different continents that couldn’t possibly have contacted one another.
  • Also, there’s a related myth—that innovation comes primarily from the profit motive, from the competitive pressures of a market society. If you look at history, innovation doesn’t come just from giving people incentives; it comes from creating environments where their ideas can connect.
  • The musician Brian Eno invented a wonderful word to describe this phenomenon: scenius. We normally think of innovators as independent geniuses, but Eno’s point is that innovation comes from social scenes,from passionate and connected groups of people.
  • It turns out that the lone genius entrepreneur has always been a rarity—there’s far more innovation coming out of open, nonmarket networks than we tend to assume.
  • Really, we should think of ideas as connections,in our brains and among people. Ideas aren’t self-contained things; they’re more like ecologies and networks. They travel in clusters.
  • ideas are networks
  • In part, that’s because ideas that leap too far ahead are almost never implemented—they aren’t even valuable. People can absorb only one advance, one small hop, at a time. Gregor Mendel’s ideas about genetics, for example: He formulated them in 1865, but they were ignored for 35 years because they were too advanced. Nobody could incorporate them. Then, when the collective mind was ready and his idea was only one hop away, three different scientists independently rediscovered his work within roughly a year of one another.
  • Charles Babbage is another great case study. His “analytical engine,” which he started designing in the 1830s, was an incredibly detailed vision of what would become the modern computer, with a CPU, RAM, and so on. But it couldn’t possibly have been built at the time, and his ideas had to be rediscovered a hundred years later.
  • I think there are a lot of ideas today that are ahead of their time. Human cloning, autopilot cars, patent-free law—all are close technically but too many steps ahead culturally. Innovating is about more than just having the idea yourself; you also have to bring everyone else to where your idea is. And that becomes really difficult if you’re too many steps ahead.
  • The scientist Stuart Kauffman calls this the “adjacent possible.” At any given moment in evolution—of life, of natural systems, or of cultural systems—there’s a space of possibility that surrounds any current configuration of things. Change happens when you take that configuration and arrange it in a new way. But there are limits to how much you can change in a single move.
  • Which is why the great inventions are usually those that take the smallest possible step to unleash the most change. That was the difference between Tim Berners-Lee’s successful HTML code and Ted Nelson’s abortive Xanadu project. Both tried to jump into the same general space—a networked hypertext—but Tim’s approach did it with a dumb half-step, while Ted’s earlier, more elegant design required that everyone take five steps all at once.
  • Also, the steps have to be taken in the right order. You can’t invent the Internet and then the digital computer. This is true of life as well. The building blocks of DNA had to be in place before evolution could build more complex things. One of the key ideas I’ve gotten from you, by the way—when I read your book Out of Control in grad school—is this continuity between biological and technological systems.
  • technology is something that can give meaning to our lives, particularly in a secular world.
  • He had this bleak, soul-sucking vision of technology as an autonomous force for evil. You also present technology as a sort of autonomous force—as wanting something, over the long course of its evolution—but it’s a more balanced and ultimately positive vision, which I find much more appealing than the alternative.
  • As I started thinking about the history of technology, there did seem to be a sense in which, during any given period, lots of innovations were in the air, as it were. They came simultaneously. It appeared as if they wanted to happen. I should hasten to add that it’s not a conscious agency; it’s a lower form, something like the way an organism or bacterium can be said to have certain tendencies, certain trends, certain urges. But it’s an agency nevertheless.
  • technology wants increasing diversity—which is what I think also happens in biological systems, as the adjacent possible becomes larger with each innovation. As tech critics, I think we have to keep this in mind, because when you expand the diversity of a system, that leads to an increase in great things and an increase in crap.
  • the idea that the most creative environments allow for repeated failure.
  • And for wastes of time and resources. If you knew nothing about the Internet and were trying to figure it out from the data, you would reasonably conclude that it was designed for the transmission of spam and porn. And yet at the same time, there’s more amazing stuff available to us than ever before, thanks to the Internet.
  • To create something great, you need the means to make a lot of really bad crap. Another example is spectrum. One reason we have this great explosion of innovation in wireless right now is that the US deregulated spectrum. Before that, spectrum was something too precious to be wasted on silliness. But when you deregulate—and say, OK, now waste it—then you get Wi-Fi.
  • If we didn’t have genetic mutations, we wouldn’t have us. You need error to open the door to the adjacent possible.
  • image of the coral reef as a metaphor for where innovation comes from. So what, today, are some of the most reeflike places in the technological realm?
  • Twitter—not to see what people are having for breakfast, of course, but to see what people are talking about, the links to articles and posts that they’re passing along.
  • second example of an information coral reef, and maybe the less predictable one, is the university system. As much as we sometimes roll our eyes at the ivory-tower isolation of universities, they continue to serve as remarkable engines of innovation.
  • Life seems to gravitate toward these complex states where there’s just enough disorder to create new things. There’s a rate of mutation just high enough to let interesting new innovations happen, but not so many mutations that every new generation dies off immediately.
  • , technology is an extension of life. Both life and technology are faces of the same larger system.
  •  
    Kevin Kelly and Steven Johnson on Where Ideas Come From By Wired September 27, 2010  |  2:00 pm  |  Wired October 2010
Weiye Loh

The Ashtray: The Ultimatum (Part 1) - NYTimes.com - 0 views

  • “Under no circumstances are you to go to those lectures. Do you hear me?” Kuhn, the head of the Program in the History and Philosophy of Science at Princeton where I was a graduate student, had issued an ultimatum. It concerned the philosopher Saul Kripke’s lectures — later to be called “Naming and Necessity” — which he had originally given at Princeton in 1970 and planned to give again in the Fall, 1972.
  • Whiggishness — in history of science, the tendency to evaluate and interpret past scientific theories not on their own terms, but in the context of current knowledge. The term comes from Herbert Butterfield’s “The Whig Interpretation of History,” written when Butterfield, a future Regius professor of history at Cambridge, was only 31 years old. Butterfield had complained about Whiggishness, describing it as “…the study of the past with direct and perpetual reference to the present” – the tendency to see all history as progressive, and in an extreme form, as an inexorable march to greater liberty and enlightenment. [3] For Butterfield, on the other hand, “…real historical understanding” can be achieved only by “attempting to see life with the eyes of another century than our own.” [4][5].
  • Kuhn had attacked my Whiggish use of the term “displacement current.” [6] I had failed, in his view, to put myself in the mindset of Maxwell’s first attempts at creating a theory of electricity and magnetism. I felt that Kuhn had misinterpreted my paper, and that he — not me — had provided a Whiggish interpretation of Maxwell. I said, “You refuse to look through my telescope.” And he said, “It’s not a telescope, Errol. It’s a kaleidoscope.” (In this respect, he was probably right.) [7].
  • ...9 more annotations...
  • I asked him, “If paradigms are really incommensurable, how is history of science possible? Wouldn’t we be merely interpreting the past in the light of the present? Wouldn’t the past be inaccessible to us? Wouldn’t it be ‘incommensurable?’ ” [8] ¶He started moaning. He put his head in his hands and was muttering, “He’s trying to kill me. He’s trying to kill me.” ¶And then I added, “…except for someone who imagines himself to be God.” ¶It was at this point that Kuhn threw the ashtray at me.
  • I call Kuhn’s reply “The Ashtray Argument.” If someone says something you don’t like, you throw something at him. Preferably something large, heavy, and with sharp edges. Perhaps we were engaged in a debate on the nature of language, meaning and truth. But maybe we just wanted to kill each other.
  • That's the problem with relativism: Who's to say who's right and who's wrong? Somehow I'm not surprised to hear Kuhn was an ashtray-hurler. In the end, what other argument could he make?
  • For us to have a conversation and come to an agreement about the meaning of some word without having to refer to some outside authority like a dictionary, we would of necessity have to be satisfied that our agreement was genuine and not just a polite acknowledgement of each others' right to their opinion, can you agree with that? If so, then let's see if we can agree on the meaning of the word 'know' because that may be the crux of the matter. When I use the word 'know' I mean more than the capacity to apprehend some aspect of the world through language or some other represenational symbolism. Included in the word 'know' is the direct sensorial perception of some aspect of the world. For example, I sense the floor that my feet are now resting upon. I 'know' the floor is really there, I can sense it. Perhaps I don't 'know' what the floor is made of, who put it there, and other incidental facts one could know through the usual symbolism such as language as in a story someone tells me. Nevertheless, the reality I need to 'know' is that the floor, or whatever you may wish to call the solid - relative to my body - flat and level surface supported by more structure then the earth, is really there and reliably capable of supporting me. This is true and useful knowledge that goes directly from the floor itself to my knowing about it - via sensation - that has nothing to do with my interpretive system.
  • Now I am interested in 'knowing' my feet in the same way that my feet and the whole body they are connected to 'know' the floor. I sense my feet sensing the floor. My feet are as real as the floor and I know they are there, sensing the floor because I can sense them. Furthermore, now I 'know' that it is 'I' sensing my feet, sensing the floor. Do you see where I am going with this line of thought? I am including in the word 'know' more meaning than it is commonly given by everyday language. Perhaps it sounds as if I want to expand on the Cartesian formula of cogito ergo sum, and in truth I prefer to say I sense therefore I am. It is my sensations of the world first and foremost that my awareness, such as it is, is actively engaged with reality. Now, any healthy normal animal senses the world but we can't 'know' if they experience reality as we do since we can't have a conversation with them to arrive at agreement. But we humans can have this conversation and possibly agree that we can 'know' the world through sensation. We can even know what is 'I' through sensation. In fact, there is no other way to know 'I' except through sensation. Thought is symbolic representation, not direct sensing, so even though the thoughtful modality of regarding the world may be a far more reliable modality than sensation in predicting what might happen next, its very capacity for such accurate prediction is its biggest weakness, which is its capacity for error
  • Sensation cannot be 'wrong' unless it is used to predict outcomes. Thought can be wrong for both predicting outcomes and for 'knowing' reality. Sensation alone can 'know' reality even though it is relatively unreliable, useless even, for making predictions.
  • If we prioritize our interests by placing predictability over pure knowing through sensation, then of course we will not value the 'knowledge' to be gained through sensation. But if we can switch the priorities - out of sheer curiosity perhaps - then we can enter a realm of knowledge through sensation that is unbelievably spectacular. Our bodies are 'made of' reality, and by methodically exercising our nascent capacity for self sensing, we can connect our knowing 'I' to reality directly. We will not be able to 'know' what it is that we are experiencing in the way we might wish, which is to be able to predict what will happen next or to represent to ourselves symbolically what we might experience when we turn our attention to that sensation. But we can arrive at a depth and breadth of 'knowing' that is utterly unprecedented in our lives by operating that modality.
  • One of the impressions that comes from a sustained practice of self sensing is a clearer feeling for what "I" is and why we have a word for that self referential phenomenon, seemingly located somewhere behind our eyes and between our ears. The thing we call "I" or "me" depending on the context, turns out to be a moving point, a convergence vector for a variety of images, feelings and sensations. It is a reference point into which certain impressions flow and out of which certain impulses to act diverge and which may or may not animate certain muscle groups into action. Following this tricky exercize in attention and sensation, we can quickly see for ourselves that attention is more like a focused beam and awareness is more like a diffuse cloud, but both are composed of energy, and like all energy they vibrate, they oscillate with a certain frequency. That's it for now.
  • I loved the writer's efforts to find a fixed definition of “Incommensurability;” there was of course never a concrete meaning behind the word. Smoke and mirrors.
Weiye Loh

Robert W. Fogel Investigates Human Evolution - NYTimes.com - 0 views

  • Cambridge University Press will publish the capstone of this inquiry, “The Changing Body: Health, Nutrition, and Human Development in the Western World Since 1700,” just a few weeks shy of Mr. Fogel’s 85th birthday. The book, which sums up the work of dozens of researchers on one of the most ambitious projects undertaken in economic history, is sure to renew debates over Mr. Fogel’s groundbreaking theories about what some regard as the most significant development in humanity’s long history.
  • Mr. Fogel and his co-authors, Roderick Floud, Bernard Harris and Sok Chul Hong, maintain that “in most if not quite all parts of the world, the size, shape and longevity of the human body have changed more substantially, and much more rapidly, during the past three centuries than over many previous millennia.” What’s more, they write, this alteration has come about within a time frame that is “minutely short by the standards of Darwinian evolution.”
  • “The rate of technological and human physiological change in the 20th century has been remarkable,” Mr. Fogel said in an telephone interview from Chicago, where he is the director of the Center for Population Economics at the University of Chicago’s business school. “Beyond that, a synergy between the improved technology and physiology is more than the simple addition of the two.”
  • ...2 more annotations...
  • This “technophysio evolution,” powered by advances in food production and public health, has so outpaced traditional evolution, the authors argue, that people today stand apart not just from every other species, but from all previous generations of Homo sapiens as well.
  •  “I don’t know that there is a bigger story in human history than the improvements in health, which include height, weight, disability and longevity,” said Samuel H. Preston, one of the world’s leading demographers and a sociologist at the University of Pennsylvania. Without the 20th century’s improvements in nutrition, sanitation and medicine, only half of the current American population would be alive today, he said.
  •  
    For nearly three decades, the Nobel Prize-winning economist Robert W. Fogel and a small clutch of colleagues have assiduously researched what the size and shape of the human body say about economic and social changes throughout history, and vice versa. Their research has spawned not only a new branch of historical study but also a provocative theory that technology has sped human evolution in an unprecedented way during the past century.
Weiye Loh

5 Great Men Who Built Their Careers on Plagiarism | Cracked.com - 1 views

  • Ambrose invented pop history. He was the historical advisor on Saving Private Ryan and wrote the book Band of Brothers, that miniseries about WWII that starred the guy from Office Space.
  • In 1995, an almost unknown historian named Thomas Childers published the book Wings of Morning. It was a well-received but relatively obscure novel about the crew of a specific B-24 bomber during WWII. Ambrose was a fan of the book and, as a firm believer that imitation is the sincerest form of flattery, he proceeded to plagiarize the fuck out of it for his hit 2001 novel, The Wild Blue, which was the account of a different group of B-24 crewmen. Ambrose ripped off whole passages of text and stole several sentences and descriptions word for word. Then he got his book published and just sort of hoped no one would notice.
  • but fortunately for truth, he got caught. Fred Barnes of the Weekly Standard noticed what was going on and revealed it to the world. Ambrose was fast to respond. He had cited Childers' book in his bibliography (although he hadn't come close to listing everything he 'borrowed' from his fellow historian's work) and basically claimed that he'd just "forgotten" to attribute the stolen passages in the text, like he was supposed to.
  • ...15 more annotations...
  • For a little while, Stephen's apology was enough.
  • Mark Lewis, of Forbes.com, was not one of those people. He read the first story about Ambrose and, like a good investigative journalist, proceeded to tear apart everything the pop historian had written in his search for the truth.
  • he found several blatant thefts in the book Crazy Horse and Custer, which Ambrose pretended to write in 1995. For that novel, Ambrose molested the work of esteemed historical writer Jay Monagham. Here's an excerpt from the Forbes article: MONAGHAM: "On August 28, 1859, Custer returned to West Point. Cadet James Barroll Washington, a great-great-grandnephew of George Washington, entered that year. He remembered hearing the crowd shout, 'Here comes Custer!' The name meant nothing to him, but he turned, and saw a slim, immature lad with unmilitary figure, slightly rounded shoulders, and gangling walk." AMBROSE: "When he returned to West Point, Cadet James B. Washington, a relative of George Washington, remembered hearing the crowd shout, 'Here comes Custer!' The name meant nothing to Washington, who was just entering the Academy, but he turned and saw a slim, immature lad with unmilitary figure, slightly rounded shoulders, and gangling walk, surrounded by back-slapping, laughing friends."
  • n total, seven of his books were found to contain some degree of plagiarism. His fucking college thesis was even loaded down with other people's unattributed writing. The most famous historian in the world built his career on a foundation of deception. Did He Pay? He really didn't. Evidence of his wrongdoing came up very shortly before his death from lung cancer in 2002.
  • T.S. Eliot wrote several great, enduring poems, such as "The Love Song of J. Alfred Prufrock" which had a ridiculous title, and "The Hollow Men," which, we were depressed to discover, wasn't about a naked, invisible, murdering lunatic. Perhaps his greatest work was a poem entitled, "The Waste Land," which was a haunting statement of his disillusionment with the post-war era. It was a literary milestone, and is still celebrated today as one of the greatest works of poetry in history.
  • The problem with this is that Eliot didn't write "The Waste Land." Not all of it anyway. As it turns out, the idea behind "The Waste Land," and a fair amount of its content, was plagiarized from an almost unknown American poet named Madison Cawein.
  • Cawein worked hard all of his youth, scrimping and saving and putting aside enough money so that he could begin finally working on his true love: poetry. He put out several volumes of work that is very well regarded, but he never gained any recognition and died almost unknown. Which just goes to show you that, if you work hard in this country and believe in yourself, you'll die alone and under appreciated.
  • Madison Cawein wasn't the only person Eliot stole from. This passage from "The Waste Land:" "The Chair she sat in, like a burnished throne / Glowed on the marble," was slightly altered but still stolen from Shakespeare, who wrote, "The barge she sat in, like a burnish'd throne / Burn'd on the water". Eliot's line, "Sweet Thames, run softly, till I end my song," was stolen entirely from Edmund Spenser's "Prothalamion."
  • Most of "The Waste Land" was just cobbled together out of quotes from other writers. Until very recently, most scholars have been happy to simply chalk these up as "allusions" to the work of other authors. For a long time, it was regarded as something poets just did, as a way of honoring their influences.
  • Did He Pay? "Immature poets imitate; mature poets steal" This is a quote from Eliot himself. You see, T.S. was rich, famous and beloved the world over. While he was alive, everyone just sort of ignored all of the evidence that he was a tremendous bastard. He died renowned as one of the greatest poets in all of history, which he was, but he was also a plagiarizing cockbag who denied a much worthier artist a place in history.
  • We're not saying that King wasn't an incredible person who did more to advance the human race
  • For starters, his own university admits that his doctoral thesis, the very foundation of his career, was significantly plagiarized.
  • Despite clear findings of plagiarism, the committee did not recommend he be posthumously stripped of his title, due to Dr. King's incredible services to the world. And due to their extreme fear of being beaten and castrated by hordes of angry MLK groupies.
  • Not only was his dissertation plagiarized, but many of his student papers and sermons were stolen in whole or in part from other writers. The staff of the King Paper's Project at Stanford even admits that, "King's plagiarism was a general pattern evident in nearly all of his academic writings." Is That All? Perhaps the most notable example of King's plagiarism was the general tone, and several select lines from his famous "I Have a Dream," speech. Theodore Pappas presents a detailed accusation in his book, Plagiarism and the Culture War. Most of the issue centers around the closing lines.
  • Did He Pay? Not during his lifetime. To be fair, it takes balls to accuse the greatest civil rights activist in history with plagiarism.
  •  
    5 Great Men Who Built Their Careers on Plagiarism, Stephen Ambrose, Martin Luther King Jr., T. S. Elliot, Richard Owen, and H. G. Wells. 
Weiye Loh

How We Know by Freeman Dyson | The New York Review of Books - 0 views

  • Another example illustrating the central dogma is the French optical telegraph.
  • The telegraph was an optical communication system with stations consisting of large movable pointers mounted on the tops of sixty-foot towers. Each station was manned by an operator who could read a message transmitted by a neighboring station and transmit the same message to the next station in the transmission line.
  • The distance between neighbors was about seven miles. Along the transmission lines, optical messages in France could travel faster than drum messages in Africa. When Napoleon took charge of the French Republic in 1799, he ordered the completion of the optical telegraph system to link all the major cities of France from Calais and Paris to Toulon and onward to Milan. The telegraph became, as Claude Chappe had intended, an important instrument of national power. Napoleon made sure that it was not available to private users.
  • ...27 more annotations...
  • Unlike the drum language, which was based on spoken language, the optical telegraph was based on written French. Chappe invented an elaborate coding system to translate written messages into optical signals. Chappe had the opposite problem from the drummers. The drummers had a fast transmission system with ambiguous messages. They needed to slow down the transmission to make the messages unambiguous. Chappe had a painfully slow transmission system with redundant messages. The French language, like most alphabetic languages, is highly redundant, using many more letters than are needed to convey the meaning of a message. Chappe’s coding system allowed messages to be transmitted faster. Many common phrases and proper names were encoded by only two optical symbols, with a substantial gain in speed of transmission. The composer and the reader of the message had code books listing the message codes for eight thousand phrases and names. For Napoleon it was an advantage to have a code that was effectively cryptographic, keeping the content of the messages secret from citizens along the route.
  • After these two historical examples of rapid communication in Africa and France, the rest of Gleick’s book is about the modern development of information technolog
  • The modern history is dominated by two Americans, Samuel Morse and Claude Shannon. Samuel Morse was the inventor of Morse Code. He was also one of the pioneers who built a telegraph system using electricity conducted through wires instead of optical pointers deployed on towers. Morse launched his electric telegraph in 1838 and perfected the code in 1844. His code used short and long pulses of electric current to represent letters of the alphabet.
  • Morse was ideologically at the opposite pole from Chappe. He was not interested in secrecy or in creating an instrument of government power. The Morse system was designed to be a profit-making enterprise, fast and cheap and available to everybody. At the beginning the price of a message was a quarter of a cent per letter. The most important users of the system were newspaper correspondents spreading news of local events to readers all over the world. Morse Code was simple enough that anyone could learn it. The system provided no secrecy to the users. If users wanted secrecy, they could invent their own secret codes and encipher their messages themselves. The price of a message in cipher was higher than the price of a message in plain text, because the telegraph operators could transcribe plain text faster. It was much easier to correct errors in plain text than in cipher.
  • Claude Shannon was the founding father of information theory. For a hundred years after the electric telegraph, other communication systems such as the telephone, radio, and television were invented and developed by engineers without any need for higher mathematics. Then Shannon supplied the theory to understand all of these systems together, defining information as an abstract quantity inherent in a telephone message or a television picture. Shannon brought higher mathematics into the game.
  • When Shannon was a boy growing up on a farm in Michigan, he built a homemade telegraph system using Morse Code. Messages were transmitted to friends on neighboring farms, using the barbed wire of their fences to conduct electric signals. When World War II began, Shannon became one of the pioneers of scientific cryptography, working on the high-level cryptographic telephone system that allowed Roosevelt and Churchill to talk to each other over a secure channel. Shannon’s friend Alan Turing was also working as a cryptographer at the same time, in the famous British Enigma project that successfully deciphered German military codes. The two pioneers met frequently when Turing visited New York in 1943, but they belonged to separate secret worlds and could not exchange ideas about cryptography.
  • In 1945 Shannon wrote a paper, “A Mathematical Theory of Cryptography,” which was stamped SECRET and never saw the light of day. He published in 1948 an expurgated version of the 1945 paper with the title “A Mathematical Theory of Communication.” The 1948 version appeared in the Bell System Technical Journal, the house journal of the Bell Telephone Laboratories, and became an instant classic. It is the founding document for the modern science of information. After Shannon, the technology of information raced ahead, with electronic computers, digital cameras, the Internet, and the World Wide Web.
  • According to Gleick, the impact of information on human affairs came in three installments: first the history, the thousands of years during which people created and exchanged information without the concept of measuring it; second the theory, first formulated by Shannon; third the flood, in which we now live
  • The event that made the flood plainly visible occurred in 1965, when Gordon Moore stated Moore’s Law. Moore was an electrical engineer, founder of the Intel Corporation, a company that manufactured components for computers and other electronic gadgets. His law said that the price of electronic components would decrease and their numbers would increase by a factor of two every eighteen months. This implied that the price would decrease and the numbers would increase by a factor of a hundred every decade. Moore’s prediction of continued growth has turned out to be astonishingly accurate during the forty-five years since he announced it. In these four and a half decades, the price has decreased and the numbers have increased by a factor of a billion, nine powers of ten. Nine powers of ten are enough to turn a trickle into a flood.
  • Gordon Moore was in the hardware business, making hardware components for electronic machines, and he stated his law as a law of growth for hardware. But the law applies also to the information that the hardware is designed to embody. The purpose of the hardware is to store and process information. The storage of information is called memory, and the processing of information is called computing. The consequence of Moore’s Law for information is that the price of memory and computing decreases and the available amount of memory and computing increases by a factor of a hundred every decade. The flood of hardware becomes a flood of information.
  • In 1949, one year after Shannon published the rules of information theory, he drew up a table of the various stores of memory that then existed. The biggest memory in his table was the US Library of Congress, which he estimated to contain one hundred trillion bits of information. That was at the time a fair guess at the sum total of recorded human knowledge. Today a memory disc drive storing that amount of information weighs a few pounds and can be bought for about a thousand dollars. Information, otherwise known as data, pours into memories of that size or larger, in government and business offices and scientific laboratories all over the world. Gleick quotes the computer scientist Jaron Lanier describing the effect of the flood: “It’s as if you kneel to plant the seed of a tree and it grows so fast that it swallows your whole town before you can even rise to your feet.”
  • On December 8, 2010, Gleick published on the The New York Review’s blog an illuminating essay, “The Information Palace.” It was written too late to be included in his book. It describes the historical changes of meaning of the word “information,” as recorded in the latest quarterly online revision of the Oxford English Dictionary. The word first appears in 1386 a parliamentary report with the meaning “denunciation.” The history ends with the modern usage, “information fatigue,” defined as “apathy, indifference or mental exhaustion arising from exposure to too much information.”
  • The consequences of the information flood are not all bad. One of the creative enterprises made possible by the flood is Wikipedia, started ten years ago by Jimmy Wales. Among my friends and acquaintances, everybody distrusts Wikipedia and everybody uses it. Distrust and productive use are not incompatible. Wikipedia is the ultimate open source repository of information. Everyone is free to read it and everyone is free to write it. It contains articles in 262 languages written by several million authors. The information that it contains is totally unreliable and surprisingly accurate. It is often unreliable because many of the authors are ignorant or careless. It is often accurate because the articles are edited and corrected by readers who are better informed than the authors
  • Jimmy Wales hoped when he started Wikipedia that the combination of enthusiastic volunteer writers with open source information technology would cause a revolution in human access to knowledge. The rate of growth of Wikipedia exceeded his wildest dreams. Within ten years it has become the biggest storehouse of information on the planet and the noisiest battleground of conflicting opinions. It illustrates Shannon’s law of reliable communication. Shannon’s law says that accurate transmission of information is possible in a communication system with a high level of noise. Even in the noisiest system, errors can be reliably corrected and accurate information transmitted, provided that the transmission is sufficiently redundant. That is, in a nutshell, how Wikipedia works.
  • The information flood has also brought enormous benefits to science. The public has a distorted view of science, because children are taught in school that science is a collection of firmly established truths. In fact, science is not a collection of truths. It is a continuing exploration of mysteries. Wherever we go exploring in the world around us, we find mysteries. Our planet is covered by continents and oceans whose origin we cannot explain. Our atmosphere is constantly stirred by poorly understood disturbances that we call weather and climate. The visible matter in the universe is outweighed by a much larger quantity of dark invisible matter that we do not understand at all. The origin of life is a total mystery, and so is the existence of human consciousness. We have no clear idea how the electrical discharges occurring in nerve cells in our brains are connected with our feelings and desires and actions.
  • Even physics, the most exact and most firmly established branch of science, is still full of mysteries. We do not know how much of Shannon’s theory of information will remain valid when quantum devices replace classical electric circuits as the carriers of information. Quantum devices may be made of single atoms or microscopic magnetic circuits. All that we know for sure is that they can theoretically do certain jobs that are beyond the reach of classical devices. Quantum computing is still an unexplored mystery on the frontier of information theory. Science is the sum total of a great multitude of mysteries. It is an unending argument between a great multitude of voices. It resembles Wikipedia much more than it resembles the Encyclopaedia Britannica.
  • The rapid growth of the flood of information in the last ten years made Wikipedia possible, and the same flood made twenty-first-century science possible. Twenty-first-century science is dominated by huge stores of information that we call databases. The information flood has made it easy and cheap to build databases. One example of a twenty-first-century database is the collection of genome sequences of living creatures belonging to various species from microbes to humans. Each genome contains the complete genetic information that shaped the creature to which it belongs. The genome data-base is rapidly growing and is available for scientists all over the world to explore. Its origin can be traced to the year 1939, when Shannon wrote his Ph.D. thesis with the title “An Algebra for Theoretical Genetics.
  • Shannon was then a graduate student in the mathematics department at MIT. He was only dimly aware of the possible physical embodiment of genetic information. The true physical embodiment of the genome is the double helix structure of DNA molecules, discovered by Francis Crick and James Watson fourteen years later. In 1939 Shannon understood that the basis of genetics must be information, and that the information must be coded in some abstract algebra independent of its physical embodiment. Without any knowledge of the double helix, he could not hope to guess the detailed structure of the genetic code. He could only imagine that in some distant future the genetic information would be decoded and collected in a giant database that would define the total diversity of living creatures. It took only sixty years for his dream to come true.
  • In the twentieth century, genomes of humans and other species were laboriously decoded and translated into sequences of letters in computer memories. The decoding and translation became cheaper and faster as time went on, the price decreasing and the speed increasing according to Moore’s Law. The first human genome took fifteen years to decode and cost about a billion dollars. Now a human genome can be decoded in a few weeks and costs a few thousand dollars. Around the year 2000, a turning point was reached, when it became cheaper to produce genetic information than to understand it. Now we can pass a piece of human DNA through a machine and rapidly read out the genetic information, but we cannot read out the meaning of the information. We shall not fully understand the information until we understand in detail the processes of embryonic development that the DNA orchestrated to make us what we are.
  • The explosive growth of information in our human society is a part of the slower growth of ordered structures in the evolution of life as a whole. Life has for billions of years been evolving with organisms and ecosystems embodying increasing amounts of information. The evolution of life is a part of the evolution of the universe, which also evolves with increasing amounts of information embodied in ordered structures, galaxies and stars and planetary systems. In the living and in the nonliving world, we see a growth of order, starting from the featureless and uniform gas of the early universe and producing the magnificent diversity of weird objects that we see in the sky and in the rain forest. Everywhere around us, wherever we look, we see evidence of increasing order and increasing information. The technology arising from Shannon’s discoveries is only a local acceleration of the natural growth of information.
  • . Lord Kelvin, one of the leading physicists of that time, promoted the heat death dogma, predicting that the flow of heat from warmer to cooler objects will result in a decrease of temperature differences everywhere, until all temperatures ultimately become equal. Life needs temperature differences, to avoid being stifled by its waste heat. So life will disappear
  • Thanks to the discoveries of astronomers in the twentieth century, we now know that the heat death is a myth. The heat death can never happen, and there is no paradox. The best popular account of the disappearance of the paradox is a chapter, “How Order Was Born of Chaos,” in the book Creation of the Universe, by Fang Lizhi and his wife Li Shuxian.2 Fang Lizhi is doubly famous as a leading Chinese astronomer and a leading political dissident. He is now pursuing his double career at the University of Arizona.
  • The belief in a heat death was based on an idea that I call the cooking rule. The cooking rule says that a piece of steak gets warmer when we put it on a hot grill. More generally, the rule says that any object gets warmer when it gains energy, and gets cooler when it loses energy. Humans have been cooking steaks for thousands of years, and nobody ever saw a steak get colder while cooking on a fire. The cooking rule is true for objects small enough for us to handle. If the cooking rule is always true, then Lord Kelvin’s argument for the heat death is correct.
  • the cooking rule is not true for objects of astronomical size, for which gravitation is the dominant form of energy. The sun is a familiar example. As the sun loses energy by radiation, it becomes hotter and not cooler. Since the sun is made of compressible gas squeezed by its own gravitation, loss of energy causes it to become smaller and denser, and the compression causes it to become hotter. For almost all astronomical objects, gravitation dominates, and they have the same unexpected behavior. Gravitation reverses the usual relation between energy and temperature. In the domain of astronomy, when heat flows from hotter to cooler objects, the hot objects get hotter and the cool objects get cooler. As a result, temperature differences in the astronomical universe tend to increase rather than decrease as time goes on. There is no final state of uniform temperature, and there is no heat death. Gravitation gives us a universe hospitable to life. Information and order can continue to grow for billions of years in the future, as they have evidently grown in the past.
  • The vision of the future as an infinite playground, with an unending sequence of mysteries to be understood by an unending sequence of players exploring an unending supply of information, is a glorious vision for scientists. Scientists find the vision attractive, since it gives them a purpose for their existence and an unending supply of jobs. The vision is less attractive to artists and writers and ordinary people. Ordinary people are more interested in friends and family than in science. Ordinary people may not welcome a future spent swimming in an unending flood of information.
  • A darker view of the information-dominated universe was described in a famous story, “The Library of Babel,” by Jorge Luis Borges in 1941.3 Borges imagined his library, with an infinite array of books and shelves and mirrors, as a metaphor for the universe.
  • Gleick’s book has an epilogue entitled “The Return of Meaning,” expressing the concerns of people who feel alienated from the prevailing scientific culture. The enormous success of information theory came from Shannon’s decision to separate information from meaning. His central dogma, “Meaning is irrelevant,” declared that information could be handled with greater freedom if it was treated as a mathematical abstraction independent of meaning. The consequence of this freedom is the flood of information in which we are drowning. The immense size of modern databases gives us a feeling of meaninglessness. Information in such quantities reminds us of Borges’s library extending infinitely in all directions. It is our task as humans to bring meaning back into this wasteland. As finite creatures who think and feel, we can create islands of meaning in the sea of information. Gleick ends his book with Borges’s image of the human condition:We walk the corridors, searching the shelves and rearranging them, looking for lines of meaning amid leagues of cacophony and incoherence, reading the history of the past and of the future, collecting our thoughts and collecting the thoughts of others, and every so often glimpsing mirrors, in which we may recognize creatures of the information.
Weiye Loh

Roger Pielke Jr.'s Blog: New Bridges Column: The Origins of "Basic Research" - 0 views

  •  
    "The appealing imagery of a scientist who simply follows his curiosity and then makes a discovery with a large societal payoff is part of the core mythology of post-World War II science policies. The mythology shapes how governments around the world organize, account for, and fund research. A large body of scholarship has critiqued postwar science policies and found that, despite many notable successes, the science policies that may have made sense in the middle of the last century may need updating in the 21st century. In short, investments in "basic research" are not enough. Benoit Godin has asserted (PDF) that: "The problem is that the academic lobby has successfully claimed a monopoly on the creation of new knowledge, and that policy makers have been persuaded to confuse the necessary with the sufficient condition that investment in basic research would by itself necessarily lead to successful applications." Or as Leshner and Cooper declare in The Washington Post: "Federal investments in R&D have fueled half of the nation's economic growth since World War II." A closer look at the actual history of Google reveals how history becomes mythology. The 1994 NSF project that funded the scientific work underpinning the search engine that became Google (as we know it today) was conducted from the start with commercialization in mind: "The technology developed in this project will provide the 'glue' that will make this worldwide collection usable as a unified entity, in a scalable and economically viable fashion." In this case, the scientist following his curiosity had at least one eye simultaneously on commercialization."
Weiye Loh

Rationally Speaking: Evolution as pseudoscience? - 0 views

  • I have been intrigued by an essay by my colleague Michael Ruse, entitled “Evolution and the idea of social progress,” published in a collection that I am reviewing, Biology and Ideology from Descartes to Dawkins (gotta love the title!), edited by Denis Alexander and Ronald Numbers.
  • Ruse's essay in the Alexander-Numbers collection questions the received story about the early evolution of evolutionary theory, which sees the stuff that immediately preceded Darwin — from Lamarck to Erasmus Darwin — as protoscience, the immature version of the full fledged science that biology became after Chuck's publication of the Origin of Species. Instead, Ruse thinks that pre-Darwinian evolutionists really engaged in pseudoscience, and that it took a very conscious and precise effort on Darwin’s part to sweep away all the garbage and establish a discipline with empirical and theoretical content analogous to that of the chemistry and physics of the time.
  • Ruse asserts that many serious intellectuals of the late 18th and early 19th century actually thought of evolution as pseudoscience, and he is careful to point out that the term “pseudoscience” had been used at least since 1843 (by the physiologist Francois Magendie)
  • ...17 more annotations...
  • Ruse’s somewhat surprising yet intriguing claim is that “before Charles Darwin, evolution was an epiphenomenon of the ideology of [social] progress, a pseudoscience and seen as such. Liked by some for that very reason, despised by others for that very reason.”
  • Indeed, the link between evolution and the idea of human social-cultural progress was very strong before Darwin, and was one of the main things Darwin got rid of.
  • The encyclopedist Denis Diderot was typical in this respect: “The Tahitian is at a primary stage in the development of the world, the European is at its old age. The interval separating us is greater than that between the new-born child and the decrepit old man.” Similar nonsensical views can be found in Lamarck, Erasmus, and Chambers, the anonymous author of The Vestiges of the Natural History of Creation, usually considered the last protoscientific book on evolution to precede the Origin.
  • On the other side of the divide were social conservatives like the great anatomist George Cuvier, who rejected the idea of evolution — according to Ruse — not as much on scientific grounds as on political and ideological ones. Indeed, books like Erasmus’ Zoonomia and Chambers’ Vestiges were simply not much better than pseudoscientific treatises on, say, alchemy before the advent of modern chemistry.
  • people were well aware of this sorry situation, so much so that astronomer John Herschel referred to the question of the history of life as “the mystery of mysteries,” a phrase consciously adopted by Darwin in the Origin. Darwin set out to solve that mystery under the influence of three great thinkers: Newton, the above mentioned Herschel, and the philosopher William Whewell (whom Darwin knew and assiduously frequented in his youth)
  • Darwin was a graduate of the University of Cambridge, which had also been Newton’s home. Chuck got drilled early on during his Cambridge education with the idea that good science is about finding mechanisms (vera causa), something like the idea of gravitational attraction underpinning Newtonian mechanics. He reflected that all the talk of evolution up to then — including his grandfather’s — was empty, without a mechanism that could turn the idea into a scientific research program.
  • The second important influence was Herschel’s Preliminary Discourse on the Study of Natural Philosophy, published in 1831 and read by Darwin shortly thereafter, in which Herschel sets out to give his own take on what today we would call the demarcation problem, i.e. what methodology is distinctive of good science. One of Herschel’s points was to stress the usefulness of analogical reasoning
  • Finally, and perhaps most crucially, Darwin also read (twice!) Whewell’s History of the Inductive Sciences, which appeared in 1837. In it, Whewell sets out his notion that good scientific inductive reasoning proceeds by a consilience of ideas, a situation in which multiple independent lines of evidence point to the same conclusion.
  • the first part of the Origin, where Darwin introduces the concept of natural selection by way of analogy with artificial selection can be read as the result of Herschel’s influence (natural selection is the vera causa of evolution)
  • the second part of the book, constituting Darwin's famous “long argument,” applies Whewell’s method of consilience by bringing in evidence from a number of disparate fields, from embryology to paleontology to biogeography.
  • What, then, happened to the strict coupling of the ideas of social and biological progress that had preceded Darwin? While he still believed in the former, the latter was no longer an integral part of evolution, because natural selection makes things “better” only in a relative fashion. There is no meaningful sense in which, say, a large brain is better than very fast legs or sharp claws, as long as you still manage to have dinner and avoid being dinner by the end of the day (or, more precisely, by the time you reproduce).
  • Ruse’s claim that evolution transitioned not from protoscience to science, but from pseudoscience, makes sense to me given the historical and philosophical developments. It wasn’t the first time either. Just think about the already mentioned shift from alchemy to chemistry
  • Of course, the distinction between pseudoscience and protoscience is itself fuzzy, but we do have what I think are clear examples of the latter that cannot reasonably be confused with the former, SETI for one, and arguably Ptolemaic astronomy. We also have pretty obvious instances of pseudoscience (the usual suspects: astrology, ufology, etc.), so the distinction — as long as it is not stretched beyond usefulness — is interesting and defensible.
  • It is amusing to speculate which, if any, of the modern pseudosciences (cryonics, singularitarianism) might turn out to be able to transition in one form or another to actual sciences. To do so, they may need to find their philosophically and scientifically savvy Darwin, and a likely bet — if history teaches us anything — is that, should they succeed in this transition, their mature form will look as different from the original as chemistry and alchemy. Or as Darwinism and pre-Darwinian evolutionism.
  • Darwin called the Origin "one long argument," but I really do think that recognizing that the book contains (at least) two arguments could help to dispel that whole "just a theory" canard. The first half of the book is devoted to demonstrating that natural selection is the true cause of evolution; vera causa arguments require proof that the cause's effect be demonstrated as fact, so the second half of the book is devoted to a demonstration that evolution has really happened. In other words, evolution is a demonstrable fact and natural selection is the theory that explains that fact, just as the motion of the planets is a fact and gravity is a theory that explains it.
  • Cryogenics is the study of the production of low temperatures and the behavior of materials at those temperatures. It is a legitimate branch of physics and has been for a long time. I think you meant 'cryonics'.
  • The Singularity means different things to different people. It is uncharitable to dismiss all "singularitarians" by debunking Kurzweil. He is low hanging fruit. Reach for something higher.
  •  
    "before Charles Darwin, evolution was an epiphenomenon of the ideology of [social] progress, a pseudoscience and seen as such. Liked by some for that very reason, despised by others for that very reason."
Weiye Loh

The Origins of "Basic Research" - 0 views

  • For many scientists, "basic research" means "fundamental" or "pure" research conducted without consideration of practical applications. At the same time, policy makers see "basic research" as that which leads to societal benefits including economic growth and jobs.
  • The mechanism that has allowed such divergent views to coexist is of course the so-called "linear model" of innovation, which holds that investments in "basic research" are but the first step in a sequence that progresses through applied research, development, and application. As recently explained in a major report of the US National Academy of Sciences: "[B]asic research ... has the potential to be transformational to maintain the flow of new ideas that fuel the economy, provide security, and enhance the quality of life" (Rising Above the Gathering Storm).
  • A closer look at the actual history of Google reveals how history becomes mythology. The 1994 NSF project that funded the scientific work underpinning the search engine that became Google (as we know it today) was conducted from the start with commercialization in mind: "The technology developed in this project will provide the 'glue' that will make this worldwide collection usable as a unified entity, in a scalable and economically viable fashion." In this case, the scientist following his curiosity had at least one eye simultaneously on commercialization.
  • ...1 more annotation...
  • In their appeal for more funding for scientific research, Leshner and Cooper argued that: "Across society, we don't have to look far for examples of basic research that paid off." They cite the creation of Google as a prime example of such payoffs: "Larry Page and Sergey Brin, then a National Science Foundation [NSF] fellow, did not intend to invent the Google search engine. Originally, they were intrigued by a mathematical challenge ..." The appealing imagery of a scientist who simply follows his curiosity and then makes a discovery with a large societal payoff is part of the core mythology of post-World War II science policies. The mythology shapes how governments around the world organize, account for, and fund research. A large body of scholarship has critiqued postwar science policies and found that, despite many notable successes, the science policies that may have made sense in the middle of the last century may need updating in the 21st century. In short, investments in "basic research" are not enough. Benoit Godin has asserted (PDF) that: "The problem is that the academic lobby has successfully claimed a monopoly on the creation of new knowledge, and that policy makers have been persuaded to confuse the necessary with the sufficient condition that investment in basic research would by itself necessarily lead to successful applications." Or as Leshner and Cooper declare in The Washington Post: "Federal investments in R&D have fueled half of the nation's economic growth since World War II."
Weiye Loh

An insider's view of academic censorship in Singapore | Asian Correspondent - 0 views

  • Mark, who is now assistant professor of history at the University of Hong Kong, talks candidly about the censorship, both self-imposed and external, that guided his research and writing.
  • During my 6 years in the city, I definitely became ever more acutely aware of "political sensitivities". Thus, there were comments that came up in interviews with some of Singapore's former political detainees (interviews which are cited in the book) that were not included because they would have possibly resulted in libel actions. There were other things, such as the deviousness of LKY's political negotiations with the British in the late 50s and early 60s, which we could have gone into further (the details have been published) rather than just pointing to them in the footnotes. Was this the result of a subconscious self-censorship or a desire to move the story on? I'm still thinking about that one. But I do recall that, as a foreign academic working at the National Univ. of Singapore, you inevitably became careful about what sort of public criticism you directed at your paymasters. No doubt, this carefulness ultimately seeps into you (though I think good work can be done in Singapore, nevertheless, and many people in academia there continue to do it).
  • The decision to halt Singapore: a Biography in 1965, and in that sense narrow the narrative, was a very conscious one. I am still not comfortable tackling Singapore's political history after 1965, given the current political constraints in the Republic, and the official control of the archive. I have told publishers who have enquired about us extending the story or writing a sequel that this would involve a narrative far more critical of the ruling party. Repressive political measures that might have garnered a degree of popular support in the turbulent early-60s became, I believe, for many Singaporeans, less justifiable and more reprehensible in the 70s and 80s (culminating with the disgust that many people felt over the treatment of Catholic agitators involved in the so-called "Marxist conspiracy" of 1987).
  • ...2 more annotations...
  • As for the rise of the PAP, my personal view is that in the late 1950s the PAP was the only viable alternative to colonial rule, once Marshall had bailed - that is, in terms of getting Singapore out of its postwar social and economic predicament. As much as my heart is with the idealists who founded the Barisan, I'm not sure they would have achieved the same practical results as the PAP did in its first 5 years, had they got into power. There were already rifts in the Barisan prior to Operation Cold Store in 1963, and the more one looks into the party at this time, the more chaotic it appears. (Undoubtedly, this chaos was also a result of the pressures exerted upon it by the PAP.)
  • when the Barisan was systematically destroyed, hopeless though its leaders might have proved as technocrats, Singapore turned a corner. From 1963, economic success and political stability were won at the expense of freedom of expression and 'responsible dissent', generating a conformity, an intellectual sterility and a deep loss of historical identity that I hope the Epilogue to the book conveys. That's basically my take on the rise of the PAP. The party became something very different from 1963.
  •  
    An insider's view of academic censorship in Singapore
Weiye Loh

Understanding the universe: Order of creation | The Economist - 0 views

  • In their “The Grand Design”, the authors discuss “M-theory”, a composite of various versions of cosmological “string” theory that was developed in the mid-1990s, and announce that, if it is confirmed by observation, “we will have found the grand design.” Yet this is another tease. Despite much talk of the universe appearing to be “fine-tuned” for human existence, the authors do not in fact think that it was in any sense designed. And once more we are told that we are on the brink of understanding everything.
  • The authors rather fancy themselves as philosophers, though they would presumably balk at the description, since they confidently assert on their first page that “philosophy is dead.” It is, allegedly, now the exclusive right of scientists to answer the three fundamental why-questions with which the authors purport to deal in their book. Why is there something rather than nothing? Why do we exist? And why this particular set of laws and not some other?
  • It is hard to evaluate their case against recent philosophy, because the only subsequent mention of it, after the announcement of its death, is, rather oddly, an approving reference to a philosopher’s analysis of the concept of a law of nature, which, they say, “is a more subtle question than one may at first think.” There are actually rather a lot of questions that are more subtle than the authors think. It soon becomes evident that Professor Hawking and Mr Mlodinow regard a philosophical problem as something you knock off over a quick cup of tea after you have run out of Sudoku puzzles.
  • ...2 more annotations...
  • The main novelty in “The Grand Design” is the authors’ application of a way of interpreting quantum mechanics, derived from the ideas of the late Richard Feynman, to the universe as a whole. According to this way of thinking, “the universe does not have just a single existence or history, but rather every possible version of the universe exists simultaneously.” The authors also assert that the world’s past did not unfold of its own accord, but that “we create history by our observation, rather than history creating us.” They say that these surprising ideas have passed every experimental test to which they have been put, but that is misleading in a way that is unfortunately typical of the authors. It is the bare bones of quantum mechanics that have proved to be consistent with what is presently known of the subatomic world. The authors’ interpretations and extrapolations of it have not been subjected to any decisive tests, and it is not clear that they ever could be.
  • Once upon a time it was the province of philosophy to propose ambitious and outlandish theories in advance of any concrete evidence for them. Perhaps science, as Professor Hawking and Mr Mlodinow practice it in their airier moments, has indeed changed places with philosophy, though probably not quite in the way that they think.
  •  
    Order of creation Even Stephen Hawking doesn't quite manage to explain why we are here
Weiye Loh

How the Internet Gets Inside Us : The New Yorker - 0 views

  • N.Y.U. professor Clay Shirky—the author of “Cognitive Surplus” and many articles and blog posts proclaiming the coming of the digital millennium—is the breeziest and seemingly most self-confident
  • Shirky believes that we are on the crest of an ever-surging wave of democratized information: the Gutenberg printing press produced the Reformation, which produced the Scientific Revolution, which produced the Enlightenment, which produced the Internet, each move more liberating than the one before.
  • The idea, for instance, that the printing press rapidly gave birth to a new order of information, democratic and bottom-up, is a cruel cartoon of the truth. If the printing press did propel the Reformation, one of the biggest ideas it propelled was Luther’s newly invented absolutist anti-Semitism. And what followed the Reformation wasn’t the Enlightenment, a new era of openness and freely disseminated knowledge. What followed the Reformation was, actually, the Counter-Reformation, which used the same means—i.e., printed books—to spread ideas about what jerks the reformers were, and unleashed a hundred years of religious warfare.
  • ...17 more annotations...
  • If ideas of democracy and freedom emerged at the end of the printing-press era, it wasn’t by some technological logic but because of parallel inventions, like the ideas of limited government and religious tolerance, very hard won from history.
  • As Andrew Pettegree shows in his fine new study, “The Book in the Renaissance,” the mainstay of the printing revolution in seventeenth-century Europe was not dissident pamphlets but royal edicts, printed by the thousand: almost all the new media of that day were working, in essence, for kinglouis.gov.
  • Even later, full-fledged totalitarian societies didn’t burn books. They burned some books, while keeping the printing presses running off such quantities that by the mid-fifties Stalin was said to have more books in print than Agatha Christie.
  • Many of the more knowing Never-Betters turn for cheer not to messy history and mixed-up politics but to psychology—to the actual expansion of our minds.
  • The argument, advanced in Andy Clark’s “Supersizing the Mind” and in Robert K. Logan’s “The Sixth Language,” begins with the claim that cognition is not a little processing program that takes place inside your head, Robby the Robot style. It is a constant flow of information, memory, plans, and physical movements, in which as much thinking goes on out there as in here. If television produced the global village, the Internet produces the global psyche: everyone keyed in like a neuron, so that to the eyes of a watching Martian we are really part of a single planetary brain. Contraptions don’t change consciousness; contraptions are part of consciousness. We may not act better than we used to, but we sure think differently than we did.
  • Cognitive entanglement, after all, is the rule of life. My memories and my wife’s intermingle. When I can’t recall a name or a date, I don’t look it up; I just ask her. Our machines, in this way, become our substitute spouses and plug-in companions.
  • But, if cognitive entanglement exists, so does cognitive exasperation. Husbands and wives deny each other’s memories as much as they depend on them. That’s fine until it really counts (say, in divorce court). In a practical, immediate way, one sees the limits of the so-called “extended mind” clearly in the mob-made Wikipedia, the perfect product of that new vast, supersized cognition: when there’s easy agreement, it’s fine, and when there’s widespread disagreement on values or facts, as with, say, the origins of capitalism, it’s fine, too; you get both sides. The trouble comes when one side is right and the other side is wrong and doesn’t know it. The Shakespeare authorship page and the Shroud of Turin page are scenes of constant conflict and are packed with unreliable information. Creationists crowd cyberspace every bit as effectively as evolutionists, and extend their minds just as fully. Our trouble is not the over-all absence of smartness but the intractable power of pure stupidity, and no machine, or mind, seems extended enough to cure that.
  • Nicholas Carr, in “The Shallows,” William Powers, in “Hamlet’s BlackBerry,” and Sherry Turkle, in “Alone Together,” all bear intimate witness to a sense that the newfound land, the ever-present BlackBerry-and-instant-message world, is one whose price, paid in frayed nerves and lost reading hours and broken attention, is hardly worth the gains it gives us. “The medium does matter,” Carr has written. “As a technology, a book focuses our attention, isolates us from the myriad distractions that fill our everyday lives. A networked computer does precisely the opposite. It is designed to scatter our attention. . . . Knowing that the depth of our thought is tied directly to the intensity of our attentiveness, it’s hard not to conclude that as we adapt to the intellectual environment of the Net our thinking becomes shallower.
  • Carr is most concerned about the way the Internet breaks down our capacity for reflective thought.
  • Powers’s reflections are more family-centered and practical. He recounts, very touchingly, stories of family life broken up by the eternal consultation of smartphones and computer monitors
  • He then surveys seven Wise Men—Plato, Thoreau, Seneca, the usual gang—who have something to tell us about solitude and the virtues of inner space, all of it sound enough, though he tends to overlook the significant point that these worthies were not entirely in favor of the kinds of liberties that we now take for granted and that made the new dispensation possible.
  • Similarly, Nicholas Carr cites Martin Heidegger for having seen, in the mid-fifties, that new technologies would break the meditational space on which Western wisdoms depend. Since Heidegger had not long before walked straight out of his own meditational space into the arms of the Nazis, it’s hard to have much nostalgia for this version of the past. One feels the same doubts when Sherry Turkle, in “Alone Together,” her touching plaint about the destruction of the old intimacy-reading culture by the new remote-connection-Internet culture, cites studies that show a dramatic decline in empathy among college students, who apparently are “far less likely to say that it is valuable to put oneself in the place of others or to try and understand their feelings.” What is to be done?
  • Among Ever-Wasers, the Harvard historian Ann Blair may be the most ambitious. In her book “Too Much to Know: Managing Scholarly Information Before the Modern Age,” she makes the case that what we’re going through is like what others went through a very long while ago. Against the cartoon history of Shirky or Tooby, Blair argues that the sense of “information overload” was not the consequence of Gutenberg but already in place before printing began. She wants us to resist “trying to reduce the complex causal nexus behind the transition from Renaissance to Enlightenment to the impact of a technology or any particular set of ideas.” Anyway, the crucial revolution was not of print but of paper: “During the later Middle Ages a staggering growth in the production of manuscripts, facilitated by the use of paper, accompanied a great expansion of readers outside the monastic and scholastic contexts.” For that matter, our minds were altered less by books than by index slips. Activities that seem quite twenty-first century, she shows, began when people cut and pasted from one manuscript to another; made aggregated news in compendiums; passed around précis. “Early modern finding devices” were forced into existence: lists of authorities, lists of headings.
  • Everyone complained about what the new information technologies were doing to our minds. Everyone said that the flood of books produced a restless, fractured attention. Everyone complained that pamphlets and poems were breaking kids’ ability to concentrate, that big good handmade books were ignored, swept aside by printed works that, as Erasmus said, “are foolish, ignorant, malignant, libelous, mad.” The reader consulting a card catalogue in a library was living a revolution as momentous, and as disorienting, as our own.
  • The book index was the search engine of its era, and needed to be explained at length to puzzled researchers
  • That uniquely evil and necessary thing the comprehensive review of many different books on a related subject, with the necessary oversimplification of their ideas that it demanded, was already around in 1500, and already being accused of missing all the points. In the period when many of the big, classic books that we no longer have time to read were being written, the general complaint was that there wasn’t enough time to read big, classic books.
  • at any given moment, our most complicated machine will be taken as a model of human intelligence, and whatever media kids favor will be identified as the cause of our stupidity. When there were automatic looms, the mind was like an automatic loom; and, since young people in the loom period liked novels, it was the cheap novel that was degrading our minds. When there were telephone exchanges, the mind was like a telephone exchange, and, in the same period, since the nickelodeon reigned, moving pictures were making us dumb. When mainframe computers arrived and television was what kids liked, the mind was like a mainframe and television was the engine of our idiocy. Some machine is always showing us Mind; some entertainment derived from the machine is always showing us Non-Mind.
Weiye Loh

Largest Protests in Wisconsin's History | the kent ridge common - 0 views

  • American mainstream media (big news channels or newspapers) are not reporting these protests. (Note the Sydney Morning Herald comes in at third place on the google news search) A quick web-tour of Fox News, New York Times and CNN: all 3 have headlines of Japanese nuclear reactors in the wake of the earthquake. NYT had zero articles on the protests on its main page, Fox News did at the bottom – “Wisconsin Union Fight Not Over Yet” – and CNN had one iReport linked from its main page, consisting of 10 black-and-white photos, none of them giving a bird’s eye view to show the massive turnout. A web commenter had this to say:
Weiye Loh

Free Speech under Siege - Robert Skidelsky - Project Syndicate - 0 views

  • Breaking the cultural code damages a person’s reputation, and perhaps one’s career. Britain’s Home Secretary Kenneth Clarke recently had to apologize for saying that some rapes were less serious than others, implying the need for legal discrimination. The parade of gaffes and subsequent groveling apologies has become a regular feature of public life. In his classic essay On Liberty, John Stuart Mill defended free speech on the ground that free inquiry was necessary to advance knowledge. Restrictions on certain areas of historical inquiry are based on the opposite premise: the truth is known, and it is impious to question it. This is absurd; every historian knows that there is no such thing as final historical truth.
  • It is not the task of history to defend public order or morals, but to establish what happened. Legally protected history ensures that historians will play safe. To be sure, living by Mill’s principle often requires protecting the rights of unsavory characters. David Irving writes mendacious history, but his prosecution and imprisonment in Austria for “Holocaust denial” would have horrified Mill.
  • the pressure for “political correctness” rests on the argument that the truth is unknowable. Statements about the human condition are essentially matters of opinion.  Because a statement of opinion by some individuals is almost certain to offend others, and since such statements make no contribution to the discovery of truth, their degree of offensiveness becomes the sole criterion for judging their admissibility. Hence the taboo on certain words, phrases, and arguments that imply that certain individuals, groups, or practices are superior or inferior, normal or abnormal; hence the search for ever more neutral ways to label social phenomena, thereby draining language of its vigor and interest.
  • ...3 more annotations...
  • A classic example is the way that “family” has replaced “marriage” in public discourse, with the implication that all “lifestyles” are equally valuable, despite the fact that most people persist in wanting to get married. It has become taboo to describe homosexuality as a “perversion,” though this was precisely the word used in the 1960’s by the radical philosopher Herbert Marcuse (who was praising homosexuality as an expression of dissent). In today’s atmosphere of what Marcuse would call “repressive tolerance,” such language would be considered “stigmatizing.”
  • The sociological imperative behind the spread of “political correctness” is the fact that we no longer live in patriarchal, hierarchical, mono-cultural societies, which exhibit general, if unreflective, agreement on basic values. The pathetic efforts to inculcate a common sense of “Britishness” or “Dutchness” in multi-cultural societies, however well-intentioned, attest to the breakdown of a common identity.
  • The defense of free speech is made no easier by the abuses of the popular press. We need free media to expose abuses of power. But investigative journalism becomes discredited when it is suborned to “expose” the private lives of the famous when no issue of public interest is involved. Entertaining gossip has mutated into an assault on privacy, with newspapers claiming that any attempt to keep them out of people’s bedrooms is an assault on free speech. You know that a doctrine is in trouble when not even those claiming to defend it understand what it means. By that standard, the classic doctrine of free speech is in crisis. We had better sort it out quickly – legally, morally, and culturally – if we are to retain a proper sense of what it means to live in a free society.
  •  
    Yet freedom of speech in the West is under strain. Traditionally, British law imposed two main limitations on the "right to free speech." The first prohibited the use of words or expressions likely to disrupt public order; the second was the law against libel. There are good grounds for both - to preserve the peace, and to protect individuals' reputations from lies. Most free societies accept such limits as reasonable. But the law has recently become more restrictive. "Incitement to religious and racial hatred" and "incitement to hatred on the basis of sexual orientation" are now illegal in most European countries, independent of any threat to public order. The law has shifted from proscribing language likely to cause violence to prohibiting language intended to give offense. A blatant example of this is the law against Holocaust denial. To deny or minimize the Holocaust is a crime in 15 European countries and Israel. It may be argued that the Holocaust was a crime so uniquely abhorrent as to qualify as a special case. But special cases have a habit of multiplying.
Weiye Loh

Religion's regressive hold on animal rights issues | Peter Singer | Comment is free | g... - 0 views

  • chief minister of Malacca, Mohamad Ali Rustam, was quoted in the Guardian as saying that God created monkeys and rats for experiments to benefit humans.
  • Here is the head of a Malaysian state justifying the establishment of a scientific enterprise with a comment that flies in the face of everything science tells us.
  • Though the chief minister is, presumably, a Muslim, there is nothing specifically Islamic about the claim that God created animals for our sake. Similar remarks have been made repeatedly by Christian religious figures through the millennia, although today some Christian theologians offer a kinder, more compassionate interpretation of the idea of our God-given dominion over the animals. They regard the grant of dominion as a kind of stewardship, with God wanting us to take care of his creatures and treat them well.
  • ...2 more annotations...
  • What are we to say of the Indian company, Vivo Biosciences Inc, which takes advantage of such religious naivety – in which presumably its scientists do not for one moment believe – in order to gain approval for its £97m joint venture with a state-owned Malaysian biotech company?
    • Weiye Loh
       
      Isn't it ironic that scientists rely on religious rhetoric to justify their sciences? 
  • The chief minister's comment is yet another illustration of the generally regressive influence that religion has on ethical issues – whether they are concerned with the status of women, with sexuality, with end-of-life decisions in medicine, with the environment, or with animals.
  •  
    Religion's regressive hold on animal rights issues How are we to promote the need for improved animal welfare when battling religious views formed centuries ago? Peter Singerguardian.co.uk, Tuesday 8 June 2010 14.03 BSTArticle history
Weiye Loh

Essay - The End of Tenure? - NYTimes.com - 0 views

  • The cost of a college education has risen, in real dollars, by 250 to 300 percent over the past three decades, far above the rate of inflation. Elite private colleges can cost more than $200,000 over four years. Total student-loan debt, at nearly $830 billion, recently surpassed total national credit card debt. Meanwhile, university presidents, who can make upward of $1 million annually, gravely intone that the $50,000 price tag doesn’t even cover the full cost of a year’s education.
  • Then your daughter reports that her history prof is a part-time adjunct, who might be making $1,500 for a semester’s work. There’s something wrong with this picture.
  • The higher-ed jeremiads of the last generation came mainly from the right. But this time, it’s the tenured radicals — or at least the tenured liberals — who are leading the charge. Hacker is a longtime contributor to The New York Review of Books and the author of the acclaimed study “Two Nations: Black and White, Separate, Hostile, Unequal,”
  • ...6 more annotations...
  • And these two books arrive at a time, unlike the early 1990s, when universities are, like many students, backed into a fiscal corner. Taylor writes of walking into a meeting one day and learning that Columbia’s endowment had dropped by “at least” 30 percent. Simply brushing off calls for reform, however strident and scattershot, may no longer be an option.
  • The labor system, for one thing, is clearly unjust. Tenured and tenure-track professors earn most of the money and benefits, but they’re a minority at the top of a pyramid. Nearly two-thirds of all college teachers are non-tenure-track adjuncts like Matt Williams, who told Hacker and Dreifus he had taught a dozen courses at two colleges in the Akron area the previous year, earning the equivalent of about $8.50 an hour by his reckoning. It is foolish that graduate programs are pumping new Ph.D.’s into a world without decent jobs for them. If some programs were phased out, teaching loads might be raised for some on the tenure track, to the benefit of undergraduate education.
  • it might well be time to think about vetoing Olympic-quality athletic ­facilities and trimming the ranks of administrators. At Williams, a small liberal arts college renowned for teaching, 70 percent of employees do something other than teach.
  • But Hacker and Dreifus go much further, all but calling for an end to the role of universities in the production of knowledge. Spin off the med schools and research institutes, they say. University presidents “should be musing about education, not angling for another center on antiterrorist technologies.” As for the humanities, let professors do research after-hours, on top of much heavier teaching schedules. “In other occupations, when people feel there is something they want to write, they do it on their own time and at their own expense,” the authors declare. But it seems doubtful that, say, “Battle Cry of Freedom,” the acclaimed Civil War history by Princeton’s James McPherson, could have been written on the weekends, or without the advance spadework of countless obscure monographs. If it is false that research invariably leads to better teaching, it is equally false to say that it never does.
  • Hacker’s home institution, the public Queens College, which has a spartan budget, commuter students and a three-or-four-course teaching load per semester. Taylor, by contrast, has spent his career on the elite end of higher education, but he is no less disillusioned. He shares Hacker and Dreifus’s concerns about overspecialized research and the unintended effects of tenure, which he believes blocks the way to fresh ideas. Taylor has backed away from some of the most incendiary proposals he made last year in a New York Times Op-Ed article, cheekily headlined “End the University as We Know It” — an article, he reports, that drew near-universal condemnation from academics and near-universal praise from everyone else. Back then, he called for the flat-out abolition of traditional departments, to be replaced by temporary, “problem-centered” programs focusing on issues like Mind, Space, Time, Life and Water. Now, he more realistically suggests the creation of cross-­disciplinary “Emerging Zones.” He thinks professors need to get over their fear of corporate partnerships and embrace efficiency-enhancing technologies.
  • It is not news that America is a land of haves and have-nots. It is news that colleges are themselves dividing into haves and have-nots; they are becoming engines of inequality. And that — not whether some professors can afford to wear Marc Jacobs — is the real scandal.
  •  
    The End of Tenure? By CHRISTOPHER SHEA Published: September 3, 2010
Weiye Loh

'The Social Network': A Review Of Aaron Sorkin's Film About Facebook And Mark Zuckerber... - 0 views

  • What is important in Zuckerberg’s story is not that he’s a boy genius. He plainly is, but many are. It’s not that he’s a socially clumsy (relative to the Harvard elite) boy genius. Every one of them is. And it’s not that he invented an amazing product through hard work and insight that millions love. The history of American entrepreneurism is just that history, told with different technologies at different times and places.
  • what’s important here is that Zuckerberg’s genius could be embraced by half-a-billion people within six years of its first being launched, without (and here is the critical bit) asking permission of anyone. The real story is not the invention. It is the platform that makes the invention sing. Zuckerberg didn’t invent that platform. He was a hacker (a term of praise) who built for it. And as much as Zuckerberg deserves endless respect from every decent soul for his success, the real hero in this story doesn’t even get a credit. It’s something Sorkin doesn’t even notice.
  • Zuckerberg faced no such barrier. For less than $1,000, he could get his idea onto the Internet. He needed no permission from the network provider. He needed no clearance from Harvard to offer it to Harvard students. Neither with Yale, or Princeton, or Stanford. Nor with every other community he invited in. Because the platform of the Internet is open and free, or in the language of the day, because it is a “neutral network,” a billion Mark Zuckerbergs have the opportunity to invent for the platform. And though there are crucial partners who are essential to bring the product to market, the cost of proving viability on this platform has dropped dramatically. You don’t even have to possess Zuckerberg’s technical genius to develop your own idea for the Internet today.
    • Weiye Loh
       
      What a shallow techno-utopianist view...
  • ...2 more annotations...
  • that is tragedy because just at the moment when we celebrate the product of these two wonders—Zuckerberg and the Internet—working together, policymakers are conspiring ferociously with old world powers to remove the conditions for this success. As “network neutrality” gets bargained away—to add insult to injury, by an administration that was elected with the promise to defend it—the opportunities for the Zuckerbergs of tomorrow will shrink. And as they do, we will return more to the world where success depends upon permission. And privilege. And insiders. And where fewer turn their souls to inventing the next great idea.
  • Zuckerberg is a rightful hero of our time. I want my kids to admire him. To his credit, Sorkin gives him the only lines of true insight in the film: In response to the twins’ lawsuit, he asks, does “a guy who makes a really good chair owe money to anyone who ever made a chair?” And to his partner who signed away his ownership in Facebook: “You’re gonna blame me because you were the business head of the company and you made a bad business deal with your own company?” Friends who know Zuckerberg say such insight is common. No doubt his handlers are panicked that the film will tarnish the brand. He should listen less to these handlers. As I looked around at the packed theater of teens and twenty-somethings, there was no doubt who was in the right, however geeky and clumsy and sad. That generation will judge this new world. If, that is, we allow that new world to continue to flourish.
  •  
    Page 2
Weiye Loh

Science Warriors' Ego Trips - The Chronicle Review - The Chronicle of Higher Education - 0 views

  • By Carlin Romano Standing up for science excites some intellectuals the way beautiful actresses arouse Warren Beatty, or career liberals boil the blood of Glenn Beck and Rush Limbaugh. It's visceral.
  • A brave champion of beleaguered science in the modern age of pseudoscience, this Ayn Rand protagonist sarcastically derides the benighted irrationalists and glows with a self-anointed superiority. Who wouldn't want to feel that sense of power and rightness?
  • You hear the voice regularly—along with far more sensible stuff—in the latest of a now common genre of science patriotism, Nonsense on Stilts: How to Tell Science From Bunk (University of Chicago Press), by Massimo Pigliucci, a philosophy professor at the City University of New York.
  • ...24 more annotations...
  • it mixes eminent common sense and frequent good reporting with a cocksure hubris utterly inappropriate to the practice it apotheosizes.
  • According to Pigliucci, both Freudian psychoanalysis and Marxist theory of history "are too broad, too flexible with regard to observations, to actually tell us anything interesting." (That's right—not one "interesting" thing.) The idea of intelligent design in biology "has made no progress since its last serious articulation by natural theologian William Paley in 1802," and the empirical evidence for evolution is like that for "an open-and-shut murder case."
  • Pigliucci offers more hero sandwiches spiced with derision and certainty. Media coverage of science is "characterized by allegedly serious journalists who behave like comedians." Commenting on the highly publicized Dover, Pa., court case in which U.S. District Judge John E. Jones III ruled that intelligent-design theory is not science, Pigliucci labels the need for that judgment a "bizarre" consequence of the local school board's "inane" resolution. Noting the complaint of intelligent-design advocate William Buckingham that an approved science textbook didn't give creationism a fair shake, Pigliucci writes, "This is like complaining that a textbook in astronomy is too focused on the Copernican theory of the structure of the solar system and unfairly neglects the possibility that the Flying Spaghetti Monster is really pulling each planet's strings, unseen by the deluded scientists."
  • Or is it possible that the alternate view unfairly neglected could be more like that of Harvard scientist Owen Gingerich, who contends in God's Universe (Harvard University Press, 2006) that it is partly statistical arguments—the extraordinary unlikelihood eons ago of the physical conditions necessary for self-conscious life—that support his belief in a universe "congenially designed for the existence of intelligent, self-reflective life"?
  • Even if we agree that capital "I" and "D" intelligent-design of the scriptural sort—what Gingerich himself calls "primitive scriptural literalism"—is not scientifically credible, does that make Gingerich's assertion, "I believe in intelligent design, lowercase i and lowercase d," equivalent to Flying-Spaghetti-Monsterism? Tone matters. And sarcasm is not science.
  • The problem with polemicists like Pigliucci is that a chasm has opened up between two groups that might loosely be distinguished as "philosophers of science" and "science warriors."
  • Philosophers of science, often operating under the aegis of Thomas Kuhn, recognize that science is a diverse, social enterprise that has changed over time, developed different methodologies in different subsciences, and often advanced by taking putative pseudoscience seriously, as in debunking cold fusion
  • The science warriors, by contrast, often write as if our science of the moment is isomorphic with knowledge of an objective world-in-itself—Kant be damned!—and any form of inquiry that doesn't fit the writer's criteria of proper science must be banished as "bunk." Pigliucci, typically, hasn't much sympathy for radical philosophies of science. He calls the work of Paul Feyerabend "lunacy," deems Bruno Latour "a fool," and observes that "the great pronouncements of feminist science have fallen as flat as the similarly empty utterances of supporters of intelligent design."
  • It doesn't have to be this way. The noble enterprise of submitting nonscientific knowledge claims to critical scrutiny—an activity continuous with both philosophy and science—took off in an admirable way in the late 20th century when Paul Kurtz, of the University at Buffalo, established the Committee for the Scientific Investigation of Claims of the Paranormal (Csicop) in May 1976. Csicop soon after launched the marvelous journal Skeptical Inquirer
  • Although Pigliucci himself publishes in Skeptical Inquirer, his contributions there exhibit his signature smugness. For an antidote to Pigliucci's overweening scientism 'tude, it's refreshing to consult Kurtz's curtain-raising essay, "Science and the Public," in Science Under Siege (Prometheus Books, 2009, edited by Frazier)
  • Kurtz's commandment might be stated, "Don't mock or ridicule—investigate and explain." He writes: "We attempted to make it clear that we were interested in fair and impartial inquiry, that we were not dogmatic or closed-minded, and that skepticism did not imply a priori rejection of any reasonable claim. Indeed, I insisted that our skepticism was not totalistic or nihilistic about paranormal claims."
  • Kurtz combines the ethos of both critical investigator and philosopher of science. Describing modern science as a practice in which "hypotheses and theories are based upon rigorous methods of empirical investigation, experimental confirmation, and replication," he notes: "One must be prepared to overthrow an entire theoretical framework—and this has happened often in the history of science ... skeptical doubt is an integral part of the method of science, and scientists should be prepared to question received scientific doctrines and reject them in the light of new evidence."
  • Pigliucci, alas, allows his animus against the nonscientific to pull him away from sensitive distinctions among various sciences to sloppy arguments one didn't see in such earlier works of science patriotism as Carl Sagan's The Demon-Haunted World: Science as a Candle in the Dark (Random House, 1995). Indeed, he probably sets a world record for misuse of the word "fallacy."
  • To his credit, Pigliucci at times acknowledges the nondogmatic spine of science. He concedes that "science is characterized by a fuzzy borderline with other types of inquiry that may or may not one day become sciences." Science, he admits, "actually refers to a rather heterogeneous family of activities, not to a single and universal method." He rightly warns that some pseudoscience—for example, denial of HIV-AIDS causation—is dangerous and terrible.
  • But at other points, Pigliucci ferociously attacks opponents like the most unreflective science fanatic
  • He dismisses Feyerabend's view that "science is a religion" as simply "preposterous," even though he elsewhere admits that "methodological naturalism"—the commitment of all scientists to reject "supernatural" explanations—is itself not an empirically verifiable principle or fact, but rather an almost Kantian precondition of scientific knowledge. An article of faith, some cold-eyed Feyerabend fans might say.
  • He writes, "ID is not a scientific theory at all because there is no empirical observation that can possibly contradict it. Anything we observe in nature could, in principle, be attributed to an unspecified intelligent designer who works in mysterious ways." But earlier in the book, he correctly argues against Karl Popper that susceptibility to falsification cannot be the sole criterion of science, because science also confirms. It is, in principle, possible that an empirical observation could confirm intelligent design—i.e., that magic moment when the ultimate UFO lands with representatives of the intergalactic society that planted early life here, and we accept their evidence that they did it.
  • "As long as we do not venture to make hypotheses about who the designer is and why and how she operates," he writes, "there are no empirical constraints on the 'theory' at all. Anything goes, and therefore nothing holds, because a theory that 'explains' everything really explains nothing."
  • Here, Pigliucci again mixes up what's likely or provable with what's logically possible or rational. The creation stories of traditional religions and scriptures do, in effect, offer hypotheses, or claims, about who the designer is—e.g., see the Bible.
  • Far from explaining nothing because it explains everything, such an explanation explains a lot by explaining everything. It just doesn't explain it convincingly to a scientist with other evidentiary standards.
  • A sensible person can side with scientists on what's true, but not with Pigliucci on what's rational and possible. Pigliucci occasionally recognizes that. Late in his book, he concedes that "nonscientific claims may be true and still not qualify as science." But if that's so, and we care about truth, why exalt science to the degree he does? If there's really a heaven, and science can't (yet?) detect it, so much the worse for science.
  • Pigliucci quotes a line from Aristotle: "It is the mark of an educated mind to be able to entertain a thought without accepting it." Science warriors such as Pigliucci, or Michael Ruse in his recent clash with other philosophers in these pages, should reflect on a related modern sense of "entertain." One does not entertain a guest by mocking, deriding, and abusing the guest. Similarly, one does not entertain a thought or approach to knowledge by ridiculing it.
  • Long live Skeptical Inquirer! But can we deep-six the egomania and unearned arrogance of the science patriots? As Descartes, that immortal hero of scientists and skeptics everywhere, pointed out, true skepticism, like true charity, begins at home.
  • Carlin Romano, critic at large for The Chronicle Review, teaches philosophy and media theory at the University of Pennsylvania.
  •  
    April 25, 2010 Science Warriors' Ego Trips
Weiye Loh

Review: What Rawls Hath Wrought | The National Interest - 0 views

  • Almost never used in English before the 1940s, “human rights” were mentioned in the New York Times five times as often in 1977 as in any prior year of the newspaper’s history. By the nineties, human rights had become central to the thinking not only of liberals but also of neoconservatives, who urged military intervention and regime change in the faith that these freedoms would blossom once tyranny was toppled. From being almost peripheral, the human-rights agenda found itself at the heart of politics and international relations.
  • In fact, it has become entrenched in extremis: nowadays, anyone who is skeptical about human rights is angrily challenged
  • The contemporary human-rights movement is demonstrably not the product of a revulsion against the worst crimes of Nazism. For one thing, the Holocaust did not figure in the deliberations that led up to the Universal Declaration of Human Rights adopted by the UN in 1948.
  • ...1 more annotation...
  • Contrary to received history, the rise of human rights had very little to do with the worst crime against humanity ever committed.
Weiye Loh

No Science please, we're Anthropologists « Critical Thinking « Skeptic North - 0 views

  • The debate is between researchers in science-based anthropological disciplines like archaeologists, physical anthropology and forensic anthropology — and anthropologists who focus on the more humanities based issues like race, ethnicity and gender.
  • Those that are defend the old mandate, members of the fields that are science based, are interested in relying on the scientific method to inform their theories about anthropology and ensuring that due diligence is done on new theories and that research is being conducted based on sound principles. In opposition are members who view themselves as advocates and activists. As they see it, research on culture, race, and gender is only harmed by science as it represents the cold arm of colonial imperialism.
  • viewing this as more than a simple cosmetic change, he compared the attacks and challenges on anthropology to creationism in that they both are “based on the rejection of rational argument and thought.
  • ...6 more annotations...
  • the American Anthropological Association attempted to clarify their position, they issued a statement in which they stated: “the Executive Board recognizes and endorses the crucial place of the scientific method in much anthropological research.” To further clarify matters they went on to describe anthropology as: “Anthropology is a holistic and expansive discipline that covers the full breadth of human history and culture.”
  • Damon Dozier, the association’s director of public affairs is further quoted saying “We mean holistic in terms of the diversity of the discipline.”
  • Despite the attempts to head off a huge rift, there appears to be lingering doubt as to the direction the American Anthropological Association is going and even more concern that the field of anthropology is under siege from post-modern attacks on its science foundations.
  • One of the most important contributions of science to the world has been a method of inquiry that has proven itself unequalled in explaining the natural world. The scientific method is, and should, be foundational in any field where the goal is to explain the natural world.
  • The so-called “hard sciences” understand this. Where things get muddled is in the “soft sciences” like anthropology, history, and psychology. For some reason these fields have proven especially vulnerable to post-modernism and have fallen prey to schizophrenic notion that science is “western” and trying to use science to explain things is another branch of imperialism.
  • The so-called “soft sciences” are occasionally put in the position of making assumptions. When you have a hypothesis you want to test, you unfortunately can’t travel back in time and do an experiment. Therefore, relying on the evidence you already have and employing your critical thinking skills you formulate a rational assumption and await the opportunity to confirm or deny it. It’s not based on a “hunch” or conjured up from the imagination. It’s based on rational skepticism.
Weiye Loh

IPhone and Android Apps Breach Privacy - WSJ.com - 0 views

  • Few devices know more personal details about people than the smartphones in their pockets: phone numbers, current location, often the owner's real name—even a unique ID number that can never be changed or turned off.
  • An examination of 101 popular smartphone "apps"—games and other software applications for iPhone and Android phones—showed that 56 transmitted the phone's unique device ID to other companies without users' awareness or consent. Forty-seven apps transmitted the phone's location in some way. Five sent age, gender and other personal details to outsiders.
  • The findings reveal the intrusive effort by online-tracking companies to gather personal data about people in order to flesh out detailed dossiers on them.
  • ...24 more annotations...
  • iPhone apps transmitted more data than the apps on phones using Google Inc.'s Android operating system. Because of the test's size, it's not known if the pattern holds among the hundreds of thousands of apps available.
  • TextPlus 4, a popular iPhone app for text messaging. It sent the phone's unique ID number to eight ad companies and the phone's zip code, along with the user's age and gender, to two of them.
  • Pandora, a popular music app, sent age, gender, location and phone identifiers to various ad networks. iPhone and Android versions of a game called Paper Toss—players try to throw paper wads into a trash can—each sent the phone's ID number to at least five ad companies. Grindr, an iPhone app for meeting gay men, sent gender, location and phone ID to three ad companies.
  • iPhone maker Apple Inc. says it reviews each app before offering it to users. Both Apple and Google say they protect users by requiring apps to obtain permission before revealing certain kinds of information, such as location.
  • The Journal found that these rules can be skirted. One iPhone app, Pumpkin Maker (a pumpkin-carving game), transmits location to an ad network without asking permission. Apple declines to comment on whether the app violated its rules.
  • With few exceptions, app users can't "opt out" of phone tracking, as is possible, in limited form, on regular computers. On computers it is also possible to block or delete "cookies," which are tiny tracking files. These techniques generally don't work on cellphone apps.
  • makers of TextPlus 4, Pandora and Grindr say the data they pass on to outside firms isn't linked to an individual's name. Personal details such as age and gender are volunteered by users, they say. The maker of Pumpkin Maker says he didn't know Apple required apps to seek user approval before transmitting location. The maker of Paper Toss didn't respond to requests for comment.
  • Many apps don't offer even a basic form of consumer protection: written privacy policies. Forty-five of the 101 apps didn't provide privacy policies on their websites or inside the apps at the time of testing. Neither Apple nor Google requires app privacy policies.
  • the most widely shared detail was the unique ID number assigned to every phone.
  • On iPhones, this number is the "UDID," or Unique Device Identifier. Android IDs go by other names. These IDs are set by phone makers, carriers or makers of the operating system, and typically can't be blocked or deleted. "The great thing about mobile is you can't clear a UDID like you can a cookie," says Meghan O'Holleran of Traffic Marketplace, an Internet ad network that is expanding into mobile apps. "That's how we track everything."
  • O'Holleran says Traffic Marketplace, a unit of Epic Media Group, monitors smartphone users whenever it can. "We watch what apps you download, how frequently you use them, how much time you spend on them, how deep into the app you go," she says. She says the data is aggregated and not linked to an individual.
  • Apple and Google ad networks let advertisers target groups of users. Both companies say they don't track individuals based on the way they use apps.
  • Apple limits what can be installed on an iPhone by requiring iPhone apps to be offered exclusively through its App Store. Apple reviews those apps for function, offensiveness and other criteria.
  • Apple says iPhone apps "cannot transmit data about a user without obtaining the user's prior permission and providing the user with access to information about how and where the data will be used." Many apps tested by the Journal appeared to violate that rule, by sending a user's location to ad networks, without informing users. Apple declines to discuss how it interprets or enforces the policy.
  • Google doesn't review the apps, which can be downloaded from many vendors. Google says app makers "bear the responsibility for how they handle user information." Google requires Android apps to notify users, before they download the app, of the data sources the app intends to access. Possible sources include the phone's camera, memory, contact list, and more than 100 others. If users don't like what a particular app wants to access, they can choose not to install the app, Google says.
  • Neither Apple nor Google requires apps to ask permission to access some forms of the device ID, or to send it to outsiders. When smartphone users let an app see their location, apps generally don't disclose if they will pass the location to ad companies.
  • Lack of standard practices means different companies treat the same information differently. For example, Apple says that, internally, it treats the iPhone's UDID as "personally identifiable information." That's because, Apple says, it can be combined with other personal details about people—such as names or email addresses—that Apple has via the App Store or its iTunes music services. By contrast, Google and most app makers don't consider device IDs to be identifying information.
  • A growing industry is assembling this data into profiles of cellphone users. Mobclix, the ad exchange, matches more than 25 ad networks with some 15,000 apps seeking advertisers. The Palo Alto, Calif., company collects phone IDs, encodes them (to obscure the number), and assigns them to interest categories based on what apps people download and how much time they spend using an app, among other factors. By tracking a phone's location, Mobclix also makes a "best guess" of where a person lives, says Mr. Gurbuxani, the Mobclix executive. Mobclix then matches that location with spending and demographic data from Nielsen Co.
  • Mobclix can place a user in one of 150 "segments" it offers to advertisers, from "green enthusiasts" to "soccer moms." For example, "die hard gamers" are 15-to-25-year-old males with more than 20 apps on their phones who use an app for more than 20 minutes at a time. Mobclix says its system is powerful, but that its categories are broad enough to not identify individuals. "It's about how you track people better," Mr. Gurbuxani says.
  • four app makers posted privacy policies after being contacted by the Journal, including Rovio Mobile Ltd., the Finnish company behind the popular game Angry Birds (in which birds battle egg-snatching pigs). A spokesman says Rovio had been working on the policy, and the Journal inquiry made it a good time to unveil it.
  • Free and paid versions of Angry Birds were tested on an iPhone. The apps sent the phone's UDID and location to the Chillingo unit of Electronic Arts Inc., which markets the games. Chillingo says it doesn't use the information for advertising and doesn't share it with outsiders.
  • Some developers feel pressure to release more data about people. Max Binshtok, creator of the DailyHoroscope Android app, says ad-network executives encouraged him to transmit users' locations. Mr. Binshtok says he declined because of privacy concerns. But ads targeted by location bring in two to five times as much money as untargeted ads, Mr. Binshtok says. "We are losing a lot of revenue."
  • Apple targets ads to phone users based largely on what it knows about them through its App Store and iTunes music service. The targeting criteria can include the types of songs, videos and apps a person downloads, according to an Apple ad presentation reviewed by the Journal. The presentation named 103 targeting categories, including: karaoke, Christian/gospel music, anime, business news, health apps, games and horror movies. People familiar with iAd say Apple doesn't track what users do inside apps and offers advertisers broad categories of people, not specific individuals. Apple has signaled that it has ideas for targeting people more closely. In a patent application filed this past May, Apple outlined a system for placing and pricing ads based on a person's "web history or search history" and "the contents of a media library." For example, home-improvement advertisers might pay more to reach a person who downloaded do-it-yourself TV shows, the document says.
  • The patent application also lists another possible way to target people with ads: the contents of a friend's media library. How would Apple learn who a cellphone user's friends are, and what kinds of media they prefer? The patent says Apple could tap "known connections on one or more social-networking websites" or "publicly available information or private databases describing purchasing decisions, brand preferences," and other data. In September, Apple introduced a social-networking service within iTunes, called Ping, that lets users share music preferences with friends. Apple declined to comment.
1 - 20 of 99 Next › Last »
Showing 20 items per page