Skip to main content

Home/ Groups/ Neuropsychology
Matti Narkia

How to unleash your brain's inner genius - life - 03 June 2009 - New Scientist - 0 views

  •  
    Savants - individuals with conditions that result in remarkable mathematical, artistic or musical talents - are extremely rare. But new findings about how their formidable brains work hint that we might all be able to develop similar abilities
Tero Toivanen

YouTube - Cognitive Neuroscience of Mindfulness Meditation - 0 views

  •  
    Speaker: Philippe Goldin. Mindfulness meditation, one type of meditation technique, has been shown to enhance emotional awareness and psychological flexibility as well as induce well-being and emotional balance. Scientists have also begun to examine how meditation may influence brain functions.
Tero Toivanen

Tests find benefit of sleeping on job - Science, News - The Independent - 0 views

  • A type of dreamy sleep that occurs more frequently in the early morning is important for solving problems that cannot be easily answered during the day, a study has found.
  • The discovery could explain many anecdotal accounts of famous intellectuals who had wrestled with a problem only to find that they have solved it by the morning after a good night's sleep.
  • Scientists believe that a form of dreaming slumber called rapid-eye movement (REM) sleep, when the brain becomes relatively active and the eyes flicker from side to side under closed eyelids, plays a crucial role in subconscious problem solving.
  • ...3 more annotations...
  • Those people who had enjoyed REM sleep improved significantly, by about 40 per cent, while the other volunteers who had not had REM sleep showed little if any improvement, according to the study published in the journal Proceedings of the National Academy of Sciences.
  • In a series of tests on nearly 80 people, the researchers found that REM sleep increases the chances of someone being able to successfully solve a new problem involving creative associations – finding an underlying pattern behind complex information.
  • The researchers suggest that it is not merely sleep itself, or the simple passage of time, that is important for the solving of a new problem, but the act of being able to fall into a state of REM sleep where the brain slips into a different kind of neural activity that encourages the formation of new nerve connections.
  •  
    A type of dreamy sleep that occurs more frequently in the early morning is important for solving problems that cannot be easily answered during the day, a study has found.
Tero Toivanen

Let me sleep on it: Creative problem solving enhanced by REM sleep - 0 views

  • "Participants grouped by REM sleep, non-REM sleep and quiet rest were indistinguishable on measures of memory," said Cai. "Although the quiet rest and non-REM sleep groups received the same prior exposure to the task, they displayed no improvement on the RAT test. Strikingly, however, the REM sleep group improved by almost 40 percent over their morning performances."
  • The study by Sara Mednick, PhD, assistant professor of psychiatry at UC San Diego and the VA San Diego Healthcare System, and first author Denise Cai, graduate student in the UC San Diego Department of Psychology, shows that REM directly enhances creative processing more than any other sleep or wake state. Their findings will be published in the June 8th online edition of the Proceedings of the National Academy of Sciences (PNAS).
  •  
    "Participants grouped by REM sleep, non-REM sleep and quiet rest were indistinguishable on measures of memory," said Cai. "Although the quiet rest and non-REM sleep groups received the same prior exposure to the task, they displayed no improvement on the RAT test. Strikingly, however, the REM sleep group improved by almost 40 percent over their morning performances."
Tero Toivanen

Scientists capture the first image of memories being made - 0 views

  • A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation. The finding provides the first visual evidence that when a new memory is formed new proteins are made locally at the synapse - the connection between nerve cells - increasing the strength of the synaptic connection and reinforcing the memory. The study published in Science, is important for understanding how memory traces are created and the ability to monitor it in real time will allow a detailed understanding of how memories are formed.
  • research has focused on synapses which are the main site of exchange and storage in the brain.
  • They form a vast but also constantly fluctuating network of connections whose ability to change and adapt, called synaptic plasticity, may be the fundamental basis of learning and memory.
  • ...3 more annotations...
  • Using a translational reporter, a fluorescent protein that can be easily detected and tracked, we directly visualized the increased local translation, or protein synthesis, during memory formation.
  • Importantly, this translation was synapse-specific and it required activation of the post-synaptic cell, showing that this step required cooperation between the pre and post-synaptic compartments, the parts of the two neurons that meet at the synapse.
  • This study provides evidence that a mechanism that mediates this gene expression during neuronal plasticity involves regulated translation of localized mRNA at stimulated synapses.
  •  
    A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation.
Tero Toivanen

PLoS ONE: Scale-Free Music of the Brain - 0 views

  •  
    In this study, audibly recognizable scale-free music was deduced from individual Electroencephalogram (EEG) waveforms. The translation rules include the direct mapping from the period of an EEG waveform to the duration of a note, the logarithmic mapping of the change of average power of EEG to music intensity according to the Fechner's law, and a scale-free based mapping from the amplitude of EEG to music pitch according to the power law.
Tero Toivanen

How To Keep Mentally Fit As You Age | Boost Your IQ - 0 views

  •  
    When you are young and mentally fit, you will perhaps never be able to comprehend that your memory, intelligence and overall mental fitness can actually decline as you age. However, as we grow older, our mental sharpness will gradually decline (and at an increasing rate) if we fail to keep on top of things.
Tero Toivanen

Music and Intelligence | Boost Your IQ - 0 views

  • Studies indicate that early exposure to musical training helps a child’s brain reach its potential by generating neural connections utilized in abstract reasoning.
  • The reasoning skills required for a test in spatial reasoning are the same ones children use when they listen to music. Children use these reasoning skills to order the notes in their brain to form the melodies. Also, some concepts of math must be understood in order to understand music. Experts speculate that listening to music exercises the same parts of the brain that handle mathematics, logic, and higher level reasoning.
  • In 1997 a study involving three groups of preschoolers was conducted to determine the effect of music versus computer training on early childhood development.
  • ...9 more annotations...
  • The group that received the piano/keyboard training scored 34% higher on tests measuring spatial-temporal ability than either of the other two groups. These results suggest that music enhances certain higher brain functions, particularly abstract reasoning skills, required in math and science.
  • The use of music in training four and five year old children yielded the highest improvement in the ability to name body parts.
  • Although the three experimental groups displayed an increase in their ability to name body parts the music group exhibited the highest degree of improvement.
  • First grade students received extensive Kodaly training for seven months.
  • At the end of seven months the experimental group had higher reading scores than the control group, which did not receive any special treatment. Not only did the seven month instruction increase reading scores, but continued musical training proved to be beneficial. The experimental group continued to show higher reading scores with continued training.
  • Students who were involved in arts education achieved higher SAT scores. The longer students were involved in arts education, the higher the increase in SAT scores. This study also correlated arts education with higher scores in standardized tests, reading, English, history, citizenship, and geography.
  • The results indicated that students with a relatively lower socioeconomic status, that were exposed to arts education, had an advantage over those students without any arts education which was proportionally equal to the students with a relatively higher socioeconomic status and exposure to arts education.
  • Music exposure affects older students as well. Three groups of college students were exposed to either Mozart’s Sonata for Two Pianos, K448, a relaxation tape, or silence. The group exposed to the Mozart piece was the only group to achieve an increase on the spatial IQ test. Further studies revealed that neither dance music nor taped short stories produced an increase in spatial IQ similar to the Mozart piece. The increase in spatial IQ appears to be related to some unique aspects of the Mozart piece rather than music in general.
  • Music may not only be related to intelligence by its stimulation of the brain, but it may also increase intelligence by the type of attitudes, interests, and discipline it fosters in children.
  •  
    Studies indicate that early exposure to musical training helps a child's brain reach its potential by generating neural connections utilized in abstract reasoning.
Tero Toivanen

Left Brain and Right Brain | Boost Your IQ - 0 views

  • The left brain follows a completely different “way” and process of thinking from the right brain. The left brain sees things in an analytical, objective and logical manner. The right brain on the other hand is more symbol and metaphorically orientated.
  • In order to develop a particular brain, it is therefore necessary to focus on doing things which complement its attributes. For example, if I were to develop my left brain, i would embark on logical analysis and maths. If I were to exercise my right brain, i would indulge in art work.
  • do you see the dancer turning clockwise or anti-clockwise? If clockwise, then you use more of the right side of the brain and vice versa.
  •  
    do you see the dancer turning clockwise or anti-clockwise?
Tero Toivanen

Lab Notes : The Brains of Early Birds and Night Owls - 0 views

  • There was no real difference between the early birds and the night owls in their performance on the morning test. But the evening test was a different story: night owls were less sleepy and had faster reaction times than early birds.
  • So even though both groups were sleeping and waking according to their preferred schedule, night owls generally outlasted early birds in how long they could stay awake and mentally alert before becoming mentally fatigued. The fMRI supported the behavioral results: 10.5 hours after waking up, the early birds had lower activity in brain regions linked to attention and the circadian master clock, compared to night owls.
  •  
    A new study, in the journal Science, reports some intriguing differences between the brain-activity patterns of the two types that underlie the behavioral differences.
Tero Toivanen

The five ages of the brain: Adolescence - life - 04 April 2009 - New Scientist - 0 views

  • Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
  • This cerebral pruning trims unused neural connections that were overproduced in the childhood growth spurt, starting with the more basic sensory and motor areas.
  • Among the last to mature is the dorsolateral prefrontal cortex at the very front of the frontal lobe. This area is involved in control of impulses, judgement and decision-making, which might explain some of the less-than-stellar decisions made by your average teen. This area also acts to control and process emotional information sent from the amygdala - the fight or flight centre of gut reactions - which may account for the mercurial tempers of adolescents.
  • ...5 more annotations...
  • These changes have both benefits and pitfalls. At this stage of life the brain is still childishly flexible, so we are still sponges for learning. On the other hand, the lack of impulse control may lead to risky behaviours such as drug and alcohol abuse, smoking and unprotected sex.
  • As grey matter is lost, though, the brain gains white matter
  • Substance abuse is particularly concerning, as brain imaging studies suggest that the motivation and reward circuitry in teen brains makes them almost hard-wired for addiction.
  • since drug abuse and stressful events - even a broken heart - have been linked to mood disorders later in life, this is the time when both are best avoided.
  • Making the most of this time is a matter of throwing all that teen energy into learning and new experiences - whether that means hitting the books, learning to express themselves through music or art, or exploring life by travelling the world.
  •  
    Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
Tero Toivanen

Things I like to Blog About: Neurotransmission : Neurotopia - 0 views

  •  
    Neurotransmission explained in an easy way.
« First ‹ Previous 141 - 153
Showing 20 items per page